
IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010)

Regular Paper

Efficient Design Space Exploration at System Level

with Automatic Profiler Instrumentation

Seiya Shibata,†1,†2 Yuki Ando,†1 Shinya Honda,†1

Hiroyuki Tomiyama†3 and Hiroaki Takada†1

As the complexity of embedded systems grows, design space exploration at
a system level plays a more important role than before. In the system-level
design, system designers start from describing functionalities of the system as
processes and channels, and then decide mapping of them to various Process-
ing Elements (PEs) including processors and dedicated hardware modules. A
mapping decision is evaluated by simulation or FPGA-based prototyping. De-
signers iterate mapping and evaluation until all design requirements are met.
We have developed two profilers, a process profiler and a memory profiler, for
FPGA-based performance analysis of design candidates. The process profiler
records a trace of process activations, while the memory profiler records a trace
of channel accesses. According to mapping of processes to PEs, the profilers
are automatically configured and instrumented into FPGA-based system proto-
types by a system-level design tool that we have developed. Designers therefore
need to manually modify neither the system description nor the profilers upon
each change of process mapping. In order to demonstrate the effectiveness of
our profilers, two case studies are conducted where the profiles are used for
design space exploration of AES encryption and MPEG4 decoding systems.

1. Introduction

In order to design embedded systems of high quality in a short time, fast and
accurate profiling and evaluation are musts for design space exploration. As the
complexity of embedded systems grows to the extent of MPSoCs (multiprocessor
system on a chip), design space exploration at a system level plays a more im-
portant role than before. In the system-level design, system designers start from
describing functionalities of the system as processes and channels which indicate
computations and communications among processes, respectively. Then the de-

†1 Graduate School of Information Science, Nagoya University
†2 Japan Society for the Promotion of Science
†3 College of Science and Engineering, Ritsumeikan University

signers decide mapping of them to various Processing Elements (PEs) including
processors and dedicated hardware modules 1). A mapping decision is evaluated
by simulation or FPGA-based prototyping. The designers iterate mapping and
evaluation until all design requirements are met.

Performance evaluation of mapping decisions requires timed descriptions. Re-
cent system-level design tools provide automatic synthesis capabilities of timed
descriptions from untimed descriptions and mapping 2)–4). These tools convert
processes which are mapped on software into compilable program modules and
processes which are mapped on hardware into synthesizable RTL circuits. Chan-
nels are converted into appropriate communication modules. The synthesized
timed descriptions can be evaluated by simulation or FPGA-based prototyping.

A number of researches on simulation-based evaluation were conducted in the
past. Aiming at functional verification of hardware-software systems, fast but
inaccurate simulation techniques were proposed 5),6). In contrast, cycle-accurate
hardware simulation tools 7),8) were widely accepted for accurate but slow evalu-
ation in an industrial domain. Fummi, et al. proposed a cosimulation framework
for both verification and evaluation 9). Their framework provides synchroniza-
tion mechanisms, which vary in speed and accuracy, on communications between
hardware and software. Designers therefore can use an appropriate mechanism
depending on their needs (verification or evaluation). However, since speed and
accuracy are incompatible with each other on simulations on a host PC, simu-
lations are often inappropriate for design space exploration, especially for recent
complex systems.

Another approach to performance evaluation is FPGA-based prototyping.
FPGA-based prototypes achieve both high accuracy and speed, and are appro-
priate for iteration of mapping and evaluation. One disadvantage of FPGA-based
prototypes is that internal states of the system are unobservable without addi-
tional modification for system descriptions. Since recent systems have complex
dependencies and concurrency among processes, profiling capabilities are essen-
tial to find out bottlenecks and to help designers decide mapping alternatives.
However, manual modification for profiling is time-consuming and error-prone.
In order to prune design candidates efficiently and find the best choice quickly,
automatic instrumentation for profiling is necessary.

179 c© 2010 Information Processing Society of Japan

180 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

We have developed two profilers, a process profiler and a memory profiler, for
FPGA-based performance analysis of design candidates. The process profiler
records a trace of process activations, while the memory profiler records a trace
of memory channel accesses. In our framework, systems are described at a high
level and FPGA-based system prototypes are automatically synthesized by our
system-level design tool, named SystemBuilder. According to mapping of pro-
cesses to PEs, the profilers are automatically configured and instrumented into
the FPGA-based system prototypes by SystemBuilder. Designers therefore need
to manually modify neither the system description nor the profilers upon each
change of process mapping. The profilers allow fast and accurate performance
evaluation of the systems which have complex dependency and concurrency with
the profilers using an FPGA. In summary, major contributions of our profilers
on design space exploration are
• automatic instrumentation of the profilers with support of a system-level

design tool,
• fast and accurate FPGA-based evaluation and profiling,
• and profiling capabilities for concurrent MPSoCs.
The rest of this paper is organized as follows. First, Section 2 presents a brief

overview of related works about system evaluation techniques for design space
exploration. Next, Section 3 explains our system-level design tool. Section 4
describes two proposed profilers and Section 5 shows the effectiveness of the
profilers through two case studies. Finally Section 6 concludes this paper with a
summary.

2. Related Works

There are many approaches which provide efficient evaluation environments for
design space exploration.

ARTS 10) and TAPES 11) are system-level simulation frameworks. ARTS is
a framework for modeling and simulating MPSoCs. Given profiles of tasks to
be executed on processing elements, ARTS simulates communications among
tasks and calculates performance. TAPES provides a retargetable simulation
framework with a given profile of the system functionality. These frameworks
assume that profiles of the system at a system level are given prior to their

simulation, therefore the accuracy of their simulation depends on the accuracy
of profiles.

As for FPGA-based approaches to system-level design, automatic synthesis
tools 2),4),12) enabled designers to implement FPGA-based prototypes in a short
time. By using IPs for debugging hardware provided by FPGA vendors (Chip-
Scope 13), SignalTap 14)), designers can observe internal signals of an FPGA and
analyze behavior of the system in detail. These approaches, however, need ex-
pertise of hardware and manual modification of the system (hence error-prone)
for profiling. Valle, et al. proposed an environment on an FPGA for profiling
software which is executed on multi-processor systems 15). In their environment,
clock inputs for the system under profiling can be controlled and the accuracy
is guaranteed. Their environment, however, cannot handle dedicated hardware
modules. Nunes, et al. proposed a profiler construction for multi-FPGA systems
with high-level descriptions of systems 16). Their approach has a similar concept
with ours in assuming that systems are developed using specific communication
channels between functionalities and the profilers are developed to cooperate with
the channels. However, their profiler needs manual instrumentation.

In contrast with above tools, our profilers record traces of concurrent MPSoC
systems, achieving both high accuracy and short execution time. System de-
signers can profile the large number of design alternatives easily with automatic
instrumentation of the profilers.

3. SystemBuilder

SystemBuilder is a system-level design toolkit developed in our prior work 3).
The main objective of SystemBuilder is to support design space exploration of
embedded systems. In this work, we extended SystemBuilder to automatically
instrument the systems with a process profiler and a memory profiler. In this
section, we explain target architecture of SystemBuilder, a brief overview of the
design flow achieved by SystemBuilder and the features of channels for later
sections.

3.1 Target Architecture
SystemBuilder currently uses Altera’s tools as its back-end for logic synthe-

sis and place-and-route, and therefore, the target architecture of SystemBuilder

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

181 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

is restricted to one supported by Altera’s tools. Specifically, Nios II soft-core
processors with Avalon buses are supported by SystemBuilder at present.

There are no restrictions on the numbers of processors, hardware accelerator
modules, memory modules and buses, as many as the FPGA device allows. The
numbers of these modules and the interconnection between them are defined by
designers in an input file of SystemBuilder (described as “architecture template”
in Section 3.2).

Mapping of processes onto processors statically is determined at a design phase
and is not changed at runtime. SystemBuilder also assumes that a single address
space is shared by all the modules. The two assumptions are realistic and very
popular in many embedded systems in order to meet real-time requirements 17).

It should be noted that, although SystemBuilder at present supports only Al-
tera’s FPGAs and their associated architectures, SystemBuilder can potentially
support other devices and architectures�1.

3.2 Design Flow
Figure 1 shows the design flow achieved with SystemBuilder. First, a system

designer develops a “system-level description” to capture functionalities of the
target system. The system-level description consists of “processes” and “chan-
nels”. A process and a channel represent a computation component and inter-
process communication at a high abstraction level, respectively. The processes
may be mapped onto processors and hardware modules, and the channels onto
buses, memories and other communication devices. The designer also specifies
hardware architecture in an “architecture template” and mapping of the pro-
cesses and the channels onto the hardware architecture in a “mapping specifica-
tion”. SystemBuilder automatically synthesizes descriptions of interconnections
between processes (hereafter, this synthesis functionality is called as “communi-
cation synthesis”). The synthesized communication descriptions are generated
in the C language and VHDL, depending on mapping of the processes and the
channels. Next, SystemBuilder makes use of a compiler of the processors for
software and a behavioral synthesis tool for hardware modules in order to ob-

�1 In actual, an earlier version of SystemBuilder supported Xilinx’s architecture with Microb-
laze processors and the OPB bus 3).

Fig. 1 Design flow of SystemBuilder.

tain executable binaries and synthesizable RTL circuits, respectively. Processes
mapped on software are compiled and linked with a Real-Time OS (RTOS).
Finally, a configuration bitstream of the designed hardware architecture for an
FPGA is synthesized by a logic synthesis tool from the RTL circuits and IPs of
the processors and essential peripherals.

After automatic synthesis of an FPGA-based prototype by SystemBuilder, the
prototype is evaluated on an FPGA. If the prototype meets the designer’s re-
quirements, the design flow is completed. Otherwise, the designer may explore
other implementations of the system by changing the system-level description,
the architecture template and/or the mapping specification (denoted as feedback
arrows from the FPGA-based prototype to inputs of SystemBuilder in Fig. 1). By
iteration of changing inputs, automatic synthesis and evaluation, the system de-
signer explore design space to find the best implementation of the system which
meets his/her requirements. SystemBuilder realizes short turn-around-time of
this iteration by providing the automatic synthesis capability.

In summary, there are following exploration opportunities during the design

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

182 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

flow with SystemBuilder:
• system-level description construction with processes and channels,
• hardware architectures consisting of processors, hardware modules, memories

and buses,
• and mapping of processes and channels.
Note that SystemBuilder does not provide any automation technique to find

the best implementation, and leaves to designers the decision on how to improve
the system.

3.3 Features of The Channels
Here, we explain about the channels which we focused on the implementation

of our profilers. SystemBuilder provides two types of channels: blocking channels
and memory channels.

Blocking channels can be used for describing data/control dependencies be-
tween two processes. A receiver process of a blocking channel is forced to wait
until a corresponding sender process writes data to the channel. A blocking
channel is transformed to a FIFO hardware buffer or a queue API of an RTOS
by communication synthesis depending on mapping of the processes. We imple-
mented the process profiler utilizing these characteristics of blocking channels.

Memory channels represent storage of data transferred among processes. They
are transformed to either of block memories on an FPGA or an off-chip memory,
or an array of the C language. Memory channels mapped between software and
hardware are implemented as an interface circuit of a hardware module in or-
der to realize communication between hardware and software. In particular, the
processes on hardware which access memory channels mapped onto off-chip mem-
ories are implemented to use interface circuits in order to access the memories.
SystemBuilder generates a single interface circuit, which is shared by the pro-
cesses, by default, and generates two or more interface circuits with the designers’
specification. We implemented the memory profiler utilizing these characteristics
of memory channels.

4. System-Level Profilers

We propose two profilers, a process profiler and a memory profiler. The profilers
are automatically configured and instrumented into FPGA-based prototypes by

SystemBuilder, and record traces of processes and memory accesses at runtime
of the prototypes.

The process profiler has been developed to help designers analyze behaviors
of processes taking concurrency and dependencies among processes into account.
Since processes of recent embedded systems may have complex dependencies with
each other, the mapping decision which maximizes the parallelism of processors
and dedicated hardware modules is not obvious and needs to be explored. In
order to find the optimal mapping of processes, evaluation of mapping decisions
is not sufficient with only execution time of individual processes. It is important
to record activation/wait timings of processes and analyze the parallel behavior
of processes with the timings.

Processes have not only explicit dependencies among them represented by
blocking channels but also implicit relationships which appear in accessing shared
resources. The memory profiler has been developed to help designers analyze the
effects of such conflicts at memory channels. Recent embedded systems which
consist of concurrent processes often share memories for communication and
resource reduction. Since simultaneous memory accesses for a single memory
module cause conflicts and need to be handled sequentially by bus arbiters or
memory interfaces with additional cycles, they may cause performance degrada-
tion. Therefore the memory profiler records traces of memory channels to analyze
conflicts on shared memories.

It should be noted that the profilers do not restrict the capability of System-
Builder. In other words, the profilers can be inserted into any system designed
by SystemBuilder. In turn, since the current profilers are tightly coupled with
SystemBuilder, the profilers can hardly be applied to system architectures which
are not supported by SystemBuilder. Another restriction at present is that at
most 16 processes can be profiled by the process profiler and at most 16 mem-
ory channels can be profiled by the memory profiler, but this restriction will be
relaxed in near future.

In this section, we describe advantages, profiling flow and detail of the profilers.
4.1 Advantages
In order to explore design candidates efficiently, we developed the profilers

which have following advantages:

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

183 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

(1) automatic instrumentation of the profilers at the system synthesis phase,
(2) common timeline between software and hardware,
(3) low profiling overhead on performance,
(4) visualization of traces for intuitive analysis.

Automatic instrumentation of the profilers is necessary for realizing smooth it-
eration of mapping and evaluation. Otherwise, designers have to manually modify
system descriptions and the profilers upon each change of process mapping.

Common timeline between software and hardware is required since processes
are mapped onto either software or hardware. In order to help designers find
bottleneck processes out from both software and hardware, the profilers must
record traces of them in a common timeline.

Performance overhead of the profilers must be small enough not to have influ-
ence on behaviors of processes. We especially gave priority to minimize perfor-
mance degradation on development of the profilers. This is why we decided to
implement major parts of the profilers in hardware. We paid less attention for
area overhead than performance overhead since the profilers are removed from
the final implementation of the system in our design flow.

The objective of visualization of traces is to help designers find bottlenecks out
from complex process behavior.

4.2 Profiling Flow
Figure 2 shows the profiling flow of our profilers with SystemBuilder. The

profiling flow starts from “system-level description” (denoted in Fig. 2), and Sys-
temBuilder automatically generates an FPGA-based prototype according to a
mapping decision of a designer. The prototype consists of “FPGA configura-
tion” of hardware modules and “executable binary” of software, and the process
profiler and the memory profiler are configured and instrumented in software
and hardware automatically. Process trace and memory trace are recorded by
executing the FPGA-based prototype. Then, “trace output” is transferred from
the FPGA to the host PC. Finally, the trace output is transformed for analysis
and visualization by “trace analyzer & visualizer”.

After this flow, designers can analyze the prototype using the traces, and can
make feedback for the inputs of SystemBuilder to find better system implemen-
tations.

Fig. 2 Tool flow of the profilers supported by SystemBuilder.

Since capacities of memories are limited, the profilers cannot record traces of
an entire system execution. SystemBuilder provides APIs to specify the timings
where the profilers start and end. Designers write the API calls in any point of
the process descriptions and get traces during the period they are interested in.

4.3 The Process Profiler
The process profiler records a trace of activation/wait timings of processes

through the execution period specified by a designer.
Figure 3 illustrates the overall structure of our profilers. The process profiler

consists of processes which are instrumented for profiling and “process profiler
module” hardware (illustrated in Fig. 3). The process profiler module consists of
“process trace extractor”, “process trace writer”, a timer module, a FIFO and
a memory module. At runtime of the system, processes send signals to registers
of the trace extractor. The process trace extractor collects the values of the
registers, and sends them with a time-stamp obtained from the timer module

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

184 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Fig. 3 Overall structure of the process profiler and the memory profiler.

to the process trace writer through the FIFO. The process trace writer writes
data to the memory module whenever it receives data from the FIFO. Since we
made a dedicated memory module for the process profiler and a dedicated access
interface for the memory module, the memory accesses of the process trace writer
do not conflict with other communications among processes, and have no effect
on performance of the system.

All accesses for blocking channels, which are used to activate processes, are au-
tomatically transformed to send signals to the process trace extractor by System-
Builder. Figure 4 shows an example of a transformed description which accesses
a blocking channel (denoted as XXX BC READ). The transformed description
consists of an original functionality which accesses the blocking channel (denoted
as function calls of yx_meschan_read() and syscall() in Fig. 4) and signaling
functionalities (denoted as two function calls of profiler_set_state()). By
the calls of profiler_set_state(), the process writes “0” to a register of the
process trace extractor at the beginning of the access, and writes “1” at comple-

tion of the access. The description in C is converted for a target processor and
an FPGA by compilers and behavioral synthesis tools, respectively.

Note that computational results of the processes do not change between before
and after instrumentation of the process profiler. This is because the instrumen-
tation of the process profiler only adds the signaling functionality to processes.
However, instrumentation of the signaling functionalities can result in degrada-
tion of performance and accuracy of FPGA-prototypes. In other words, execution
time (i.e., execution cycles) of processes may increase by insertion of a process
profiler, and therefore, the execution cycles of the processes with the profiler are
not as completely same as the ones without the profiler.

Degradation of performance is inevitable for processes implemented in software
(software processes, hereafter). Software processes should notify their states to
the process profiler module with additional instructions since internal states of
processors are not observable from other modules. Figure 5 shows the program
code of the signaling function described in C for software processes, which appears

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

185 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Fig. 4 Instrumentation example of a process for profiling.

1: void profiler_set_state(unsigned char state){

2: int tskid;

3: unsigned char *reg4tskid;

4:

5: //RTOS-API to get Task (Process) ID

6: get_tid(&tskid);

7:

8: //get register address for this process

9: reg4tskid = TaskID2StateRegMap[tskid];

10:

11: //signal state of the process

12: //to the process trace extractor

13: *(volatile unsigned char *)reg4tskid = state;

14: }

Fig. 5 An example of the signaling function for software.

as “profiler_set_state()” in Fig. 4. In the function, a software process, which
is implemented as a task of an RTOS, first obtains its task ID using an RTOS’s
API. Next, the process obtains an address of a register in the process trace
extractor by using the task ID. Finally, the process writes its state (executing

(1) or waiting (0)) to the register. Assembly code of this function for a Nios II
processor consists of 50 instructions. Since the signaling function is called twice
per blocking channel access, software processes need additional 100 instructions
for each blocking channel access.

As for the processes implemented in hardware (hardware processes, hereafter),
“profiler_set_state()” in Fig. 4 is done in a single clock cycle. This is because
the implementation of the profiler_set_state() is realized by writing a state
of the process to a register in a single clock cycle. Therefore hardware processes
basically need additional two clock cycles for every blocking channel access. How-
ever, the signaling functionality and the original behavior of the process may be
executed in parallel (depending on behavioral synthesis results). Consequently
the overhead of the signaling functionality of hardware processes will be two or
less clock cycles per blocking channel access.

After the execution, the trace data are read from the memory module and are
output to a debug console on a host PC. The process profiler also provides the
trace analyzer & visualizer for the traces obtained from an FPGA (illustrated in
Fig. 2). The trace analyzer & visualizer generates a VCD (Value Change Dump)
file and a CSV (Comma Separated Value) file. The VCD file can be visualized
as waveforms using tools such as GTKWave 18). In the waveforms, high states
mean executions of the processes and low states mean waiting times of them.
Visualization of the system behavior can support designers to intuitively grasp
complex parallelism of the processes. The CSV file contains formatted traces and
can be fed by various tools for further analysis.

4.4 The Memory Profiler
The memory profiler records traces of shared memory accesses including access

cycles and blocked cycles. Since the memory accesses are performed frequently
and tend to cause exhaustion of memories for the traces, the memory profiler
records the sum of the access/blocked cycles for every n cycles specified by de-
signers in order to use limited memory capacity efficiently.

The recording part of the memory profiler is implemented in hardware (illus-
trated as “memory profiler module” in Fig. 3). We designed the memory profiler
focusing the feature that all processes mapped on hardware are implemented to
use interface for outside memories by SystemBuilder (illustrated as “bus bridge”

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

186 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

in Fig. 3). In order to record memory accesses, “memory access watcher” inside
the bus bridge tells the occurrence of memory accesses to “access counter”. The
access counter records the sums of the access/blocked cycles of individual chan-
nels in a certain period, and sends the sums to “memory trace writer”. The
period is specified by designers using an API at the beginning of profiling. For
each period, the memory trace writer sends the sums of access/blocked cycles
to the dedicated memory module which stores the memory access traces. Sys-
temBuilder automatically configures the memory access watcher depending on
mapping of memory channels onto shared memory modules, and instruments the
hardware module with the memory profiler module.

After the profiling, the traces are read from the memory module and are trans-
ferred to a host PC. The trace analyzer & visualizer transforms the traces and
generates various intuitive graphs which show statistical values of entire execution
and periodic changes.

Here, we discuss the accuracy of the system between before and after instru-
mentation of the memory profiler. First, it should be noted that instrumentation
of the memory profiler by SystemBuilder does not change implementation of
processes. Therefore computational results of processes are not changed by the
instrumentation. Moreover, the memory profiler does not change cycle-level be-
havior of the FPGA-based prototype. The memory profiler capability consists
of three modules, i.e., the memory profiler module, a memory module to store
memory access traces and the bus bridge where the memory access watcher is em-
bedded. None of the three modules changes cycle-level behavior of the prototype
as follows.

The access counter in the memory profiler module does not block the behavior
of the bus bridge since it only receives signals brought by the memory access
watcher.

The memory trace writer in the memory profiler module and the dedicated
memory module (“Memory module 2” in Fig. 3) are connected by a dedicated
bus (denoted as “BUS2”), hence communications between them do not conflict
with other communications among processes on “BUS1”.

The memory access watcher actually only brings internal signals of the bus
bridge to the access counter, so that it does not interfere with the cycle-level

behavior of the bus bridge.
For these reasons, cycle-level behavior of FPGA-based prototypes is not

changed by instrumentation of the memory profiler.
However, the number of clock cycles required to execute overall the system

will increase because a software process needs to call APIs which start/stop
the execution of the profiler. Nevertheless, cycle-level behavior of the system
between start and stop of the memory profiler, in which designers are interested,
are accurate between before and after the instrumentation.

Currently the memory profiler can trace the memory accesses performed by the
processes implemented on hardware. Designers therefore cannot analyze impacts
of conflicts caused by the processes on software directly, while the designers
can see the impacts from the blocked cycles recorded by the memory profiler
which include conflicts caused by software. This is because we laid emphasis
on automation of the profiling flow and compromised on limitations of a logic
synthesis tool.

4.5 Further Discussion on FPGA-based Profiling
As discussed in Section 4.3 and Section 4.4, profiler instrumentation may change

the performance (execution cycles) of processes. In addition, a general problem
exists in our approach to FPGA-based prototyping and profiling, i.e., FPGA-
based prototypes can hardly behave as same as final ASIC implementations. This
problem comes from various reasons. For example, since the capacity of FPGA
is generally much smaller than that of ASIC, multiple FPGAs need to be used
and the interconnection delay between FPGAs arises; some IP components (such
as memory) for FPGA behave differently from those for ASIC. This problem is
not specific to the work presented in this paper, but arises in any FPGA-based
prototyping, and hence, is out of scope of this paper. In other words, this work
(i.e., SystemBuilder with the profilers) does not provide any solution to this
problem.

In fact, current SystemBuilder further complicates this problem because it
supports only Altera’s Nios II processors and Avalon buses, which are rarely
used in final ASIC implementation in industry. In order for SystemBuilder to be
used for prototyping of ASIC design in industry, SystemBuilder should support
processors and buses which are actually used in final ASIC implementation. To

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

187 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

this end, we need not only FPGA-synthesizable IPs of the processors, buses
and peripherals, but also synthesis tools and software development toolkit, and
integrate these IPs and tools into our SystemBuilder design environment. This
work is possible, but has not been realized yet.

5. Case Studies

In order to demonstrate the effectiveness of our profilers, we show two case
studies of AES encryption system design and MPEG4 decoder system design. In
addition, we evaluate performance/area overhead of the profilers with the results
of the two case studies.

The case studies were performed on the following environment. The systems
were designed on a PC whose OS is Windows XP Professional with an Intel Core
2 Quad 2.66 GHz processor and 2 GB RAM. The target board has an Altera
Stratix II FPGA with Nios II soft-core processors at 50 MHz of clock frequency.
eXCite 3.2a 19) was used for behavioral synthesis. Logic synthesis and place-and-
route were done by Quartus 8.1.

5.1 AES Encryption System Design
First, we demonstrate an application example of the process profiler on an AES

encryption system. Figure 6 shows the functional structure of the AES encryp-
tion system. The AES encryption system consists of six processes, aes main,

Fig. 6 Functional structure of the AES encryption system.

encrypt, keyschedule, addroundkey, looppart and endpart. The six processes are
executable in a pipelined manner. Each process is connected to its successor
process through a blocking channel. Blocking channels have enough buffers not
to block sender processes. In order to evaluate performance of the system, we
measured the execution time of the system by executing the encryption 100 times
per evaluation.

Figure 7 illustrates a design space exploration scenario in this case study. The
purpose of this exploration is to find mapping which maximizes parallelism of the
processes on a limited number of processors. We therefore explore mapping of
the processes onto one or two processors, and present waveforms of processes in
three different mapping specifications. The memory profiler is not needed since
we do not map any process onto hardware in this case study.

As a first step, we mapped all processes on a single processor to see the exe-
cution time of individual processes (in Fig. 8 (a)). The total execution time of
the system was 2,356 milliseconds. We could see that the keyschedule and the

Fig. 7 Design space exploration scenario of AES design.

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

188 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

(a) All processes on a single processor.

(b) Last two processes on the second processor.

(c) “addroundkey” was moved to the second processor.

Fig. 8 Process profiles of AES encryption system on three mapping decisions.

looppart processes consumed significantly longer execution time than others in
Fig. 8 (a). In order to improve performance, parallelizing the keyschedule process
and the looppart process was expected to be obviously effective. We therefore
changed mapping of the looppart and the endpart processes to the different pro-
cessor.

Figure 8 (b) shows the waveforms of the processes after changing mapping of
the looppart and the endpart processes. The total execution time of the system
became 2,540 milliseconds. Contrary to our expectation, the total execution time
was not improved and rather extended, even though the addroundkey process and
the looppart processes were executed in parallel. This performance degradation
might be caused by inter-processor communication. Moreover, the keyschedule
process and the looppart process were not parallelized. The reason of this was
obtained from Fig. 8 (b). The figure shows that the addroundkey process was not
activated until the keyschedule completed its work. Since the addroundkey pro-
cess was the activator of later processes, delaying activations of the addroundkey
process led to the delay of the later processes, and prevented the processes from

executing in parallel with the other processes. This was caused by the schedul-
ing policy of an RTOS which the system employed. This is the good example
showing that the processes whose execution time is shorter than those of others
can become the bottleneck of the system and that the process profiler played an
important role to find such bottleneck processes, since they cannot be found by
comparing execution times of individual processes.

In order to execute the keyschedule and the looppart process in parallel, the
addroundkey process must be activated immediately after an execution of the
keyschedule process. It is achieved by mapping the addroundkey process onto
the other processor. Figure 8 (c) is the waveforms of the processes after changing
mapping of the addroundkey process. The total execution time of the system
was 1,653 milliseconds. Figure 8 (c) shows clearly that the addroundkey process
was activated immediately after an execution of the keyschedule process. As a
result, the activation timings of the looppart process became earlier than before.

In this case study, the behavior of the processes are significantly affected by
the dependencies among processes, the scheduling policy of an RTOS and the
potential concurrency of processes, which cannot be considered by the analysis
which relies only on the execution times of the individual processes. We could
easily analyze such bottlenecks using the process traces. Thus we conclude that
the effectiveness of the process profiler in exploring mapping of processes was
proved.

5.2 MPEG4 Decoder System Design
We designed an MPEG4 decoder system with SystemBuilder. Based on the

MPEG4 decoder developed in the past 20), we improved performance of the design
using the process profiler and the memory profiler (Fig. 9). This case study shows
the effectiveness of both the process profiler and the memory profiler on a design
refinement at system level.

Figure 10 shows the structure of processes of the MPEG4 decoder system.
The MPEG4 decoder consists of 12 processes, mp4 main, header, get mv, VLD,
IQ, IDCT, catch, MI-1, MI-2, adder, yuv2rgb and display. The mp4 main process
handles inputs and the display process outputs decoded images to VRAM of a
VGA device. The mp4 main process should be implemented in software, and the
other processes can be implemented in software and hardware. So the term of “all

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

189 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Fig. 9 Design space exploration scenario of MPEG4 decoder design.

Fig. 10 Functional structure of the MPEG4 decoder.

hardware implementation” in this section denotes that all processes except for
the mp4 main process are implemented in hardware. All processes can execute
concurrently in a pipelined manner on all hardware implementation.

(a) MPEG4 decoder with a single bus interface.

(b) MPEG4 decoder with two bus interfaces.

Fig. 11 The process profiler results of two MPEG4 decoder implementations.

First, we explored several number of process mapping decisions and found that
the all hardware implementation was the fastest implementation among them.
However, its performance was yet 11.6 fps (frames per second) for 320×240 sized
movies and needed further improvements. We therefore used the process profiler
in order to find the bottleneck processes. Figure 11 (a) shows the waveforms
of the all hardware system. We could see that the yuv2rgb process (on the
2nd row from the bottom of the figure) could not be activated until the display
process (on the bottom of the figure) finished its execution, and the display
process was always active. In other words, the display process was a bottleneck.
However, no solution was gained by reviewing the C program of the display
process. We therefore used the memory profiler to obtain more information

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

190 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Fig. 12 Sums of blocked cycles for each channels.

about the bottleneck.
Figure 12 illustrates a graph obtained by the memory profiler. White bars on

the back side of Fig. 12 illustrate the sums of blocked cycles (on y-axis) for individ-
ual channels which access off-chip memories (on x-axis) of the all hardware imple-
mentation. The rightmost bar of Fig. 12 shows that the “VRAM MEM display”
channel, which transfers decoded images to VRAM of the VGA device, was fre-
quently blocked by other channels. This indicated that the execution of the dis-
play process was delayed by the conflicts and that the reduction of the conflicts
may make the display process faster.

There were three points at which conflicts were possible to be caused: the bus,
an interface of the VRAM for the VGA device and the bus interface of the hard-
ware module (shown as “Bus bridge” in Fig. 3) which manages bus accesses from
processes mapped on hardware. Since the VRAM is accessed by the display pro-
cess only, the memory accesses cannot conflict with others at the interface of the
VRAM. We therefore concluded that the conflicts were caused at the bus and the
bus bridge. We solved the conflicts by making a special bus bridge for the display
process. Since the bus is implemented as crossbar switches in the FPGA, conflicts
cannot occur at any point on accesses to the VRAM MEM display channel if the

Table 1 Performance overheads of the profilers.

w/o profilers w/ process profiler w/ memory profiler
AES (SW) 2,813 ms 3,067 ms (+9%) -
MPEG4 (SW) 28,240 ms 30,640 ms (+9%) -
AES (HW) 561 ms 566 ms (+1%) 560 ms (+0%)
MPEG4 (HW) 1,821 ms 1,825 ms (+1%) 1,840 ms (+1%)

Table 2 Hardware cost (ALUTs) of the profilers.

w/o profilers w/ process profiler w/ memory profiler
AES (SW) 3,329 4,623 -
MPEG4 (SW) 3,329 4,623 -
AES (HW) 15,144 16,434 17,237
MPEG4 (HW) 34,680 36,002 37,932

special bus bridge is made. As a result, the special bus bridge enabled the display
process to access the VRAM exclusively. We obtained a process profile shown
in Fig. 11 (b) and a memory profile shown as black bars in front side of Fig. 12.
In comparison with the waveforms at the bottom of Fig. 11 (a), the waveforms
of Fig. 11 (b) show that the execution time of the display process was reduced.
The memory profile shown in Fig. 12 shows evidently that the blocked cycles of
the VRAM MEM display channel were removed. In conclusion, we achieved to
overcome the bottleneck on the display process with the profilers.

5.3 Overhead Evaluation of The Profilers
We evaluated overheads of our profilers on performance and cost. It should be

noted that the overheads of the profilers do not influence the quality of the prod-
uct. The overheads, which we evaluate here, only affect FPGA-based prototypes
at a design space exploration phase.

Table 1 shows the performance overheads and Table 2 shows the area over-
heads on an FPGA. The first two rows of the tables show the overheads on the
AES encryption system and the MPEG4 decoder system in case all processes of
the systems are mapped on a single processor as software. In the case, the process
profiler brought 9% increase of the execution time of the systems. The overheads
of the memory profiler are not shown in the case since the memory profiler has
no means if there is no process on hardware. Last two rows show overheads of
the all hardware systems. Because of parallelism of hardware, the profilers had

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

191 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Table 3 Required time for automatic instrumentation of the profilers.

w/o profilers w/ process profiler w/ memory profiler
comm. syn. HW syn. comm. syn. HW syn. comm. syn. HW syn.

AES (SW) 0.04 sec. 5 min. 0.04 sec. 6 min. - -
MPEG4 (SW) 0.06 sec. 5 min. 0.06 sec. 6 min. - -
AES (HW) 0.29 sec. 33 min. 0.18 sec. 35 min. 0.29 sec. 37 min.
MPEG4 (HW) 0.56 sec. 69 min. 0.57 sec. 74 min. 0.56 sec. 72 min.

fewer effects on performance and resulted in only 1% overhead for both systems.
As for area consumption, additional ALUTs (adaptive look-up tables) are used
for hardware part of the profilers. Table 2 shows that 1,200 or more ALUTs are
necessary for the profilers.

We also evaluated synthesis time overhead brought by instrumentation of the
process profiler and the memory profiler. The overhead on synthesis time may
affect efficiency on design space exploration which is realized by iteration of
changing inputs, synthesis and evaluation. Table 3 shows synthesis time of
the systems shown in Table 1 and Table 2 with and without the two profilers.
Synthesis time for the systems was measured at two synthesis phases: one is
communication synthesis phase performed by SystemBuilder (“comm. syn.” in
Table 3), and the other is behavioral and logic synthesis phase performed by YXI
eXCite and Altera Quartus (“HW syn.” in Table 3).

As shown in Table 3, communication synthesis by SystemBuilder completed in
a second even with the profilers, while behavioral and logic synthesis time was
increased by several minutes which we believe is trivial compared with the overall
design time.

6. Conclusions

In system-level design, system designers describe functionalities as processes
and channels, and iterates mapping of processes onto processing elements and
evaluation. We proposed two profilers for FPGA-based prototypes, a process
profiler and a memory profiler. The process profiler records activation/wait tim-
ings of processes. The memory profiler records access/blocked cycles of shared
memory accesses.

The profilers are automatically instrumented into the system by a system-level

design tool, named SystemBuilder. Automatic instrumentation of the profilers
enables smooth iteration of mapping and evaluation. Since evaluation is per-
formed by FPGA-based prototyping, designers can evaluate design candidates
fast and accurately.

We demonstrated the effectiveness of the profilers through two case studies on
AES encryption system design and MPEG4 decoder system design. The AES
encryption system design provided an example that the process profiler played
an important role to find bottlenecks caused by dependencies of the processes.
The MPEG4 decoder system design presented performance refinements using the
profilers considering conflicts at memory accesses.

Currently we are working for improving the memory profiler to record shared
memory accesses from not only hardware but also software. Also, we want to
extend the visualizing capability of the traces for more efficient analysis.

Acknowledgments This work is in part supported by STARC (Semicon-
ductor Technology Academic Research Center).

References

1) Keutzer, K., Malik, S., Newton, A.R., Rabaey, J.M. and Sangiovanni-Vincentelli,
A.: System level design: orthogonalization of concerns and platform-based design,
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol.19,
No.12, pp.1523–1543 (2000).

2) Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S. and Gajski,
D.D.: System-on-chip environment: a SpecC-based framework for heterogeneous
MPSoC design, EURASIP Journal on Embedded Systems, Vol.2008, No.3, pp.1–13
(2008).

3) Honda, S., Tomiyama, H. and Takada H.: RTOS and codesign toolkit for multipro-
cessor systems-on-chip, 12th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp.336–341 (2007).

4) Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra,
S. and Deprettere, E.F.: A framework for rapid system-level exploration, synthe-
sis, and programming of multimedia MP-SoCs, International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pp.9–14 (2007).

5) Honda, S., Wakabayashi, T., Tomiyama, H. and Takada, H.: RTOS-centric cosimu-
lator for embedded system design, IEICE Trans. Fundamentals, Vol.E87-A, No.12,
pp.3030–3035 (2004).

6) Yi, Y., Kim, D. and Ha, S.: Fast and accurate cosimulation of MPSoC using trace-
driven virtual synchronization, IEEE Trans. Computer-Aided Design of Integrated

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

192 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Circuits and Systems, Vol.26, No.12, pp.2186–2200 (2007).
7) Carbon Design Systems, Inc.: http://www.carbondesignsystems.co.jp/.
8) CoWare Inc.: http://www.coware.com/.
9) Fummi, F., Loghi, M., Poncino, M. and Pravadelli, G.: A cosimulation method-

ology for hw/sw validation and performance estimation, ACM Trans. Design Au-
tomation of Electronic Systems (TODAES), Vol.14, No.2 (2009).

10) Mahadevan, S., Virk, K. and Madsen, J.: ARTS: A SystemC-based framework
for multiprocessor systems-on-chip modelling, Design Automation for Embedded
Systems, Vol.11, No.4, pp.285–311 (2007).

11) Wild, T., Herkersdorf, A. and Lee, G.Y.: TAPES — trace-based architecture per-
formance evaluation with SystemC, Design Automation for Embedded Systems,
Vol.10, No.2-3, pp.157–179 (2006).

12) Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S. and Joo, Y.P.: PeaCE: A hardware-
software codesign environment for multimedia embedded systems, ACM Trans.
Design Automation of Electronic Systems (TODAES), Vol.12, No.3 (2007).

13) Xilinx: http://www.xilinx.com/.
14) Altera Corporation: http://www.altera.com/.
15) Del valle, P.G., Atienza, D., Magan, I., Flores, J.G., Perez, E.A., Mendias, J.M.,

Benini, L. and Micheli, G.D.: A complete multi-processor system-on-chip FPGA-
based emulation framework, 14th IFIP International Conference on Very Large
Scale Integration (VLSI-SoC), pp.140–145 (2006).

16) Nunes, D., Saldana, M. and Chow, P.: A profiler for a heterogeneous multi-core
multi-FPGA system, 2008 International Conference on Field-Programmable Tech-
nology (FPT’08), pp.113–120 (2008).

17) Takada, H. and Sakamura, K.: Towards a Scalable Real-Time Kernel for Function-
Distributed Multiprocessors, Proc. 20th IFAC/IFIP Workshop on Real-Time Pro-
gramming (1995).

18) GTKWave: http://intranet.cs.man.ac.uk/apt/projects/tools/gtkwave/.
19) Y Explorations, Inc.: http://www.yxi.com/index.html.
20) Shibata, S., Honda, S., Tomiyama, H. and Takada, H.: A case study of MPEG4 de-

coder design with SystemBuilder, 2009 International Symposium on VLSI Design,
Automation & Test (VLSI-DAT), pp.355–358 (2009).

(Received December 1, 2009)
(Revised February 26, 2010)

(Accepted April 14, 2010)
(Released August 16, 2010)

(Recommended by Associate Editor: Yuichi Nakamura)

Seiya Shibata received his B.E. degree in Information Engi-
neering and M.S. degree in Information Science from Nagoya Uni-
versity in 2007 and 2009, respectively. Currently he is a Ph.D.
candidate at the Graduate School of Information Science, Nagoya
University. His research interests include system-level design au-
tomation and embedded systems.

Yuki Ando received his B.E. degree in Information Engineering
in 2009. Currently he is a M.S. degree student at the Graduate
School of Information Science, Nagoya University. His research
interests include system-level design automation and embedded
systems.

Shinya Honda received his Ph.D. degree in the Department of
Electronic and Information Engineering, Toyohashi University of
Technology in 2005. From 2004 to 2006, he was a researcher at
Nagoya University Extension Course for Embedded Software Spe-
cialists. In 2006, he joined the Center for Embedded Computing
Systems, Nagoya University, as an assistant professor, where he is
now an associate professor. His research interests include system-

level design automation and real-time operating systems. He received the best
paper award from IPSJ in 2003. He is a member of IEICE and JSSST.

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

193 Efficient Design Space Exploration at System Level with Automatic Profiler Instrumentation

Hiroyuki Tomiyama received his Ph.D. degree in computer
science from Kyushu University in 1999. From 1999 to 2001, he
was a visiting postdoctoral researcher with the Center of Embed-
ded Computer Systems, University of California, Irvine. From
2001 to 2003, he was a researcher at the Institute of Systems
& Information Technologies/KYUSHU. In 2003, he joined the
Graduate School of Information Science, Nagoya University, as

an assistant professor, and became an associate professor in 2004. In 2010, he
joined the College of Science and Engineering, Ritsumeikan University as a full
professor. His research interests include design automation, architectures and
compilers for embedded systems and systems-on-chip. He currently serves as as-
sociate editor-in-chief for IPSJ Transactions on SLDM, and associate editor for
IEEE Embedded Systems Letters and International Journal on Embedded Sys-
tems. He has also served on the organizing and program committees of several
premier conferences including ICCAD, ASP-DAC, DATE, CODES+ISSS, and so
on. He is a member of ACM, IEEE and IEICE.

Hiroaki Takada is a professor at the Department of Infor-
mation Engineering, the Graduate School of Information Science,
Nagoya University. He is also the executive director of the Cen-
ter for Embedded Computing Systems (NCES). He received his
Ph.D. degree in Information Science from the University of Tokyo
in 1996. He was a research associate at the University of Tokyo
from 1989 to 1997, and was a lecturer and then an associate pro-

fessor at Toyohashi University of Technology from 1997 to 2003. His research
interests include real-time operating systems, real-time scheduling theory, and
embedded system design. He is a member of ACM, IEEE, IEICE, and JSSST.

IPSJ Transactions on System LSI Design Methodology Vol. 3 179–193 (Aug. 2010) c© 2010 Information Processing Society of Japan

