IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

Regular Paper

Semi-Automatic Control Unit Generation
for Complex VLSI Designs

BENJAMIN CARRION SCHAFER!!
and MAJID SARRAFZADEH'2

This paper presents a semi-automated way to generate control units for com-
plex VLSI hardware designs based on a massive parallel micro-controller. This
micro-controller can execute as many instructions in parallel as needed by the
hardware design as well as having an unlimited number of input and output
ports. Two versions of this control unit are presented in this paper. A generic
one, which is generated from a set of parameters given by the designer and
an optimized version which parses the control program that will run on the
control unit in order to generate an optimized micro-controller. Results show
that up to a 60% in area savings can be achieved using the optimized controller
unit instead of the generic one. The presented controller was validated using a
previously developed SoC design with a FSM based control unit showing that
the functionality can be completely replicated at the expense of incurring in a
7.2% and 15.4% area overhead respectively.

1. Introduction

Shrinking process technology allows higher transistor densities following
Moore’s law allowing increasingly complex systems to be implemented on a single
device. The downside of Moore’s law is that hardware designers are now over-
whelmed with the complexity of such systems which become extremely difficult
to develop and verify. This leads to the need of new more powerful tools that
help hardware designers to overcome these difficulties and provide an easier and
faster way to implement their designs. A system creator tool that allows the
creation of entire complex SoC designs has been therefore developed. Basic units
specified in a library (e.g., memories, control units and external memory inter-

11 NEC Corporation, Central Research Laboratory
12 University of California, Los Angeles

234

faces) are placed on a scratch pad and connected together. When the system has
been completely specified, RTL code is automatically generated for the SoC’s top
level. The functionality of each module then needs to be specified in any RTL lan-
guage or high level language performing high level synthesis. This paper focuses
on the control unit generation as this is one of the most important unit in any
hardware design. This unit is responsible for generating and synchronizing the
control signals for the rest of the design units. This is the reason why a dedicated
control unit generator was embedded in the system creator tool so that a flexible
customized control unit for any hardware design can be generated. The control
unit is micro-controller based. By setting a number of parameters in the sys-
tem creator a complete RTL description of this micro-controller is automatically
generated.

The contributions of this work can be summarized as follows:

e Present a semi-automatic micro-controller based control unit for complex
SoCs with the potential of executing a virtually unlimited number of opera-
tions in parallel.

e Present an control unit optimizer to minimize the final controller size based
on the program to be executed.

e Comprehensive experimental results to validate our proposed technique com-
pared to a FSM approach, including a large SoC design.

e Extends previous work on synthetic benchmarks to create synthetic bench-
marks for our instruction set for different source code symmetry conditions.

2. Related Work

Much work has been done in the past in the area of programmable processors,
which has lead to multiple commercial companies offering re-targetable processors
e.g., Tensilica ¥, Target? and Silicon Hive® to name a few. Most of the previ-
ous research focuses on efficient retargetable compilers for flexible customizable
programmable processor architectures, also called ASIPs (Application Specific
Instruction-Set Processors). In ASIPs only the coarse architecture is fixed al-
lowing designs to customize the architecture to their particular needs. Leuper’s,
et al. present a comprehensive overview in Ref. 4).

Marwedel, et al. presented a retargetable code generation environment for

© 2010 Information Processing Society of Japan

235 Semi-Automatic Control Unit Generation for Complex VLSI Designs

fixed point DSP processors called CHESS in Ref.5), based on a mixed behav-
ioral /structural processor representation model. Praet, et al.® introduced a
retargetable and optimizing compiler for a processor model that captures the
connectivity and parallelism of Application Specific Instruction Processors
(ASIP) processors.

FPGA vendors have also released families of soft processor cores, which can be
tailored to any application. Examples include Altera’s Nios processor 7, Xilinx’s
Micro Blaze ® and Atmel’s CAP micro-controller . These soft processors can be
customized including the CPU, peripherals, interfaces and even the arithmetic
unit. Nevertheless these customizable processors are not targeted to substitute
SoCs control units and have limited parallelism that makes them inadequate as
generic control units. They are targeted to work as ASIPs to offload work from
the dedicated hardware units.

Much work has been done in the area of re-targetable architectures and code
generation, but to the best of our knowledge so far, it has not been attempted
to create a dedicate control unit for complex SoCs’ optimizing the hardware
architecture based on the program being executed and which can be especially
tuned for FPGAs making use of their internal block RAM for program memory.

3. Control Unit

Every hardware design needs a control unit. This unit can be considered the
brain of the system. It generates the control signals for the different units and
synchronizes the inputs and outputs. Some examples include the address lines,
the read and write signals for the different memory units and the control signals
for the multiplexers. Figure 1 shows a block diagram of a typical SoC containing
memory, which can be divided into different units to increase bandwidth and to
allow the execution of tasks in parallel, some dedicated hardware accelerator
units, interconnect (bus or crossbar switch) and a control unit.

Two main approaches are normally taken when designing control units. 1) Fi-
nite State Machine (FSM) based or 2) Micro-controller based. Both of these
approaches have pros and cons. State machine based are normally extremely
efficient as these are designed specifically for a given design, but do not allow any
future changes. In the FPGA case the FPGA could be re-configured to accom-

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

L~ I

Mem1 Accelerator 1

Control Unit }

Mem2 Accelerator 2

Interface / Bus

MemN Accelerator N

Fig.1 Typical SoC design block diagram.

modate any changes in the control unit making it unnecessary to build a flexible
control unit. Although this might be true in some cases, in many applications
once the initial design is fixed the smallest and therefore cheapest FPGA will
be used in order to save costs. This might lead to not being able to modify the
control unit in the future due to lack of logic resource or the design might become
un-routable. On the other hand there are micro-controller based control units,
which are more flexible as they can be reprogrammed and are normally easier to
test, but are in general less efficient than their state machine based counterparts
in terms of speed and area. Despite the FSM efficiency the only way to automate
the hardware generation of generic control unit is the second approach where a
customized micro-controller based control unit is generated for a given design.
In this approach the controller can be easily parameterized, where the only pa-
rameters that need to be specified are the number and size of input and output
ports and the number of instructions that need to be executed in parallel. The
next section describes in detail how the dedicated control unit is generated using
our system creator tool and the controller’s internal structure.

3.1 Control Unit Generation

Figure 2 shows a flow graph with the basic steps needed to generate a cus-
tomized control unit for a specific design using our proposed method. The first

© 2010 Information Processing Society of Japan

236 Semi-Automatic Control Unit Generation for Complex VLSI Designs

step consists of specifying the architectural parameters of the control unit. This
step involves defining the number and type of ports needed (direction and size),
the number of instruction execution units (IEU), which indicate the number of
programs that can be executed in parallel and the number of decoder units, which
indicate the maximum number of instructions that can be executed in parallel
per IEU. One more architectural parameter that needs to be specified is the
size of the memory unit that will hold each separate program data. Once these
parameters are defined our method generates a configuration file describing the
control unit’s architecture, which the compiler reads in order to verify that the
assembly code written by the user can be run on the control unit. The designer
can the proceed writing assembly code. T'wo options are available once the as-
sembly code for the control unit has been written. 1) Keep the generic control
unit, especially desirable if the program will be updated in the future or 2) op-
timize the control unit for the the given program. If it is known beforehand
that the control unit will always execute the same code, and optimizer parses the
program and eliminates the redundant logic not used and program memory size

Control unit architectural
parameterization

v

Control unit configuration file output

\

Write assembly (ASM) program for
generated control unit

\

Optimization of control unit

architecture based on ASM
program

Fig.2 Control Unit generation flow graph.

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

reducing therefore the area of the control unit.
The next section describes the internal structure of the controller as well as its
instruction set, compiler environment and the assembly code structure.

4. Control Unit Structure

The control unit design is based on a simple micro-controller architecture. The
most important architectural aspect of a control unit is the number of instruc-
tions that can be executed in parallel. Different hardware designs need different
amount of control signal and it is very important that these control signals can
be processed concurrently as demanded by the system. In order to avoid per-
formance penalties, the architecture is pipelined so that each IEU can execute 1
instruction per cycle (if there are not simultaneous accesses to the same regis-
ter). The only case when there might be performance degradation compared to
a custom FSM control unit is when a feedback signal is set. Input signals can be
treated as interrupt signals and the IEU needs jump to the specific subroutine
and flush the instructions pipeline being executed.

Figure 3 shows a block diagram of the controller’s main building blocks. It
consists of four main units. The Format Program Data Unit formats the 32 bits
program stream downloaded to the SoC into the necessary format and stores the
program into the required program memory unit. The Program Memory Unit (s)

Program
in
32 Format
program
data unit

addr)
Program [4— Instruction | ¢ 44

Execution | —p
Memory instrs| iy
1 —»

addr .
Program lg——{ Instruction ut2

Memory [o[Execution ’a“'t
i lux
2 Unit 2

Output
Ports

1T

addr
Program lg——| Instruction |outN
Memory Execution |——p{

N instrsN Unit N

Control unit

Input Ports

Fig.3 Control Unit block diagram.

© 2010 Information Processing Society of Japan

237 Semi-Automatic Control Unit Generation for Complex VLSI Designs

Program in (32 bits)

| 1 bit | 4 bits 27 bits

Instruction proaram Memory Instruction

in parallel
Fig.4 Program data structure.

stores the program data. In the case of the FPGA implementation presented in
the experimental section embedded block RAM is used as program memory. The
Instruction Execution Unit (s) decodes and executes the instructions. The last
unit is the Output Multiplexer Unit which is responsible for routing the data
from the Instruction Execution Units (IEUs) to the specific output ports. As the
controller also needs to read feedback signals generated by the system the input
signals are connected directly to the instruction execution unit as needed.

4.1 Format Program Data Unit

The Format Program Data Unit formats the 32 bits input stream generated
by the compiler into the desired format so that instructions that need to be
executed in parallel are stored in the same program memory. In order to format
the instructions correctly it has to know the predefined data format generated by
the compiler. Figure 4 shows the data format of the 32 bits generated for every
instruction by the compiler. The first bit indicates if this instruction has to be
executed in parallel with the previous instruction. The next four bits indicate
the program memory unit where this instruction needs to be stored limiting the
number of programs execute in parallel to 2* and the last 27 bits contain the
instruction to be executed. The program is downloaded once to the program
memories before the SoC starts operating, but can be updated anytime.

4.2 Program Memory Unit

The Program Memory Units hold the different programs that will be executed
in parallel. The control unit will have as many program memory units as Instruc-
tion Execution Units. The Format Program Data Unit stores the instructions in
the correct memory unit parallelizing the instructions that must be performed
in parallel (Fig. 5 shows how data is stored in the program memory units). As
indicated before, in the case of the FPGA implementation presented in the exper-

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

(N
Program Memory N
Instr 1 Instr 2 Instr 3
Instr 4
Instr 5 Instr N
- J

Fig.5 Program data memory layout.

imental section block RAM is used for the Program Memory Unit as it allows the
customization of the program memory bitwidth so that as many instructions as
needed are stored at the same memory location and are therefore able to be read,
decoded and executed at the same time. Every instruction consists of a 27 bit
opcode meaning that Nx27 bits is the bitwidth required to execute N instruction
in parallel. The wordlength of the program memory depends on the size of the
program. Note that the bitwidth and wordlength of each program memory can
differ.

4.3 Instruction Execution Unit

The Instruction Execution Unit (IEU) consists of two main units. The decoder
unit which is responsible for decoding the different instructions and the program
counter which generates the addresses to read the next instruction from the
program memory units. In case that a jump is found in the code the program
counter will jump to the specified address. Two general purpose registers and
accumulators are also given in each IEU. The internal architecture is pipelined
in order to be able to execute instruction block read from the program data in
parallel per cycle.

Figure 6 shows a block diagram of this unit. As shown in the diagram as
many decoder units as requested are instantiated in the design so that as many
instructions as needed can be executed in parallel. The input signals generated
by other units in the SoC are connected directly to the IEU that needs to read
these signals. The output of the IEU are the control signals that will be routed
to the requested output port, which in turn is connected to different units in the
SoC, connected manually beforehand in the system creator tool.

© 2010 Information Processing Society of Japan

238 Semi-Automatic Control Unit Generation for Complex VLSI Designs

Output Ports
w TH1
_ addr address
instr1 IEU imp IEU program
» decoder > program
unit 1 ‘ counter
N
o o)
N Acc/Reg Bank
instr2 IEU Register
»| decoder A
unit 2
Register
— B
)
Accumulator A
instrM IEU
> Decoder | |
Unit M Accumulator B!
il
%—J
Input Ports

Fig.6 Instruction execution unit block diagram.

Table 1 Control Unit micro-controller instruction set.

Operation Instruction
Jumps JMP, JMPNA, JMPNB,
JMPZA, JMPZB
WRITE, WREGA, WREGB,
LDA, LDB, MOVA, MOVB

Data transf.

Logic opr. SHLA, SHLB, SHRA, SHRB,
ROLA, ROLB, RORA, RORB,
ANDA, ANDB, ORA, ORB
Arith. oper. ADDA, ADDB, SUBA, SUBB
Miscellaneous WAIT, NOP

4.4 Controller Instruction Set

In order to enable the controller to execute as many simple instructions in
parallel as needed by the system a reduced instruction set with the main basic
operations was developed. Table 1 summarizes these instructions. There are
three types of jumps. A direct jump, a jump if accumulator A or B is zero and
a jump if it the accumulator is negative. Four types of data transfer, six types

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

1% Program

v . .
3 operations in parallel
START

INCRA | DECB | WRITE port_0 1111
INCRA | DECB

WAIT 10

JMP label1

END 2™ Program

ﬁ
START
WRITE port_0 1111
INCRA | INCRB
END
Fig. 7 Control Unit assembly code example.

of logical operations, two types of arithmetic operations and two types of no
operations (wait operations is transformed by the compiler to NOPs).

An example of a control unit program is given in Fig. 7. The key words START
and END define the limits of a program run on a single instruction execution
unit. This program is stored in a single program memory unit. The delimiter “|”
specifies instructions that have to be executed in parallel. An error message is
generated if these instructions try to access the same resource (register, accumu-
lator or port) or if there are more instructions trying to be executed in parallel
than decoder units exist in the IEU. The compiler knows how many programs
can be executed in parallel, the maximum number of instructions that can also
be performed in parallel per instruction execution unit, the name of the ports
and the maximum size of each program, as this information is specified in the
control unit generator configuration file which is read by the compiler.

The user has two options once the program for the control unit has be writ-
ten. If a generic control unit wants to be kept in order to allow future code
modifications, then the original controller created is kept. The second option is
to executed the controller optimizer that reads the program written and opti-
mizes the controller architecture as much as possible to execute this particular
program.This first approach makes more sense in ASIC design to allow certain
degree of flexibility in the future. In the case of FPGAs an optimized control
unit makes more sense as the control unit can always be reconfigured. Section 5

© 2010 Information Processing Society of Japan

239 Semi-Automatic Control Unit Generation for Complex VLSI Designs

describes in detail how the optimizer works.

4.5 Output Multiplexer

The output multiplexer is a crossbar switch that connects the data to be written
to the output ports to the specific port. The compiler detects any case in which
two different IEUs try to access the same port generating an error message.
This implementation is obviously not scalable for a very large number of control
signals. In this case a hierarchy of independent switches could be implemented.

5. Control Unit Optimization

Hardware designers always need to make their designs as small as possible
because silicon is extremely expensive and designers will therefore always want to
generated the smallest possible designs. In the case of FPGAs lower end FPGAs
are about two orders of magnitude cheaper then their larger counterparts (e.g.,
Xilinx’s Spartan v Virtex® or Altera’s Cyclone vs. Stratix” FPGAs).

To reduce the size of the controller an optimizer was created in order to mini-
mize the resources used. The input to this optimizer is the compiled binary code
of the assembly program written for the initial controller and the architectural
configuration description of the controller. The optimizer will then analyze this
code and generate a customized control unit, removing any unused logic and
customizing the memory needed to hold each program. The next sub sections
explain in detail how the optimizations affect the individual units described in
the previous section.

5.1 Optimized Format Program Data Unit

This unit does remain unmodified after the optimization stage as data is still
formatted in the same way.

5.2 Optimized Program Memory Unit

The number of program memory units will remain the same as in the original
case, as the number of programs to be executed in parallel still remains the same.
The only parameter that changes is the aspect ratio of every Program Memory
Unit (bitwidth and wordlength). Every program has a different size. This de-
termines the wordlength of the memory unit. Moreover different programs will
not always executed the same number of instructions in parallel. This influences
the bitwidth of the memory units. Therefore each program memory’s size is

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

customized to the program it needs to hold.

5.3 Optimized Instruction Execution Units

Two level of optimizations are performed in the IEU optimization.The first
is a coarse grain optimization that optimizes the number of decoder units, the
accumulators and register bank. Different programs will have to decode different
number of instructions in parallel. The second stage is a fine grain optimization
that optimizes the instructions decoded by each decoder. Every decoder only
needs to to decode a subset of the instruction set, thus saving further area.
The program code is analyzed and only the decoding logic needed for those
instructions actually being decoded is instantiated. Last the number of ports
that the IEU writes to and the number of input is also optimized. The program
counter on the other hand remains unmodified.

5.4 Optimized Output Multiplexer

The output switch is also optimized so that the IEU outputs are routed only
to the ports that are used in the assembly code, not being able to write to each
single output port as in the generic version.

6. Experimental Results

First, we describe how the micro-controller based control unit was validated
using a complex SoC previously developed. Then, we show a set of comprehensive
results to measure the effectiveness of the optimizer together with explanations
on the implication and analysis of the data.

6.1 Controller Validation

In order to validate the control unit method presented in this work an SoC
generated beforehand with a FSM based control unit is used. The SoC developed
in Ref. 10) is a dedicated hardware architecture to accelerate the execution of the
Discrete Element Method (DEM).

The Discrete Element Method is a numerical method to model the behavior of
particle assemblies. They can be bonded together to represent rock or remained
unbonded to represent soil. Bonded together they can represent entire structures,
such as dams or bridges.As the process is explicit, the time step must be limited to
a very small value, thus making the DEM extremely computationally expensive.
Its wide-spread use is therefore hampered, though the amount of parallelism

© 2010 Information Processing Society of Japan

240 Semi-Automatic Control Unit Generation for Complex VLSI Designs

[110 } [Control Unit }
Contact
Mem1 Check Unit
ey
2
3
Mem2 it Force Update
© h
o Unit
12}
(%23
J<4
(&)
Mem3 Position
Update Unit

Fig.8 Discrete Element Method (DEM) SoC design block diagram.

involved in it is also extraordinarily high. A dedicated hardware architecture
implemented on a Xilinx XVC2000E FPGA was presented in Ref. 10) running
at 40 MHz and using 80% of the CLBs. A block diagram of the architecture is
shown in Fig. 8. The main operations to be performed in each time step are:
(1) Check which particles are in contact with one another
(2) Compute the inter-particle forces
(3) Update the co-ordinate and velocity of each particle

The control unit needs to generate the control signals for all 3 accelerator
units in addition to transferring data in an out of the FPGA’s internal memory
overlapping communication and computation for further speed-up. Data needs
to be read from the memory containing the particles concurrently for each of
the units and written back. All four programs are executed at the same time in
order to allow all four tasks to be executed in parallel. The control unit for this
hardware implementation was initially designed as a FSM. It was re-designed
using the generic and optimized micro-controller based control unit presented in
this work. An RTL simulation was performed in order to validate our method
an compared against the original FSM based control unit. Table 2 shows the
difference in size and speed between the different implementations.

As expected the state machine based control unit is the one that uses less hard-

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

Table 2 Comparison between different DEM control unit implementations.

Area Max. freq
(CLBs) [MHZ]

FSM control unit 1,516 47
Generic micro-controller 1,792 63
Optimized micro-controller 1,635 67

Table 3 Control unit programs.

Unit Controlled | # lines assembly code
I/0 88
Contact Check 7
Force Update 82
Position Update 94

ware resources. Then comes the optimized micro-controller based control unit
and lastly the generic micro-controller based control unit. The functionality of
the original FSM could be completely be replicated comparing an RTL simula-
tion of the original hard coded FSM vs. our proposed micro-controller based at
the expense of a 7.2% and 15.4% area overhead for the optimized and generic
controller version. The state machine based control unit is slower than the micro-
controller based units because of some nested if clauses used to jump from one
state to another. A re-design of these if clauses would probably improve the
maximum frequency, but was not done for this design because the control unit
was not the bottleneck of the design, which operated at 40 MHz.

Table 3 shows the number of assembly lines of code used for each of the control
programs. Up to three instructions where executed in parallel in some IEUs. No
performance degradation was observed compared to the FSM approach because
no input signals had to be serviced in this case, due to the predictability of the
SoC behavior.

6.2 Control Unit Optimizer Analysis

In order verify the efficiency of the optimizer we decided to use synthetic bench-
marks for our experimental results. These present multiple advantages over real
benchmarks. First of all as many benchmarks as needed can be generated auto-

© 2010 Information Processing Society of Japan

241 Semi-Automatic Control Unit Generation for Complex VLSI Designs

matically. Secondly, they provide full control over the benchmark’s most impor-
tant characteristic parameters, such as circuit size, interconnection structure and
functionality. The main advantage is the controllability of a single characteristic
parameter at a time. The major drawback of synthetic benchmarks is that it is
hard to prove that they are equivalent to certain real benchmarks.

For logic designs two parameters are extremely important to obtain realistic
benchmarks: (a) The Rent’s exponent and (b) the net degree distribution as
explained in detail in Ref.11). We extended the previous work on synthetic
benchmarks to adapt it to the generation of control programs for our customizable
micro-controller control unit. Specifically the user specifies the maximum number
of instructions that can be executed in parallel, the size of the program (in terms
of number o assembly code lines), and the symmetry of the program. Symmetry
is defined as the difference between the parallelism of programs executed on
different IEUs. At the initial architectural parametrization there is no way to
specify fine grain parallelism. Therefore the original control unit is dimensioned
to accommodate the maximum parallelism needed, but not all of the programs
need the same amount of parallelism. High symmetry therefore means that each
program executed on different IEUs exploits the maximum possible architectural
parallelism, while small symmetry means that there is an asymmetry between
the amount of parallelism in each program. Intuitively the more asymmetry the
more architectural optimizations can be performed reducing the total controller
area (logic and memory).

In order to test the efficiency of the control unit optimizer five benchmarks of
1,000 lines of assembly code each were generated with different degrees of asym-
metry. The first benchmark has virtually no asymmetry and uses most of the
instructions. The rest of the programs have increasingly a higher of asymmetry
and they do not use the complete instruction set. Table 4 shows the charac-
teristics of each benchmark in term of the % of the instruction set used and the
amount of asymmetry between the five programs executed concurrently in all of
them.

Table 5 compares the area and block RAM used by the un-optimized and
optimized control unit for the five different benchmarks described above. The
un-optimized control unit is the same for all five benchmarks as it has the same

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

Table 4 Synthetic benchmarks description.

##progr. Instr. Set | Asymmetry
Name concurrent | used [%] (%]
Bench 1 5 100 0
Bench 2 5 80 10
Bench 3 5 60 20
Bench 4 5 40 30
Bench 5 5 20 40

Table 5 Optimized control units results.

Un-optimized Optimized

Control. Unit Control Unit
Slices | BlockRAM | Slices | BlockRAM

[bits] [bits]
Bench 1 | 562 5,184 504 5,184
Bench 2 562 5,184 398 4,625
Bench 3 562 5,184 374 4,320
Bench 4 562 5,184 288 3,862
Bench 5 562 5,184 225 3,456

number of instruction execution units and decoder units. Figure 9 displays the
results of Table 5 graphically. As predicted the amount of asymmetry in the
different control unit programs impacts considerably on the amount of resources
used by the control unit (CLBs and Block RAM). Other factors also increase the
area savings of the optimized control unit like:

e The number of different instructions executed by every IEU as the decoder

unit will not have to decode all the instructions, saving therefore more area.

e The output ports accessed by the different IEUs (output multiplexer will be

simplified)

The Block RAM usage depends as pointed out in previous sections on the
length of the programs and on the maximum number of instructions that need to
be executed in parallel. The more asymmetry in the code the more Block RAM
is saved by the optimizer as each program memory is optimized separately.

6.3 Conclusion

This paper presents a semi-automated way to generate generic control units

© 2010 Information Processing Society of Japan

242 Semi-Automatic Control Unit Generation for Complex VLSI Designs

70

Y
3

o
S

=
=5

w
s

n
S

=

% of slices saved using the optimizer

i

1 2 3 4 5

o

Benchmark

Fig.9 Area savings due to control unit optimizer.

for SoC designs. The control unit generator is embedded in a system creator
tool that allows the complete specification of top level designs. An unlimited
number of input and output ports can be specified, as well as a virtually unlimited
number of instructions can be executed in parallel. The user only needs to
write an assembly program for the control unit. A simple instruction set and
compiler was written to support the program generation for the control unit. As
many programs as instantiated Instruction Execution Units can be executed in
parallel. In order to validate the design and FPGA implementation compared
to a previously developed FSM based control unit for an SoC is presented. The
FPGA Block RAM is used as the program memory allowing to store multiple
instructions in parallel to be decoded and executed in parellel. An optimizer was
introduced in order to reduce the resources used by the controller. Results show
that the more asymmetry there is in the different control unit programs executed
concurrently the more resources can be saved compared to a generic control
unit. It can be concluded that this parameterizable control unit is an easy and
fast way to generate control units for SoC designs.The main limitation of this
method is that a single centralized control unit might be inefficient for larger
SoCs, causing timing degradation due to long wires and/or leading severe area
and power penalties due to the exponential area increase of the crossbar switch
for the control signals. To deal with these limitations an automatic partitioning

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

step could be introduced, which would build a set of independent control units
given the initial control unit description.

References

1) Tensilica. http://www.tensilica.com/

2) Target. http://www.retarget.com/

3) Silicon Hive. http://www siliconhive.com/

4) Leupers, R. and Marwedel, P.: Retargetable Code Generation bsed on Structural
Processor Descriptions, Design Automatin for Embedded Systems, Vol.3, No.1, pp.1—
38 (1998).

5) Marwedel, P., Lanneer, D., Van Praet, J., Kifli, A., Schoofs, K., Geurts, W., Thoen,
F. and Goossens, G.: CHESS: Retargetable Code Generation for Embedded DSP
Processors, Code Generation for Embedded Processors, Kluwer Academics, pp.85—
102 (1995).

6) Van Praet, J., Lanneer, D. and Goossens, G.: Processor Modeling and Code Se-
lection for Retargetable Compilation, ACM Trans. Design Automation Electronic
Systems (TODAES), Vol.6, No.3, pp.277-307 (2001).

7) Altera. http://www.altera.com/

8) Xilinx. http://www.xilinx.com/

9) Atmel. http://www.atmel.com/

10) Carrion Schafer, B., Quigley, S.F. and Chan, A.H.C.: Analysis and Implementation
of the Discrete Element Method using a dedicated highly parallel Architecture
in Reconfigurable Computing, IEEFE Symposium on Field-Programmable Custom
Computing Machines (FCCM), Napa Valley, California. IEEE Computer Society
(2002).

11) Stroobandt, D., Depreitere, J. and Van Campenhout, J.: Generating new bench-
mark designs using a multi-terminal net model, VLSI Journal, Vol.27, pp.113—129
(1999).

(Received November 30, 2009)
(Revised February 9, 2010)
(Accepted April 14, 2010)
(Released August 16, 2010)

(Recommended by Associate Editor: Akihisa Yamada)

© 2010 Information Processing Society of Japan

243 Semi-Automatic Control Unit Generation for Complex VLSI Designs

Benjamin Carrion Schafer received the B.Eng. degree in
electrical engineering from the Polytechnic University of Madrid,
Madrid, Spain, the M.Sc. degree in microelectronics from Birm-
ingham City University, Birmingham, U.K., and FH-Darmstadt,
Darmstadt, Germany. After completing his Ph.D. at the Uni-
versity of Birmingham, he was a Postdoctoral Researcher with

the Computer Science Department, University of California Los
Angeles (UCLA), from 2003 to 2004. He was a Visiting Researcher at Seoul
National University, Seoul, Korea, from 2005 to 2007 at the School of Electrical
Engineering and Computer Science. Currently, he works as an Assistant Man-
ager at NEC Corporation’s R&D Central Laboratories, EDA Center, Kawasaki,
Japan. He served on the TPC of CASES 2006, as a committee member at the
RECONFIG conference and as a TPC at DAC’s user track.

Majid Sarrafzadeh received his B.S., M.S. and Ph.D. degrees

in 1982, 1984, and 1987 respectively from University of Illinois at

1"6 Urbana-Champaign in Electrical and Computer Engineering. He

\ In 2000, he joined the Computer Science Department at University

- of California at Los Angeles (UCLA). His recent research interests

lie in the area of Embedded and Reconfigurable Computing, VLSI

CAD, and design and analysis of algorithms. Dr. Sarrafzadeh is a Fellow of IEEE

for his contribution to “Theory and Practice of VLSI Design”. He has served on

the technical program committee of numerous conferences in the area of VLSI

Design and CAD, including ICCAD, DAC, EDAC, ISPD, FPGA, and DesignCon.

He has served as Committee Chairs of a number of these conferences. He is on the

executive committee/steering committee of several conferences such as ICCAD,

ISPD, and ISQED. He was the Program Committee and the General Chair of
ICCAD in 2004 and 2005 the premiere conference in CAD.

joined Northwestern University as an Assistant Professor in 1987.

IPSJ Transactions on System LSI Design Methodology Vol. 3 234-243 (Aug. 2010)

© 2010 Information Processing Society of Japan

