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This paper proposes a low-power ASIP generation method by automatically
extracting minimum execution conditions of pipeline registers for clock gating.
For highly effective power reduction by clock gating, it is important to create
minimum execution conditions, which can shut off redundant clock supplies
for registers. To automatically extract the conditions, our proposed method
employs micro-operation descriptions (MODs) that specify ASIP architecture.
Utilizing MODs through the ASIP generation processes, our proposed method
automatically extracts the minimum execution conditions. Experimental re-
sults show that the power consumption of the pipeline registers in ASIPs gen-
erated with the proposed method is reduced about 80% compared to ASIPs
that are not clock gated, and about 60% compared to ASIPs that are clock
gated by Power Compiler with negligible delay and area overhead.

1. Introduction

Modern portable embedded systems are required to provide high computing
power with low energy consumption. Application Specific Instruction-set Pro-
cessors (ASIPs) answer to such conflicting requirements. In recent years, Very
Long Instruction Word (VLIW) type ASIPs (VLIW ASIPs) 1) have been pro-
posed for high performance application domains because they can provide high
computing power by special instruction set architecture which exploits instruc-
tion level parallelism. When designing VLIW ASIPs, simultaneously satisfying
the tight constraints of delay, area, and power consumption is required. For this
purpose, design space exploration should be performed to determine the opti-
mal architecture parameters of VLIW ASIPs 2),3). One of the main concerns is
that design space exploration is time consuming. For rapid design space explo-
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ration, an automatic VLIW ASIP generation method that achieves significant
short design time has been proposed 1). However, the traditional VLIW ASIP
generation method places a priority on minimizing area and delay. For reducing
power consumption, it is important to generate VLIW ASIPs with low power
techniques.

There are many low power techniques through all design levels. In Register
Transfer Level (RTL), clock gating is familiar 4). Clock gating cuts off the clock
supplies causing unnecessary switching inside the registers based on the gating
conditions. Generally, there are many pipeline registers in the large-scale data
path of a VLIW ASIP. Furthermore, the number of pipeline registers rapidly
increases when widening the parallel issue or deepening the pipeline; thus a large
amount of energy is dissipated in the pipeline registers 5). For this reason, clock
gating on pipeline registers is expected to be effective for VLIW ASIP generation.

Using only the interlocking conditions of pipeline registers is a trivial method
to apply clock gating to pipeline registers in a VLIW ASIP. The control signal
of a pipeline register p in a generated VLIW ASIP is described as:

enp = stallstagep
, (1)

where stagep represents the stage number to which p belongs. stalln stands for
a condition of a pipeline interlock caused by several situations, e.g., structural
hazard or multi-cycle operation. Since the aim of traditional VLIW ASIP gen-
eration 1) is to design high-speed and small-area ASIPs; the form of signal (1)
is simplified as much as possible. By using control signal (1) for clock gating,
clocks are supplied to all pipeline registers when the pipeline is not interlocked.
However, applying control signal (1) has less effect on power reduction because
the pipeline rarely stalls in VLIW applications, e.g., DSP. To reduce power con-
sumption in such cases, it is necessary to consider the fact that a large portion of
the data path is idle during instruction execution even if the pipeline is not in-
terlocked. Clocks must be supplied to only necessary pipeline registers for power
reduction.

In order to supply clocks to the only necessary pipeline registers, we introduce
minimum execution conditions for control signal generation. The minimum exe-
cution conditions of a resource are conditions for clock supply and represented by
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a set of instructions which use the resource for their execution, i.e., the resource
is used only when the instructions are executed. Using the minimum execution
conditions for the control signals of clock gating, clock supplies are limited to
only necessary pipeline registers; therefore, power consumption is reduced.

Manual extraction of the minimum execution conditions is not practical be-
cause it requires a long-term design period and is error-prone. An automated
extraction method of the minimum execution conditions is strongly required. To
automatically obtain the minimum execution conditions, two major approaches
are known: forward 6),7) and backward 8). The forward approach extracts the min-
imum execution conditions through high-level synthesis processes using high-level
architecture information. On the other hand, the backward approach extracts
the conditions by analyzing low-level designs. A merit of the backward approach
is that it can be widely applied to arbitrary circuits. However, they need long cal-
culation time and involve large area overhead due to the analysis of their complex
design. Therefore, the forward approach is suitable for VLIW ASIP generation.
Obviously, a forward approach must be designed for each high-level synthesis
method. With respect to the VLIW ASIP generation method, an automated
extraction method of minimum execution conditions is not known yet.

This paper proposes a VLIW ASIP generation method to generate low-power
VLIW ASIPs by automatically extracting minimum execution conditions for
clock gating. The proposed method extracts the conditions of pipeline reg-
isters based on the forward approach using architecture description language,
namely, Micro-Operation Description (MOD) 9), which specifies the high-level
architecture of a VLIW ASIP. By employing the MODs, the proposed method
can extract the minimum execution conditions of the pipeline registers through
the VLIW ASIP generation processes, analyzing neither RTL descriptions nor
netlists.

The rest of this paper is organized as follows. Section 2 introduces the state-
of-the-art related researches, and Section 3 explains traditional VLIW ASIP gen-
eration. Section 4 proposes a method for extracting the minimum execution
conditions. Section 5 shows experimental results, and finally, Section 6 summa-
rizes this paper.

2. Related Work

Several automatic clock gating insertion methods and tools are currently avail-
able. Power Compiler 10), which is the most widely known commercial tool, au-
tomatically inserts gates into the clock lines of registers. However, it does not
extract the minimum execution conditions of the registers; that is, the efficiency
of clock gating by Power Compiler rests on the shoulders of designers. Power
Compiler forces designers to manually derive the minimum execution conditions
from complex RTL designs for additional power reduction. Manual extraction of
the conditions is very time consuming, because VLIW ASIP contains several hun-
dred pipeline registers; it is not suitable for design space exploration. Automated
extraction of the minimum execution conditions is strongly required.

A clock gating method based on finite state machines 6) extracts the minimum
execution conditions of registers by analyzing the finite state machines. To use
this method, the circuit must obviously contain the finite state machines and be
controlled by them. Since the finite state machines are not suitable for pipeline
processors, it cannot be applied to VLIW ASIP generation.

A clock gating method based on the Observability Don’t Care (ODC) 8) can
derive the minimum execution conditions of registers by ODC calculation. At
present, this approach appears to be the most powerful clock gating method
because of its high scalability and applicability. Unfortunately, ODC calculation
takes too long to completely apply such large-scale circuitry as VLIW ASIPs. To
complete the calculation in practical time, a calculation time limit is introduced in
the method. In addition, ODC-based clock gating extraction causes an enormous
area overhead due to duplicating the circuits to create gating signals. A more
suitable extraction method is still required to calculate the minimum execution
conditions for VLIW ASIPs.

The operand isolation approach that exploits high-level architecture informa-
tion is also addressed 7). In this approach, high-level architecture information
called Architecture Description Language (ADL) is employed to find the idle
conditions of resources in a circuit. Although using operand isolation techniques
is discussed in this work, using clock gating with high-level architecture informa-
tion has not been discussed yet.
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3. Basic of VLIW ASIP Generation

A VLIW ASIP is generated based on MODs and a VLIW ASIP model 1),11).
In this section, MODs, the VLIW ASIP model, and the VLIW ASIP generation
flow are described.

3.1 Micro-operation Description
The architecture of a VLIW ASIP is specified with MODs. An MOD is iden-

tified as a pair of an operation ope and a resource group rg: m = (ope, rg). A
set of all MODs specified by designers are represented by M . The MOD speci-
fies the architecture of operation ope that is executed on resource group rg. An
operation is a minimum executable unit such as an arithmetic operation, and a
resource group is a set of hardware resources necessary for the operation. The
architecture specified by an MOD can be converted to a Resource Connection
Graph (RCG), which represents the data path of the corresponding operation in
the form of the connections of resource ports.

Figure 1 is the example of an arithmetic addition described as the MOD of

Fig. 1 MOD of ADD on RG1 (ADD, RG1).

operation ADD on resource group RG1 = {PC, IMEM, IR, GPR, ADD0}, where
PC, IMEM, IR, GPR, and ADD0 are hardware resources. In Fig. 1, the left
side description is the MOD of ADD on RG1, and the right side diagram is the
corresponding RCG. In Fig. 1, the two pieces of data, reg1 and reg2, from register
file GPR at stage 2 are sent to adder ADD0 at stage 3, and then the output is
stored in the GPR at stage 5. Signals rs, rt, and rd stand for register indexes
from instruction register IR. IMEM is an memory accessing unit that fetches
VLIW instructions indicated by the address data from the program counter PC.
In this way, the MOD contains not only connection information, but also such
high-level architecture information as resource function and purpose.

3.2 VLIW ASIP Dispatching Model
Describing the dispatching behavior is the main concern of the VLIW ASIP

specification. To handle this issue, the dispatching pattern of the VLIW ASIP is
modeled as following three concepts: a slot, an operation group, and a resource
group. Designers can specify the dispatching rule of the VLIW ASIP by slots,
operation groups, resource groups, and their relations.

Slots are parallel dispatching units of the VLIW ASIP. One operation can be
dispatched from a slot in one clock cycle.

Let slot num be the number of slots, O be a set of all operations, and open ∈ O

be an operation dispatched from n-th slot, a VLIW instruction inst is composed
of multiple operations:

inst = (ope1, ope2, ope3, ..., opeslot num). (2)
Note that single-scalar ASIP corresponds to a one slot VLIW ASIP; our method
can also deal with both single-scalar and VLIW ASIPs.

Let RG be a set of all resource groups and R is a set of all resources, resource
group rg ∈ RG is a set of hardware resources: rg ⊆ R.

The relation between slots and resource groups: RSR is
RSR = {(s, rg) | 1 ≤ s ≤ slot num, rg ∈ RG}. (3)

Pair (s, rg) represents that the operations dispatched from s-th slot are executed
on rg.

Let OG be a set of all operation groups, an operation group og ∈ OG is a set
of operations: og ⊆ O.
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Fig. 2 VLIW ASIP model.

The relation between a resource group and an operation group: RRO is
RRO = {(rg, og) | rg ∈ RG, og ∈ OG}. (4)

Pair (rg, og) ∈ RRO indicates that the operations categorized in og can be per-
formed on rg.

As specification, the number of slot slot num, operations O, resources R, re-
source groups RG, operation groups OG, the relation between slots and resource
groups RSR, and the relation between a resource group and an operation group
RRO are given by designers.

Figure 2 illustrates a model of a VLIW ASIP. In Fig. 2, the operations cat-
egorized in operation group OG1, which can be performed on resource groups
RG ALU0 and RG ALU1, can be simultaneously issued from slots 1 and 2.

3.3 VLIW ASIP Controller Model
The decoder model of VLIW ASIPs is shown in Fig. 3. To calculate the control

logic for data path resources, Decope and Actvrg are needed.
Decope of operation ope is decode logic on opecode. Decope is calculated as

Decope(inst) =

{
true if ∃open ∈ inst, codeope = codeopen

false otherwise,
(5)

where codeope is the function that returns the opecode of ope and VLIW instruc-

Fig. 3 Decoder model of VLIW ASIPs.

tion inst is stored in the instruction register.
To dispatch operations to appropriate resource groups, the controller calculates

Decs,og, InstPatternn, and Actvrg. Decs,og is the decode logic indicating that
the operation dispatched from s-th slot belongs to og ∈ OG:

Decs,og(inst) =
∨

(s, rg) ∈ RSR

ope ∈ og

Decope(inst) ∧ Exist(rg, ope), (6)

Exist(rg, ope) =

{
true if ∃(rg, og) ∈ RRO , ope ∈ og

false otherwise.
(7)

In order to activate the appropriate resource groups for the dispatched instruc-
tion, pattern detecting logic InstPatternn(inst) is calculated:

InstPatternn(inst) =
∧

TIDPn ∈ TIDP

(s, rg, og) ∈ TIDPn

Decs,og(inst), (8)

where TIDP is the table of instruction dispatching patterns calculated by the
algorithm proposed by Kobayashi, et al. 1),11), and TIDPn

is the n-th entry in
TIDP . Dispatching pattern TIDPn

can be described as a set of (s, rg, og) which
indicates that the operations in og can be dispatched from s-th slot and executed
on rg.
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An example of TIDP is shown in Table 1. InstPatternn(inst) indicates that
the pattern of dispatched instruction inst. For instance, following Table 1, when
InstPattern2(inst) is true, the pattern of inst is (OG2, OG2, OG2, OG2) and the
corresponding resource groups which execute inst are (RG5, RG2, RG3, RG6).

Actvrg is an activation logic of resource group rg:

Actvrg(inst) =
∧

TIDPn ∈ TIDP

(s, rg, og) ∈ TIDPn

InstPatternn(inst). (9)

According to the pattern of VLIW instructions, the assignments of operations to
appropriate resource group are controlled by Actvrg.

Resource control logic is calculated by using Decope and Actvrg. On the other
hand, the control logic for pipeline registers is calculated only with feed back
signals from data path. However, such control incurs unnecessary activation of
pipeline registers. As a result, the pipeline registers dissipate unnecessary power.

3.4 VLIW ASIP Generation Flow
VLIW ASIP generation consists of two parts. The first part is data path con-

struction that consists of four procedures: RCG conversion, RCG merging, signal
conflict resolution, and pipelining. First, RCGs are converted from MODs. Sec-
ond, all RCGs are combined by RCG merging to construct a prototype of the
data path. Third, multiplexers are inserted, and finally, pipeline registers are
inserted into appropriate locations. At each procedure, the generation method
retrieves execution conditions that are used to generate steering signals and re-
source control signals in the next part. The second part is controller construction.
The control signals for the resources in the VLIW ASIP are generated using the
execution conditions obtained in the previous data path construction part.

Table 1 Example of TIDP .

n 1st slot 2nd slot 3rd slot 4th slot
1 OG1 OG2 OG3 OG4

RG1 RG2 RG3 RG4
2 OG2 OG2 OG2 OG2

RG5 RG2 RG3 RG6
3 OG1 OG1 OG3 OG4

RG1 RG7 RG8 RG4

4. Low-power VLIW ASIP Generation

In this section, a low-power VLIW ASIP generation method is proposed. First,
the insertion of gating circuits is discussed, then, the extraction of minimum
execution conditions is proposed.

4.1 Insertion of Gating Circuits
Due to the power overhead of the gating circuit, inserting one gating circuit

before a few flip flops is ineffective; to increase the clock gating impact, one
gating circuit has to be shared by as many as possible. Gate sharing reduces not
only the power overhead of the gating circuits but also the power consumption
of the clock trees at the same time. In clock tree synthesis, the shared gating
circuit can be placed on the upper level of the clock tree. The proposed method
also follows this basic insertion strategy. Additionally, as mentioned in Refs. 4)
and 12), selecting gating circuit schemes is crucial to increase circuit stability
and to decrease implementation overhead. Despite its area and power overhead,
the proposed method adopts a flip-flop-based gating scheme because it can block
glitch noises that cause incorrect register activation.

4.2 Extraction of Minimum Execution Conditions
In this section, a formal extraction method of minimum execution conditions

of the pipeline registers is proposed in the following four data path construction
procedures.

4.2.1 RCG Conversion
Resource Connection Graphs (RCGs) are generated from MODs. An RCG

is represented by directed graph Gm = (Rm, Em) where m = (ope, rg) is an
identifier of an MOD, Rm is a resources used by m, Em = {(o, i)|o, i ∈ P} is a
set of data transfers used by m, pair (o, i) represents a data transfer from output
port o to input port i, and P is a set of all resource ports.

A set of execution conditions Conde for each data transfer e ∈ Em is retrieved
in the RCG extraction. Conde is described as

Conde∈Em
= {(ope, rg) |m = (ope, rg)}. (10)

Conde denotes that data transfer e is executed when operation ope on resource
group rg is dispatched.

Figure 4 shows an example of extracted RCGs. For clarity, the ports of the
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Fig. 4 Converted RCGs.

RCGs and Stage1 are omitted. In the example, the three RCGs correspond to
ADD on RG1, SUB on RG2, and ANDI on RG3, respectively. GPR, IR, EXT ,
ALU1 , and ALU2 are the resources, and the edges labeled e1 to e10 are the data
transfers. Here, sets of the conditions for the data transfers in Fig. 4 are retrieved
in the form of Eq. (10) as follows:

Conde1 = {(ADD , RG1)}, Conde2 = {(ADD , RG1)},
Conde3 = {(ADD , RG1)}, Conde4 = {(SUB , RG2)},
Conde5 = {(SUB , RG2)}, Conde6 = {(SUB , RG2)},
Conde7 = {(ANDI , RG3)}, Conde8 = {(ANDI , RG3)},
Conde9 = {(ANDI , RG3)}, Conde10 = {(ANDI , RG3)}.

4.2.2 RCG Merging
After all MODs are converted, they are merged into a unified RCG G′ =

(R′, E′). R′ and E′ are calculated as follows:

R′ =
⋃

∀m∈M

Rm

E′ =
⋃

∀m∈M

Em,

where M is a set of all identifiers of MODs consisting of the VLIW ASIP. Since
data transfers Em are merged into E′, conditions Conde of all extracted RCGs

Fig. 5 Unified RCG.

are also merged. The new conditions of data transfers Cond′e are calculated as

Cond′e′∈E′ =
⋃

∀m∈M,∀e∈Em,e′=e

Conde. (11)

The three operations in the example in Fig. 4 are merged into the unified RCG
illustrated as Fig. 5. The conditions of data transfers e′1 to e′8 are newly calcu-
lated as follows:

Cond′e′1 = {(SUB , RG2)}, Cond′e′2 = {(SUB , RG2)},
Cond′e′3 = {(ADD , RG1), (ANDI , RG3)}, Cond′e′4 = {(ADD , RG1)},
Cond′e′5 = {(ANDI , RG3)}, Cond′e′6 = {(ANDI , RG3)},
Cond′e′7 = {(SUB , RG2)},
Cond′e′8 = {(ADD , RG1), (ANDI , RG3)}.

The unified RCG is the prototype of the data path. Then multiplexers and
pipeline registers are inserted in the following procedures.

4.2.3 Signal Conflict Resolution
Multiplexers are inserted in order to resolve signal conflicts occurring in unified

RCG G′ such as e′7 and e′8 in Fig. 5. We describe the RCG after the multiplexers
are inserted as G′′ = (R′′, E′′).

A multiplexer is inserted before an input port, which is the multiple destination
of some data transfers. Here, a set of edges conflicting at identical input port i:
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ECI i is described as
ECI i = {(o′, i′) | o′ ∈ P, i′ ∈ P, (o′, i′) ∈ E′, i′ = i}. (12)

Since the multiplexers are inserted, the signal connections change. The conditions
of data transfers E′′ should be calculated, too. A set of the conditions of data
transfer e′′ ∈ E′′ is described as follows:

Cond′′e′′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⋃
∀e′∈ECIdest

e′′
Cond′e′∈E′ if e′′∈ EMR,

Cond′e′∈E′

such that deste′ = deste′′ if e′′∈ ERM ,

Cond′e′∈E′ such that e′ = e′′ otherwise,

(13)

where deste is a destination port of data transfer e, EMR is a set of data transfers
that connect a multiplexer to a resource, and ERM is a set of data transfers
selected by a multiplexer.

4.2.4 Pipelining
For pipelining G′′, pipeline registers are required for data transfers that cross

pipeline stage boundaries. We describe the RCG after the pipeline registers are
inserted as G′′′. The location of a pipeline register p = (o, n) can be described as
a pair of output port o and stage number n where the pipeline register is placed
because one pipeline register is shared by several data transfers from o. A set of
edges connected to identical output port o: ECOo is

ECOo = {(o′′, i′′) | o′′, i′′ ∈ P, (o′′, i′′) ∈ E′′, o′′ = o}. (14)
In ECOo, a set of data transfers crossing stage boundaries ECOX o is

ECOX o = {(o′, i′) | stageo′ < stagei′ , for all (o′, i′) ∈ ECOo}, (15)
where stagex represents the pipeline stage number to which port x belongs.

In G′′, a set of data transfers crossing stage boundaries is

E′′
CROSS =

⋃
o∈Pout

ECOX o. (16)

Finally, a set of pipeline registers PREG is obtained as

PREG =
⋃

(o,i)∈E′′
CROSS

{p | p = (o, n), stageo ≤ n < stagei}. (17)

Figure 6 depicts the data path after inserting multiplexers MUX and pipeline

Fig. 6 Constructed data path.

registers PREG in the unified RCG in Fig. 5. Pipeline registers PREG1 to
PREG7 are inserted in the appropriate points.

Here, the execution conditions of the inserted pipeline registers are calculated.
The execution conditions for the pipeline registers are derived from the conditions
of the data transfers calculated by Eq. (13). Since the pipeline registers are shared
by some data transfers, a set of execution conditions ECp of pipeline register
p = (o, n) is calculated as

ECp =
⋃

p=(o,n), (o,i)∈ECOXo

Cond′′(o,i). (18)

ECp is a set of m = (ope, rg) such that ope dispatched to rg requires p for execu-
tion. Let G′′′

m ⊆ G′′′ be a necessary data path for executing m and PREGm ∈ G′′′
m

be a set of the pipeline registers that is required for execution by ope dispatched
to rg, extracted ECp can be also described as:

ECp = {m |m ∈ M,p ∈ PREGm}. (19)
For the pipeline registers in Fig. 6, execution conditions ECp are calculated as

follows:
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ECPREG1 = {(SUB , RG2)},
ECPREG2 = {(SUB , RG2)},
ECPREG3 = {(ADD , RG1), (ANDI , RG3)},
ECPREG4 = {(ADD , RG1)},
ECPREG5 = {(ANDI , RG3)},
ECPREG6 = {(ADD , RG1), (SUB , RG2), (ANDI , RG3)},
ECPREG7 = {(ADD , RG1), (SUB , RG2), (ANDI , RG3)}.

Thus the execution conditions for pipeline registers are calculated. In the next
section, creating gating signals for pipeline registers is discussed.

4.3 Generating Gating Signals with Minimum Execution Conditions
To suppress the unnecessary activations of pipeline register p, we introduce

new control signal en′
p with additional logic ALp:

en′
p(inst) = stallstagep

∧ ALp(inst), (20)

ALp(inst) =
∨

m ∈ ECp

(ope, rg) = m

Decope(inst) ∧ Actvrg(inst), (21)

where ECp is the derived execution condition in Eq. (19). The modified decoder
model of VLIW ASIP with ALp is shown in Fig. 7.

Here, we define correct execution as that the execution result of an operation
on the VLIW ASIP generated by the proposed method is same as that by the
traditional method.
Theorem 1. VLIW ASIPs clock-gated with en′

p guarantee correct execution.

Proof. The new logic en′
p does not prevent the data flow in G′′′

m because every
pipeline register p ∈ PREGm is activated when m is dispatched. Therefore, the
execution result of the VLIW ASIP by the proposed method is same as that by
the traditional method, i.e., correct execution is guaranteed.

Theorem 2. Let a minimum execution condition be an execution condition such
that removing one element from the execution condition causes incorrect execution
of the generated VLIW ASIP, execution condition Eq. (19) is minimum.

Proof. Consider that any m ∈ ECp is removed, p is not activated when m

Fig. 7 Modified decoder model.

is dispatched. However, this removing causes incorrect execution because p ∈
PREGm. Hence, ECp in Eq. (19) is the minimum execution condition.

Using execution condition EC ′
p ⊇ ECp for Eq. (21) can correctly execute opera-

tions. Therefore, the traditional VLIW ASIP generation method constantly deals
with EC ′

p as EC ′
p = M for all p. This generation strategy results in reducing

area and delay because ALp can be constantly treated as true.
Using Eq. (20), the gating signals of pipeline registers enPREG1 , enPREG3 , and

enPREG6 in the VLIW data path illustrated in Fig. 6 can be calculated as follows:

en′
PREG1(inst) = stall2 ∧ {DecSUB (inst) ∧ ActvRG2(inst)} ,

en′
PREG3(inst) = stall2 ∧ {DecADD(inst) ∧ ActvRG1(inst)

∨DecANDI (inst) ∧ ActvRG3(inst)} ,

en′
PREG6(inst) = stall3 ∧ {DecADD(inst) ∧ ActvRG1(inst)

∨DecSUB (inst) ∧ ActvRG2(inst)
∨DecANDI (inst) ∧ ActvRG3(inst)} .

5. Experiments

We carried out two experiments using the integer subset of DLX 13) to confirm
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the effectiveness of the proposed method.
For each experiment, we generated the following three types of ASIPs:

NCG: Not clock gated VLIW ASIPs by the traditional generation method
PC: VLIW ASIPs clock gated by Power Compiler
PM: VLIW ASIPs generated by our proposed method.
Note that clock gating was only applied to the pipeline registers in the data path
of the generated VLIW ASIPs. The generated ASIPs were synthesized using
Design Compiler under a minimizing area constraint and physically synthesized
by IC Compiler using a 0.18µm CMOS technology library operating on 1.8 V.

Programs were randomly generated based on the appearance rate of each in-
struction. The appearance rates of the instructions in a compiled program are
a much more dominant factor than the instruction sequence in the case of using
clock gating. Therefore, we modeled the characteristics of the programs as ap-
pearance rate in this experiment. For instance, a low instruction per cycle (IPC)
program can be modeled as a high NOP appearance rate.

5.1 Evaluation of Hardware Variation
In the first experiment, we generated both single-scalar and VLIW type ASIPs.

The single-scalar type ASIPs were extended with Multiply ACcumulate (MAC)
instruction by varying the pipeline depth from two to seven stages. The VLIW
type ASIPs were designed on a single-scalar ASIP of five stages and homoge-
neously expanded to two, four, and six slots. Note that the 2-slot processor
contains 65 pipeline registers, the 4-slot processor 124, and the 6-slot processor
183; they are large-scale designs. In this experiments, we gave the appearance
ratio of the program as follows: load/store are 30%, multiplication is 3.5%, divi-
sion is 1%, branch/jump are 5%, and integer instruction is 60.5%. These rates
are determined by reference to the analysis report of the compiled SPEC bench-
marks for MIPS processors 14). We assumed that all cache access were hit in this
experiment.

Note that applying Power Compiler to PM did not affect the circuits because
Power Compiler does not insert clock gating into the already gated registers. All
pipeline registers of PM are already clock gated.

The experimental results, shown in Table 2 and Table 3 reveal the area, delay,
and power comparison of the generated ASIPs. Slot # and the pipeline depth are

Table 2 Power comparison on single-scalar DLX, varying number of pipeline stages.

Pipeline Total Pipeline Clock
depth Type Area Delay power registers Delta tree Skew

[µm2] [ns] [µW/MHz] [µW/MHz] [%] [µW/MHz] [ps]

3 NCG 445255 20.09 169.1 17.4 32.8 46
PC 440625 20.09 147.3 8.5 −51.3 30.7 88
PM 441330 20.43 146.5 3.1 −78.2 27.8 137

4 NCG 446785 17.34 179.0 25.3 33.3 62
PC 440632 17.50 163.7 16.1 −36.6 30.6 105
PM 442388 15.57 153.3 6.6 −73.9 30.4 106

5 NCG 451319 17.33 185.8 31.5 34.9 67
PC 443782 15.57 169.1 22.8 −27.6 32.2 84
PM 447188 15.57 155.3 8.2 −73.9 29.8 109

6 NCG 512422 12.10 239.3 63.2 44.0 74
PC 496831 12.06 209.7 48.4 −23.3 38.6 107
PM 503537 12.06 174.4 12.1 −80.9 32.4 113

7 NCG 526083 12.10 250.1 68.0 44.9 68
PC 510137 12.06 218.7 49.2 −27.6 41.4 96
PM 517711 12.06 183.5 12.4 −81.7 34.6 104

Table 3 Power Comparison on VLIW DLX, varying number of parallel issues.

Total Pipeline Clock
Slot # Type Area Delay power registers Delta tree Skew

[µm2] [ns] [µW/MHz] [µW/MHz] [%] [µW/MHz] [ps]

1 NCG 451319 17.33 185.8 31.5 34.9 67
PC 443782 15.57 169.1 22.8 −27.6 32.2 84
PM 447188 15.57 155.3 8.2 −73.9 29.8 109

2 NCG 651106 12.06 336.4 112.9 54.1 100
PC 625762 12.06 298.4 96.7 −14.0 66.9 112
PM 631341 12.06 222.1 23.7 −79.0 38.3 123

4 NCG 1074753 12.02 514.7 201.2 87.0 117
PC 1029118 12.07 472.0 197.0 −15.1 81.4 140
PM 1038249 12.07 318.8 49.8 −88.4 52.3 116

6 NCG 1596043 12.08 703.3 278.0 118.9 78
PC 1530117 12.12 623.1 234.2 −9.9 110.5 114
PM 1544843 12.14 403.2 64.8 −76.7 63.9 133

the number of parallel issues and the pipeline depth, respectively. Total power is
the power consumption of all circuits, and Pipeline registers stands for the power
breakdown by the pipeline registers. Delta is the ratio of the power reduction
compared to NCG. Clock tree is the power breakdown of the clock trees, and
Skew is the global clock skew of the ASIPs.
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As observed in Table 2, the power consumption of the pipeline registers of
PM is reduced approximately 80% compared to NCG in every case, and PC is
reduced a maximum of approximately 50%. In addition, the power consumption
of every clock tree also decreased. The same trend is observed in Table 3. These
results show that the proposed method shuts off more redundant clock supplies
than the traditional method.

Area reduction (from NCG to the others) is confirmed because the multiplexers
inside the registers are removed when clock gating is applied. Area reduction is
an innate advantage of clock gating. On the other hand, negligible area over-
heads occur owing to the implementation of the minimum execution conditions
(from PC to PM). The area overhead reflects the increase of operators in Eq. (20).
Compared to Eq. (1), Eq. (20) has more operators and terms to implement min-
imum execution conditions. Nevertheless, the extra terms in Eq. (20) also exist
in the VLIW ASIPs generated by the traditional VLIW generation method, so
they do not affect the overheads. The extra operators only result in small area
overhead.

On the other hand, critical delay overheads are confirmed to be negligible.
Besides being an innate disadvantage of clock gating, clock skew increases in
most cases. Though the skew increases for all cases in Tables 2 and 3, the
difference of skew between PC and PM is small. The skew results suggest that
the proposed method has less extra effect on the clock skew.

For all the ASIPs, the overheads of the calculation time by the proposed method
are within several seconds on a workstation operating on 3 GHz using 4 GB mem-
ory. This shows that the proposed method has little extra computational over-
head compared to the traditional VLIW ASIP generation.

5.2 Evaluation of Software Variation
In the second experiment, we varied the appearance rates of the integer, multi-

cycle, load/store, No OPeration (NOP), and control operations on the 4-slot
VLIW ASIP to confirm the impact of various programs on the power consumption
of the pipeline registers. The multi-cycle operations include multiplication and
division, which take 32 cycles to finish operation.

Table 4 shows the results of the five cases. The differences of power reduction
are due to the differences of data path utilization in each program. Case 1 in

Table 4 Power consumption of pipeline registers in 4-slot VLIW ASIP according to
appearance rate.

Case Int. Multi Load/ NOP Ctrl. Power
Cycle store [µW/MHz]

[%] [%] [%] [%] [%] NCG PC PM
1 60.5 4.5 30 0 5 201.2 197.0 49.8
2 90 0 5 0 5 264.8 278.1 126.7
3 70 0 5 20 5 246.9 265.9 103.4
4 50 0 5 40 5 241.3 262.1 85.9
5 84 6 5 0 5 190.4 165.9 38.3

Table 4 corresponds to the result in the previous experiments.
With respect to PC, the power consumption in Cases 2 to 4 increased because

no multi-cycle operations were issued. In these cases, the power overhead by the
gating circuit is just accumulated. The combination of the traditional VLIW gen-
eration method and Power Compiler worsens power consumption in such cases.
For the same reason, power consumption decreased according to the multi-cycle
operations in Case 5.

PM achieves substantial power reduction, as shown in Table 4. In Cases 2,
3, and 4, power consumption decreased, although no multi-cycle operations were
issued, showing that gating condition generated by the proposed method stopped
unnecessary clock supplies while the pipeline was not stalled. Power consumption
decreased while the NOP rate increased because NOP did not activate any data
path modules.

6. Conclusion

A low-power VLIW ASIP generation method was proposed in this paper. The
proposed method automatically extracts the minimum execution conditions of
the pipeline registers in the generated VLIW ASIPs and shuts off the excess
clock supplies to the pipeline registers by clock gating. The experimental results
showed that the power consumption of the pipeline registers in the VLIW ASIPs
generated with the proposed method was reduced about 80% compared to the
VLIW ASIPs that were not clock gated, and about 60% compared to the VLIW
ASIPs that were clock gated by Power Compiler with negligible delay and area
overhead.
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