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For FPGA-based scientific simulation systems, hardware design technique
that can reduce required amount of hardware resources is a key issue, since the
size of simulation target is often limited by the size of the FPGA. Focusing
on FPGA-based biochemical simulation, this paper proposes hardware design
methodology which finds and combines common datapath for similar rate law
functions appeared in simulation target models, so as to generate area-effective
pipelined hardware modules. In addition, similarity-based clustering techniques
of rate law functions are also presented in order to alleviate negative effects
on performance for combined pipelines. Empirical evaluation with a practical
biochemical model reveals that our method enables the simulation with 66%
of the original hardware resources at a reasonable cost of 20% performance
overhead.

1. Introduction

Systems biology, an attempt to analyze and understand the mechanism of life
phenomena in a system level has now become more active reflecting recent ad-
vance in life science and rapid accumulation of quantitative data obtained by
biological experiments. Also a demand for high performance biochemical sim-
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ulators is increasing, since simulating practical kinetic models of biochemical
pathways is a very time consuming process 1),2).

A major difficulty in accelerating biochemical simulation comes from diver-
sity and heterogeneousness of simulation models. There is no single governing
equation in biochemical simulations, but every different model consists of a va-
riety of different equations. Therefore, we had launched a project to implement
FPGA-based biochemical simulator called ReCSiP (ReConfigurable Cell Simula-
tion Platform) 3),4), whose hardware structure can be tailored to fit each simula-
tion model.

A simulation target of ReCSiP is given in a set of an ordinary differential equa-
tion (ODE)-based chemical reaction model described in systems biology markup
language (SBML) 5). Then the equations for the model are automatically im-
plemented as custom hardware on an FPGA and high-throughput simulation is
carried out. A key issue for such FPGA-based systems is how desired functional
units are compactly implemented, since the more functional units implemented
on a chip, the larger the model we can simulate. Also, the benefit of parallel pro-
cessing increases by replicating the implementation of small hardware modules.

The proposed method developed in this work focuses on this problem. To make
the simulation within limited circuit resources on an FPGA possible, the method
automatically finds the common datapath from rate law functions used in a
given target biochemical model, and then generates compact pipelined hardware
for simulation by combining and sharing the common datapath. In order to
alleviate the performance degradation by sharing, methods for clustering the
rate law functions into similar groups are also presented.

The work described in the paper is about hardware resource reduction schemes
on ReCSiP. In our early work, manually designed hardware libraries for fre-
quently used rate law functions called SBML predefined functions 6) were im-
plemented by merging the common datapath 7). Automatic datapath combining
method for any arbitrary pair of rate law functions was presented in our previous
work 8), but the effectiveness of the method was not evaluated in an empirical
way thus the impact on the whole simulation performance was not revealed yet.

On the other hand, a wide variety of hardware resource reduction techniques
with the common datapath sharing have been proposed in the field of electronic
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design automation and a lot of novel methods for reconfigurable systems have
been developed in recent years. Reference 9) formulated datapath merging as
integer programming under a few restrictions. Reference 10) presented a circuit
area reduction method which extracts common subgraphs in a circuit level and
combines them in a technology mapping stage of FPGA implementation. Refer-
ence 11) showed a fast heuristic method to merge multiple datapath considering
similarity. The effect of this method was further improved by adding novel opti-
mization techniques in a high-level synthesis process 12). However, these existing
methods are not suitable to be applied to deeply pipelined hardware modules.
Since these methods do not consider dependencies between datapaths, combined
hardware is able to work as only one of the shared functionality at one time,
which will result in severe throughput degradation due to frequent pipeline stalls.
Another issue is that the existing methods straightforwardly generate only one
module that contains all given datapaths, without considering which datapaths
should be combined. Putting too many functionality into one hardware mod-
ule often leads performance degradation in an application level 7). To cope with
these problems, we present a datapath merging method which allows combined
hardware to simultaneously operate multiple functionality in a pipelined man-
ner, as well as a similarity-based datapath clustering method to determine which
datapath to be combined. Also this paper presents empirical evaluation with a
practical biochemical model to discuss the effect of our methods.

The rest of this paper is organized as follows. In Section 2, we introduce
the architecture of the ReCSiP system. Section 3 describes an overview and
process flow of our methods. Then, Section 4 presents the method to extract and
combine common operators in data flow graphs (DFGs) of rate law functions in
biochemical models. Clustering methods using similarity of rate law functions
is shown in Section 5. Section 6 shows results of evaluation experiments and
discusses the effectiveness of our methods. Finally Section 7 concludes this paper.

2. ReCSiP

ReCSiP organizes several Solver modules (Fig. 1) to solve ordinary differential
equations in a reaction model, and a Switch module to connect them together
on an FPGA. A Solver consists of two submodules, a Solve Core to calculate a

Fig. 1 Organization of Solver modules.

rate law function and an Integrator for numerical integration. A Solver Core con-
sists of several pipelined single-precision floating point arithmetic units and shift
registers. The behavior of this deep arithmetic pipeline is statically scheduled.

Calculation of a rate law function in a Solver Core takes concentration values of
the substances related to the reaction and kinetic rate coefficient values as input.
For these input data, a Solver Core has one input port for concentration values
(X in Fig. 1) and two input ports (k1 and k2) for the rate coefficient values. On
the other hand, only one output port (v) is provided to output the calculated
reaction velocity. Inner structure of a Solver Core differs by the rate law function
to be calculated.

Depending on the rate law function, the number of input data may exceed the
number of input ports. In this case, all input data can not be fed into the Solve
Core in one clock cycle. The number of clock cycles required for data input is
P = max(Nx, �Nk/2�), where Nx and Nk denote the number of concentration
values and coefficient values, respectively. In case of P = 1, if enough number of
arithmetic modules are prepared for the pipeline, the Solve Core can calculate
a rate law function every clock cycle. In case of P ≥ 2, the Solver Core can
calculate individual functions every P clock cycle, resulting in idle cycles on
some arithmetic modules. This offers another chance to reduce the hardware
amount by sharing the some arithmetic modules among several different pipeline
stages.

In ReCSiP, a Solver Core can not calculate multiple rate law functions si-
multaneously. However, implementation of multi-functional Solver Cores which
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support multiple rate law functions and switch the function on demand is possi-
ble.

3. Overview of the Proposed Method

Our approach first makes groups of similar rate law functions of a given sim-
ulation target written in SBML 5). Then the common subgraphs are extracted
from the corresponding DFGs and are combined to reduce the circuit size.

The proposed process flow consists of the following four steps (Fig. 2):
( 1 ) Extract rate law functions from a given SBML file.
( 2 ) Convert the rate law functions into DFGs.
( 3 ) Divide DFGs into some clusters according to their similarity.
( 4 ) Combine common subgraphs of DFGs in each cluster.
The combined DFGs are converted into pipelined hardware of a Solver Core by
performing pipeline scheduling, input data scheduling, and arithmetic resource
binding 13).

For example, the rate law functions for irreversible mixed inhibition kinetics
(UMI) and reversible uncompetitive inhibition (UUCR), defined in SBML level
1 are expressed as

Fig. 2 Proposing process flow.

v =
V × S/Km

1 + I/Kis + (S/Km)(1 + I/Kic)
(1)

and,

v =
Vf × S/Kms − Vr × P/Kmp

1 + (S/Kms + P/Kmp)(1 + I/Ki)
(2)

respectively. These equations are converted into DFGs as shown in Fig. 3. Then,
the common subgraphs corresponding to the shaded regions in Fig. 3 are extracted

Fig. 3 Extracted common subgraphs in two DFGs.

Fig. 4 Combined graph.
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and the two DFGs are combined by sharing the common subgraphs. The other
different parts between the DFGs are switched by extra multiplexers as shown
in Fig. 4. When more than three DFGs are combined, the above-mentioned
approach is iteratively applied in a one-by-one manner.

4. Common Subgraph Extraction

4.1 Terminologies and Definitions
A data flow graph (DFG) is a labeled directed graph g = (V,E, l), where V

is the set of nodes, and E ⊆ V × V is the set of edges. An ordered pair of
nodes e = (vi, vj) ∈ E represents g has an edge directed from vi to vj . Using
the label map l : V → Lop, the operation type of the node v is denoted as
l(v), where Lop is the set of operation types. In this work, Lop consists of the
4 elements corresponding to addition/subtraction, multiplication, division, and
exponentiation, respectively.

Definition 4.1 (sharable nodes) Suppose two nodes v1 and v2 belong to
DFGs g1 = (V1, E1, l1) and g2 = (V2, E2, l2), respectively. The nodes v1 and v2

are sharable if and only if l1(v1) = l2(v2).
Definition 4.2 (common subgraph) Let V ′ be a subset of V and let E′ be

a subset of E such that vi, vj ∈ V ′ for every e = (vi, vj) ∈ E′. Let l′ : V ′ → Lop be
a partial map of l such that l′(v) = l(v). Then, the DFG g′ = (V ′, E′, l′) is called
a subgraph of g = (V,E, l). Let g1 and g2 be DFGs and g′1 = (V ′

1 , E′
1, l

′
1) and

g′2 = (V ′
2 , E′

2, l
′
2) be subgraphs of g1 and g2, respectively. Suppose f : V ′

1 → V ′
2

is a one-to-one correspondence between the sets of nodes such that (vi, vj) is an
edge of g′1 if and only if (f(vi), f(vj)) is an edge of g′2, and v and f(v) are sharable
for every v ∈ V ′

1 . Then g′1 and g′2 are called common subgraphs of g1 and g2.
Definition 4.3 (connectivity) Consider an alternating sequence of nodes

and edges of a DFG g = (V,E, l) in the form of
v0, e0, v1, e2, v2, . . . en−1, vn−1, en, vn

where (vi−1, vi) ∈ E or (vi, vi−1) ∈ E for each ei. The sequence is called a path
if all the nodes on the sequence are distinct. A graph is said to be connected
if there is a path between any two of its nodes. Otherwise, the graph is called
unconnected.

The first step of combining DFGs is to extract common subgraphs among the

� �
INPUT: Graph graph1, Graph graph2

for(Node i=0; i<total_node(graph1); i++){

for(Node j=0; j<total_node(graph2); j++){

Graph common_node_chunk=COMMON_GRAPH_SET(i, j, graph1, graph2);

if(common_node_chunk.size()>THRESHOLD)

COMBINE_LIST(common_node_chunk);

}

}

� �
Fig. 5 Extraction of unconnected common subgraph.

DFGs. This paper presents and compares two approaches; extraction of uncon-
nected common subgraphs and connected common subgraphs. In the followings,
vi(j) denotes the node j in the i-th DFG gi.

4.2 Searching Unconnected Common Subgraphs
The unconnected common subgraph discovery algorithm is described in Fig. 5

and Fig. 6. This algorithm checks all combinations of nodes to detect common
subgraphs, since DFGs of rate law functions for biochemical models are fortu-
nately not too large to traverse all nodes and edges in a pair of DFGs. The com-
mon subgraphs that have (v1(i), v2(j)) as their root nodes are extracted from two
DFGs g1 and g2 by calling COMMON_GRAPH_SET function, passing the combination
of nodes (v1(i), v2(j)) as arguments. COMBINE_LIST function keeps the common
subgraphs in the list when the number of nodes exceeds the value THRESHOLD.
THRESHOLD sets the minimum grain size of common subgraphs to be candidate of
combining. Smaller THRESHOLD results in larger number of candidate subgraphs.
However, it is expected that the overhead of graph combining increases when too
many small subgraphs are chosen. While there will be a right trade-off point, the
value of THRESHOLD is set to 2 in this work, in order to evaluate the case of the
finest grain size.

The IsCommonNode function shown in Fig. 6 decides whether the correspond-
ing nodes are sharable (i.e., whether the nodes v1(i) and v2(j) are the same
operators). The adder and subtractor are regarded to be sharable. A sharable
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� �
INPUT: Int i, Int j, Graph graph1, Graph graph2

queue.push(i, j);

while(!queue.isEmpty()){

(i, j)=queue.pop();

if(IsCommonNode(v1(i), v2(j))){

if(list.find(i, *)==NOT_FOUND)

if(list.find(*, j)==NOT_FOUND)

list.push(i, j);

for(k=0; k<total_child_node(v1(i)); k++){

for(m=0; m<total_child_node(v2(j)); m++){

child_i=get_child(v1(i), k);

child_j=get_child(v2(j), m);

queue.push(child_i, child_j);

}

}

}

}

return list;

� �
Fig. 6 COMMON GRAPH SET function for unconnected common subgraph.

combination of nodes is stored in the list, if the combination has not been stored
yet. Then, the successor nodes of v1(i) and v2(j) are iteratively traversed in a
breadth first search manner until reaching to the leaf nodes. As the result, the
common subgraphs whose root nodes are v1(i) and v2(j) are listed in the list.

4.3 Searching Connected Common Subgraphs
The connected common subgraph discovery algorithm is shown in Fig. 7 and

Fig. 8. Figure 7 is basically the same as Fig. 5 shown in the previous subsection.
The IsCommonNode function checks whether corresponding nodes are sharable in
the same way as the algorithm in Fig. 5. The object common node chunk keeps
the common subgraphs while COMMON GRAPH SET function traverses the DFGs
recursively. The object mcs keeps the largest common subgraph extracted in the

� �
INPUT: Graph graph1, Graph graph2

for(Node i=0; i<total_node(graph1); i++){

for(Node j=0; j<total_node(graph2); j++){

Graph common_node_chunk; common_node_chunk.clear();

Graph tmp_mcs; tmp_mcs.clear();

Graph mcs = COMMON_GRAPH_SET(i, j, graph1, graph2,

common_node_chunk, tmp_mcs);

if(mcs.size()>THRESHOLD)

COMBINE_LIST(mcs);

}

}

� �
Fig. 7 Extraction of connected common subgraph.

past searches. If the number of nodes in the common subgraph stored in mcs is
less than that of the current graph in common node chunk, mcs is updated.

The IsExtend function checks whether the current combination of the nodes
can be appended in common node chunk. Here, the function returns true, only
when the nodes in the common subgraph are connected.

4.4 Selection of Common Subgraphs to Combine
The common subgraphs obtained in the methods shown in the previous sub-

sections are the candidates to be combined. In this subsection, we show how the
actually combined common subgraphs are selected from these candidate common
subgraphs. Since the more arithmetic units are shared, the more hardware re-
sources can be saved, selection of candidate common subgraphs so that as many
nodes as possible can be combined is desirable. That is, the objective function to
be maximized by the selection algorithm described here is the number of nodes
included in the selected common subgraphs. However, the two constraints below
must be met to a proper construction of the pipeline:
( 1 ) The selected common subgraph can not be overlapped.
( 2 ) The combined graph can not have a circular dependency.

The combined graph in Fig. 9 (c) was made from the 2 candidate common
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� �
INPUT: Int i, Int j, Graph graph1, Graph graph2,

Graph common_node_chunk, Graph tmp_mcs

if(IsCommonNode(v1(i), v2(j)){

if(IsExtend(i, j, graph1, graph2, common_node_chunk)){

common_node_chunk.add(i, j);

if(common_node_chunk.size()>tmp_mcs.size())

tmp_mcs=common_node_chunk;

}

}

for(k=0; k<total_child_node(v1(i)); k++){

for(m=0; m<total_child_node(v2(j)); m++){

child_i = get_child(v1(i), k);

child_j = get_child(v2(j), m);

tmp_mcs=COMMON_GRAPH_SET(child_i, child_j, graph1, graph2,

common_node_chunk, tmp_mcs);

}

}

return tmp_mcs;

� �
Fig. 8 COMMON GRAPH SET function for connected common subgraph.

subgraphs in DFG-A (Fig. 9 (a)) and DFG-B (Fig. 9 (b)). In the combined sub-
graph in Fig. 9 (c), the result from node 5 is passed to node 3, then goes to node
1 via node 7 (DFG-B) or directly (DFG-A). This requires 2 adder/subtractors
for Common subgraph 1 (Fig. 9), thus weakens the resource reduction efficiency.
This is the reason to avoid overlaps between 2 common subgraphs.

The violation of the second constraint can make a circular dependency among
common subgraphs like shown in Fig. 10. In this example, Common subgraph
1 and Common subgraph 2 (Fig. 10) have a mutual dependency on each other,
preventing the combined hardware from being pipelined.

Combining common subgraphs to maximize the number of contained nodes is

Fig. 9 DFG with overlapping.

Fig. 10 Combined graph with circular dependency.

similar to knapsack problem. However, there are several differences, such as the
above-mentioned constraints on the common subgraphs that can be selected at
the same time, allowance of the common subgraph selection without limit of the
number. Especially by the latter property, the number of combinations to search
becomes enormous.

Our approach to quickly find the most effective combination of subgraphs to be
combined, is use of a binary decision tree called the subgraph selection tree. Fig-
ure 11 shows an example of the subgraph selection tree. The common subgraphs
are weighted by the number of nodes, and sorted by the weight in descending
order. Each common subgraph corresponds to a level of the selection tree, where
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Fig. 11 Subgraph selection tree.

the root node represents the heaviest common subgraph. In Fig. 11, for example,
the three common subgraphs A, B and C are in order corresponding to the levels
of the selection tree from the root. The edges in the tree represent a decision
to select the corresponding subgraph or not. That is, starting from the root
node, the right outbound edge is followed if the Subgraph A is selected, while
the left edge is followed if not. When this process reaches a leaf node, the total
number of nodes included in the selected common subgraphs is obtained. The
restriction constraints are represented by removing the edges corresponding to
the prohibited combination of subgraphs from this tree. In addition, in order to
reduce the search time we provide a threshold depth at which the search process
stops. Common subgraph to combine which has the largest score in the range of
this threshold can be found in this way. The effect of the threshold depth is also
evaluated and discussed in Section 6.

5. Clustering DFGs

Although a single Solver Core can be generated by combining all the rate law
functions included in a given simulation target, this will not be efficient in terms
of performance since many multiplexers will be employed to switch the function.
Instead of combining all rate law functions, making some groups of the functions

and making a combined Solve Core for each group is a realistic way to achieve
hardware resource reduction while alleviating the performance degradation. This
paper presents and compares two clustering methods, by DFG size and by the
largest common subgraph.

5.1 Clustering by DFG Size
The first method is k -means clustering 14) by the size of DFGs, intending to

make groups of similar size of DFGs. Here, we use the number of nodes and the
height of a DFG as a metric.

In this method, a given set of n DFGs (gi, i = 1, 2, . . . , n) are classified into k

clusters (Sj , j = 1, 2, . . . , k). The k -means clustering is to minimize:

V =
k∑

j=1

∑
gi∈Sj

(
(ngi

− ncj
)2 + (hgi

− hcj
)2

)
(3)

where ngi
, hgi

, and cj ∈ Sj represent the number of nodes of DFG gi, the height
of gi, and the center of gravity in the cluster Sj , respectively. The centers of
gravity for the parameters (ncj

, hcj
) are defined as:

ncj
=

∑
gi∈Sj

(ngi
)

|Sj | (4)

hcj
=

∑
gi∈Sj

(hgi
)

|Sj | (5)

5.2 Clustering by the Largest Common Subgraph
The other method measures the similarity of DFGs by the size of the largest

common subgraph. A similar pair of DFGs are expected to have larger common
subgraph. In this method, a distance between DFGs gi and gj is defined as:

dij = 1 − 1
2

(
MCS(gi, gj)

ngi

+
MCS(gi, gj)

ngj

)
(6)

where MCS(gi, gj) is the total number of nodes in the largest common subgraphs
between gi and gj . Since MCS(gi, gj) is equal to or less than ni and nj , dij

represents similarity in the range of
0 ≤ dij ≤ 1. (7)

The higher similarity gi and gj have, dij becomes smaller.
To cluster DFGs, values of dij for all combinations of given DFGs are calculated
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first. Then the DFGs are clustered by linking two DFGs when the distance is
lower than a threshold value. The number of clusters can be adjusted by the
threshold value.

6. Evaluation and Discussion

In this section, the proposed methods and their implementation alternatives
are evaluated and compared mainly in the following points of view:
( 1 ) Common subgraph extraction: unconnected or connected.
( 2 ) Subgraph selection tree: the threshold depth.
( 3 ) Clustering: k -means or largest common subgraph.
The proposed methods were implemented in C++ (gcc4.1.2 +O3) with Boost
C++ library and libSBML 15), and were evaluated using 32 SBML predefined
rate law functions 6). Pipeline scheduling and arithmetic resource sharing were
done by list scheduling policy 7),13). This C++ program reads a model described
in an SBML file, then generates Verilog-HDL modules required to solve the model.
Generated pipelines were synthesized, placed and routed on a Xilinx VirtexII-Pro
XC2VP70-5 on the ReCSiP board, using a Slang SSE 10.1 tool. Table 1 shows
the number of slices for arithmetic units and multiplexers used in the evaluation.

6.1 Connectivity of Combine Candidate Common Subgraphs
In order to reveal influence of common subgraph connectivity independently

on clustering methods, randomly selected sets of 3, 5, and 10 rate law functions
from 32 SBML predefined functions are combined Solver Cores with a threshold

Table 1 Slice counts for arithmetic units and multiplexers.

operation module slices
addition/subtraction 605
multiplication 230
division 1,684
exponentiation 5,406

2-input multiplexer 19
3-input multiplexer 37
4-input multiplexer 82
5-input multiplexer 55
6-input multiplexer 92
7-input multiplexer 144
8-input multiplexer 180

depth of 10.
Figure 12 shows hardware amount (FPGA slice count) for combined Solver

Cores on average of 20 trials of the abovementioned random selections. The bars
show the total slice counts of combined modules, and the lines show relative
slice usage compared to uncombined design. For example, the 10-function Solver
Core using connected subgraphs only takes 41.99% compared to the total slices
required for 10 single function Solver Cores. Figure 12 also gives a breakdown
of total FPGA slices for arithmetic units and shift registers. For 5-function
Solver Cores and 10-function Solver Cores, the method using connected common
subgraphs shows better results than extracting unconnected common subgraphs.
On the other hand, use of unconnected common subgraphs slightly saved FPGA
slices for 3-function Solver Cores.

Because an unconnected common subgraph tends to have larger number of
nodes compared to connected ones, more arithmetic units were combined for the
3-function Solver Cores. However, large common subgraphs tend to easily violate
the restriction constraints described in Section 4. This is why the hardware
reduction effect was diminished according to increase of the number of combined
functions.

Figure 12 shows the relative size of the combined Solver Cores normalized
to the total size of the original, uncombined single function Solver Cores. A

Fig. 12 Total slice usage and fraction of shift registers.
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Fig. 13 3-function Solver Cores. Fig. 14 5-function Solver Cores. Fig. 15 10-function Solver Cores.

10-function Solver Core requires only 40% of hardware resources compared to
when 10 single function Solver Cores are separately implemented. It is also
suggested the overhead of shift registers would become unignorable to increase
of the number of combined functions.

6.2 Threshold Depth on the Subgraph Selection Tree
To evaluate influence of the threshold depth in the selection tree, the same sets

of rate law functions as used in the previous subsection were combined, changing
the threshold depth in 5, 10, 20, 30 and 40. Figures 13, 14, 15 summarize
the relationship between the threshold depth and hardware amount of generated
Solver Cores. These data are averaged values of 20 sets.

As shown in these results, the effect of the threshold depth saturates around
20 to 30. This is because deeper search increases the risk of constraint violations
on subgraph selection. For the 5-function Solver Cores and 10-function Solver
Cores, the method with connected common subgraphs showed better results than
the method with unconnected subgraphs for every threshold depth. This tells the
advantage of connected subgraphs is not degraded by the threshold depth. The
average numbers of the candidate common subgraphs found over the 20 trials
were, 45.95, 88.15, and 304.45 for the 3-function, 5-function, and 10-function
combine, respectively.

6.3 Clustering Method
To evaluate and compare the two clustering methods described in Section 5,

we classified the 32 SBML predefined functions into 5 clusters with the both

Table 2 Comparison of clustering methods (%).

k-means Largest common graph
Latency degradation rate (%) 19.16 10.87
Frequency degradation rate (%) 8.33 7.43
Relative slice counts (%) 51.11 39.27

methods. Table 2 shows two negative effects of the combine that is, deterioration
rate of latency and frequency against the single function Solver Cores in each
group, as well as the merit of the method in the relative number of required FPGA
slices. Pipeline latency extends to fit to the longest pipeline in the combined
group. Frequency degradation comes from the longer wires in the larger combined
modules.

In terms of both of the hardware reduction and the performance degradation,
the clustering method using the largest common subgraph presented better re-
sults compared to the other method as shown in Table 2. This result supports
the importance of considering not only size of DFGs but also similarity.

6.4 Evaluation with Practical Model Simulation
To verify the practicality of these proposed methods, the Drosophila circadian

rhythm model by Leloup, et al. 16) was used as a benchmark. The model math-
ematically represents the cyclical alteration in expression of PER protein and
TIM protein which are responsible for circadian rhythm of Drosophila by a neg-
ative feedback mechanism with PER-TIM complex. This model consists of 24
reactions and 7 rate law functions.
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Fig. 16 Slices usage for three implementations. Fig. 17 Maximum frequency for three implementations. Fig. 18 Simulation throughput for three implementations and
software implementation.

For comparison, we prepared the following three types of implementation al-
ternatives:
( 1 ) Not-Combined: the seven rate law functions were implemented with seven

individual Solver Cores without combining.
( 2 ) All-Combined: all the seven rate law functions were combined into one

7-function Solver Core.
( 3 ) Clustered: the seven rate law functions were clustered into 3 groups to

generate three multi-function Solver Cores. The number of groups was
chosen to put 2 or 3 functions to each group.

For All-Combined and Clustered implementations, connected common subgraphs
were extracted and they were searched to the threshold depth of 30 and the
functions were clustered by using their largest common subgraphs.

Figure 16 shows the number of FPGA slices required for each implementa-
tion. The Clustered implementation achieved the best hardware reduction effect.
Although All-Combined implementation shared the largest number of nodes in
a DFG level, the Clustered implementation was the best since costly arithmetic
units such as exponentiation units were not effectively shared in pipeline schedul-
ing. This means that effect of the combining method is influenced not only how
many nodes are shared in a DFG level but also arithmetic pipeline scheduling
that is a future topic beyond this work. Total size of Not-Combined and All-
Combined implementations had shrunken to 74.82% and 65.73% of the original
hardware resources, respectively.

Figure 17 shows the maximum frequency of these three implementations. Be-

cause extra multiplexer for switching functions were inserted when DFGs were
combined, both of All-Combined and Clustered implementations showed 15.38%
of frequency degradation against the Not-Combined implementation. Figure 18
shows simulation throughput for the three implementations and software im-
plementation of the same simulation which runs on Linux PC equipped with a
Pentium 4 CPU. In this evaluation, the maximum frequency of the FPGA was
limited to 33 MHz due to a clock generator implemented on the ReCSiP board.
Compared to the software result, Not-Combined, All-Combined, and Clustered
implementation achieved 2.21 times, 1.43 times, and 1.73 times throughput im-
provements, respectively. In addition, if these implementations run with the fre-
quency shown in Fig. 17, Not-Combined, All-Combined and Clustered implemen-
tation would achieve 6.1 times, 3.33 times, and 4.08 times speedup to software,
respectively. Although our hardware reduction method with function combining
brings on approximately 20% of performance overhead, large hardware reduction
effects are achieved with a proper clustering method. Since the performance ad-
vantage to software execution is also retained, we conclude that the method is an
effective technique especially when large scale biochemical models are simulated.

7. Conclusion

This paper has shown a systematic method to cope with FPGA resource issues
in ReCSiP simulation. The proposed method reduces hardware resources by
finding and combining common subgraphs among DFGs for rate law functions
in a biochemical model, so that cost-effective multi-functional Solver Cores to be
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generated. We also presented two clustering methods to alleviate the negative
effects on performance for combined Solver Cores. As a result of evaluation
with a practical biochemical model, it was shown that our method enabled the
simulation with 66% of the original hardware amount, at a reasonable cost of
20% performance overhead.

Our future work includes addressing for further efficient DFG clustering meth-
ods, combining techniques unified with arithmetic pipeline scheduling, and hard-
ware reduction techniques for shift registers for combining larger number of func-
tions.
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