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Skyline objects in a database are objects that are not dominated by any other
object in the database. Skyline queries retrieve a set of skyline objects so that
the user can choose promising objects from them and make further inquiries.
Therefore, such skyline queries are important for several database applications.
However, a skyline query often retrieves too many objects to analyze intensively
especially for high-dimensional dataset. Recently, k-dominant skyline queries
have been introduced, which can reduce the number of retrieved objects by
relaxing the definition of the dominance. On the other hand, the maintenance
of k-dominant skyline objects under continuous updates is much more difficult
compared to conventional skyline objects. This paper addresses the problem
of efficient maintenance of k-dominant skyline objects of frequently updated
database. We propose an algorithm based on divide and conquer strategy for
maintaining k-dominant skyline objects. Intensive experiments using real and
synthetic datasets demonstrated that our method is efficient and scalable.

1. Introduction

Skyline objects in a database are objects that are not dominated by any other
object in the database. Skyline queries retrieve a set of skyline objects so that the
user can choose promising objects from them and make further inquiries. There-
fore, such skyline query functions are important for several database applications,
including customer information systems, decision support, data visualization, and
so forth.

Given an n-dimensional database DB, an object Oi is said to be in skyline of
DB if there is no other object Oj (i �= j) in DB such that Oj is better than Oi in
all dimensions. If there exist such Oj , then we say that Oi is dominated by Oj or
Oj dominates Oi. Figure 1 shows a typical example of skyline. The table in the
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Fig. 1 Skyline example.

figure is a list of hotels, each of which contains two numerical attributes: distance
and price, for online booking. A user chooses a hotel from the list according to
her/his preference. In this situation, her/his choice usually comes from the hotels
in skyline, i.e., any of h1, h3, h4 (see Fig. 1 (b)). Hence, computing skyline from a
database is helpful for users’ decision-making. A number of efficient algorithms
for computing skyline objects have been reported in the literature 1)–5).

However, a skyline query often retrieves too many objects to analyze intensively
especially for high-dimensional dataset. To reduce the number of returned objects
and to find more important and meaningful objects, Chan, et al. considered k-
dominant skyline query 6). They relaxed the definition of “dominated” so that
an object is more likely to be dominated by another. Given an n-dimensional
database, an object Oi is said to k-dominates another object Oj (i �= j) if there
are k (k ≤ n) dimensions in which Oi is better than or equal to Oj . A k-dominant
skyline object is an object that is not k-dominated by any other object. Therefore,
conventional skyline objects are n-dominant objects.

Chan, et al. proposed three algorithms for k-dominant skyline query computa-
tion. These three algorithms are executed on static datasets and do not consider
online maintenance of the k-dominant skyline objects to reflect upcoming up-
dates of the database. Hence, each time when an update (insertion/deletion)
occurs, k-dominant skyline objects have to be re-computed from scratch.

Towards an efficient continuous skyline computation the following challenge
must be addressed: an effective incremental k-dominant skyline query result
update mechanism that is needed provides a fast response time of reporting the
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Table 1 Symbolic data set.

Object D1 D2 D3 D4 D5 D6

O1 7 7 4 5 4 2
O2 7 6 5 6 3 2
O3 1 2 3 4 5 5
O4 3 3 4 5 1 2
O5 4 4 1 2 6 3
O6 2 5 2 3 3 4
O7 3 2 3 2 6 5
O8 1 1 6 3 2 1
O9 5 6 4 3 3 1
O10 2 6 4 5 1 3
O11 1 2 6 5 4 4
O12 2 3 6 5 8 4

current query results. However, the maintenance of k-dominant skyline objects
under continuous updates is much difficult. This is because, sometimes, we have
to recompute the entire k-dominant skyline objects from scratch if some kinds
of update occur. We, therefore, consider an efficient method to compute and to
maintain the k-dominant skyline in the presence of database updates.

1.1 Motivating Example
Assume we have a symbolic dataset as listed in Table 1. In the table, each

object is represented as a tuple containing six attributes or dimensions from D1

to D6. Without loss of generality, we assume smaller value is better in each
dimension. Conventional skyline query for this database returns eight objects:
O3 to O10. Objects O1 and O2 are not in skyline because they are dominated by
O4. Similarly, objects O11 and O12 are not in skyline because they are dominated
by O8. If we look at these eight skyline objects more closely, we can find that
not all objects are significant in a sense. For example, compare with O3, O7 is
survived only by its value of D4. O6 is in skyline because no other object fails to
dominate it in all dimensions, even though it does not have any maximal feature
values. In such a situation, the user naturally wants to eliminate the skyline
objects by using selective criterion.

The k-dominant skyline query can control the selectivity by changing k. Con-
sider the case where k = 5. Now the 5-dominant skyline query for this database
returns the three objects: O4, O5, and O8. Objects O1, O2, O3, O6, O9, O11,
and O12 are not in 5-dominant skyline because they are 5-dominated by O8.

Object O7 and O10 are not in 5-dominant skyline because they are respectively
5-dominated by O3 and O4 . Similarly, 4-dominant skyline query (i.e., k = 4)
returns only one object, O8 is in 4-dominant skyline. If we decrease the value of
k by one, then the 3-dominant skyline will retrieve empty result.

Though we can eliminate less important skyline objects by using k-dominant
skyline, the maintenance of k-dominant skyline for an update is much more dif-
ficult due to the intransitivity of the k-dominance relation. Assume that “A”
k-dominates “B” and “B” k-dominates “C”. However, “A” does not always k-
dominates “C”. Moreover, “C” may k-dominate “A”. Because of the intransitivity
property, we have to compare each object against every other object to check the
k-dominance. To illustrate this problem consider the 5-dominant example again.
In the dataset, {O4, O5, O8} are in 5-dominant skyline. If we insert a new object
Onew = (2, 2, 3, 2, 7, 6) into the dataset, we can compare Onew with the three
5-dominant skyline objects to maintain the 5-dominant skyline and after com-
parisons we may find that Onew is in the 5-dominant skyline. But it is not true
because Onew is 5-dominated by O3. Like this example, for each insertion in the
database, we have to perform domination check of each new object against all
k-dominant as well as non k-dominant skyline objects. This procedure is cost
effective and we have to reduce the cost in order to handle frequent updates in a
large dataset.

Again, if an update is deletion, we have to recompute the entire k-dominant
skyline from the scratch. Because some objects that are not in the current k-
dominant skyline objects may be “promoted” as k-dominant skyline objects by
a deletion. Suppose if we delete object O3, this deletion will “promote” O7 as a
5-dominant skyline object.

In this paper, we study the problem of k-dominant skyline computation and its
maintenance. We make the following contributions. First, we propose an efficient
algorithm to compute k-dominant skyline objects. Second, we propose a method
for handling updates. Last, we present a comprehensive performance study using
both real and synthetic datasets to verify the effectiveness and the efficiency of
our methods.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. Section 3 presents the notions and properties of Divide and Conquer
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based Sort-Filtering k-dominant skyline computation. We provide detailed exam-
ples and analysis of Divide and Conquer based Sort-Filtering k-dominant skyline
computation in Section 4. We experimentally evaluate our algorithm in Section 5
by comparing with other existing algorithms under a variety of settings. Finally,
Section 6 concludes the paper.

2. Related Work

Our work is motivated by previous studies of skyline query processing as well
as k-dominant skyline query processing, which are reviewed in this section.

2.1 Skyline Query Processing
Borzsonyi, et al. first introduce the skyline operator over large databases

and proposed three algorithms: Block-Nested-Loops (BNL), Divide-and-
Conquer (D&C), and B-tree-based schemes 2). BNL compares each object of
the database with every other object, and reports it as a result only if any other
object does not dominate it. A window W is allocated in main memory, and
the input relation is sequentially scanned. In this way, a block of skyline objects
is produced in every iteration. In case the window saturates, a temporary file
is used to store objects that cannot be placed in W . This file is used as the
input to the next pass. D&C divides the dataset into several partitions such
that each partition can fit into memory. Skyline objects for each individual par-
tition are then computed by a main-memory skyline algorithm. The final skyline
is obtained by merging the skyline objects for each partition. Chomicki, et al.
improved BNL by presorting, they proposed Sort-Filter-Skyline (SFS) as a
variant of BNL 4). SFS requires the dataset to be pre-sorted according to some
monotone scoring function. Since the order of the objects can guarantee that no
object can dominate objects before it in the order, the comparisons of tuples are
simplified.

Among index-based methods Tan, et al. proposed two progressive skyline com-
puting methods Bitmap and Index 7). Both of them require preprocessing. In the
Bitmap approach, every dimension value of a point is represented by a few bits.
By applying bit-wise and operation on these vectors, a given point can be checked
if it is in the skyline without referring to other points. The index method orga-
nizes a set of d-dimensional objects into d lists such that an object O is assigned

to list i if and only if its value at attribute i is the best among all attributes of
O. Each list is indexed by a B-tree, and the skyline is computed by scanning
the B-tree until an object that dominates the remaining entries in the B-trees
is found. Kossmann, et al. observed that the skyline problem is closely related
to the nearest neighbor (NN) search problem 3). They proposed an algorithm
that returns skyline objects progressively by applying nearest neighbor search
on an R*-tree indexed dataset recursively. The current most efficient method
is Branch-and-Bound Skyline (BBS), proposed by Papadias, et al., which is
a progressive algorithm based on the best-first nearest neighbor (BF-NN) algo-
rithm 5). Instead of searching for nearest neighbor repeatedly, it directly prunes
using the R*-tree structure. Tao and Papadias studied sliding window skylines,
focusing on data streaming environments 8).

2.2 k-Dominant Skyline Query Processing
Chan, et al. introduce k-dominant skyline query 6). They proposed three algo-

rithms, namely, One-Scan Algorithm (OSA), Two-Scan Algorithm (TSA), and
Sorted Retrieval Algorithm (SRA). OSA uses the property that a k-dominant
skyline objects cannot be worse than any skyline object on more than k dimen-
sions. This algorithm maintains the skyline objects in a buffer during the scan
of the dataset and uses them to prune away objects that are k-dominated. TSA
retrieves a candidate set of dominant skyline objects in the first scan by compar-
ing every object with a set of candidates. The second scan verifies whether these
objects are truly dominant skyline objects or not. This method turns out to be
much more efficient than the one-scan method. A theoretical analysis is provided
to show the reason for its superiority. The third algorithm, SRA is motivated by
the rank aggregation algorithm proposed by Fagin, et al., which pre-sorts data
objects separately according to each dimension and then merges these ranked
lists 9).

Another study on computing k-dominant skyline is k-ZSearch proposed by
Lee, et al. 10). They introduced a concept called filter-and-reexamine approach.
In the filtering phase, it remove all k-dominated objects and retain possible sky-
line candidates, which may contain false hits. In the reexamination phase, all
candidates are reexamined to eliminate false hits.

For any static dataset in case of insertions and deletions the k-dominant skyline
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result should be updated accordingly. However, in a dynamic dataset insertions
and deletions are very frequent and the above schemes 6),10) are not efficient to
solve the frequent update problem. Because they need to recompute k-dominant
skyline result from scratch. To overcome frequent update problem our proposed
divide and conquer based sort-filtering method localizes the side effect of updates
and recomputes the k-dominant skyline query result efficiently.

A recent algorithm called CoSMuQ can compute continuous k-dominant sky-
line 11). It divides the whole dataset space into pairs of subspaces and maintains
grids for each subspace to compute subspace skyline. The k-dominant skyline
is obtained by the union of the subspaces skylines. However, CoSMuQ suffers
from maintenance problem. For any insertion or deletion, it needs to update all
subspaces to compute k-dominant skyline, i.e., it fails to localize the side effect of
updates. Moreover, in high dimensional space, it needs to consider huge number
of subspaces. However, our proposed method do not divides the data space into
subspaces, it divides the large cardinality dataset into smaller segments. While
an update occur in any segment, it may or may not changes k-dominant skyline
result of that segment. If the update has effect on the segmented k-dominant
skyline result, then our method only updates the result of that segment and do
not need to update other segments results to recompute k-dominant skyline.

Recently, more aspects of skyline computation have been explored. Chan,
et al. introduce the concept of skyline frequency to facilitate skyline retrieval
in high-dimensional spaces 12). Tao, et al. discuss skyline queries in arbitrary
subspaces 13). There exist more work addressing spatial skyline 14),15), skylines on
partially-ordered attributes 16), and reverse skyline 17).

3. Preliminaries

This section discusses the k-dominant skyline problems and associated proper-
ties.

Assume there is an n-dimensional database DB and D1,D2, · · · ,Dn be the n

attributes of DB. Let O1, O2, · · ·, Or be r objects (tuples) of DB. We use Oi.Dj

to denote the j-th dimension value of Oi.
3.1 k-Dominance
An object Oi is said to dominate another object Oj , which we denote as Oi ≤

Oj , if Oi.Ds ≤ Oj .Ds for all dimensions Ds (s = 1, · · · , n) and Oi.Dt < Oj .Dt

for at least one dimension Dt (1 ≤ t ≤ n). We call such Oi as dominant object
and such Oj as dominated object between Oi and Oj .

By contrast, an object Oi is said to k-dominate another object Oj , denoted as
Oi ≤k Oj , if Oi.Ds ≤ Oj .Ds in k dimensions among n dimensions and Oi.Dt <

Oj .Dt in one dimension among the k dimensions. We call such Oi as k-dominant
object and such Oj as k-dominated object between Oi and Oj .

An object Oi is said to have δ-domination power if there are δ dimensions in
which Oi is better than or equal to all other objects of DB.

3.2 k-Dominant Skyline
An object Oi ∈ DB is said to be a skyline object of DB if Oi is not dominated

by any other object in DB. Similarly, an object Oi ∈ DB is said to be a k-
dominant skyline object of DB if Oi is not k-dominated by any other object in
DB. We denote a set of all k-dominant skyline objects in DB as Skyk(DB).
Note that objects that have k-domination power must be k-dominant skyline
objects but not vice versa.

3.3 A Priori Property
A k-dominant object has the following a priori property.
Theorem 1 Any object in Skyk−1(DB) must be an object in Skyk(DB) for

any k such that 1 < k ≤ n. Any object that is not in Skyk(DB) cannot be an
object in Skyk−1(DB) for any k such that 1 < k ≤ n.

Proof: Based on the definition, a (k − 1)-dominant object Oi is not (k − 1)-
dominated by any other object in DB. It implies that Oi is not k-dominated by
any other object. Therefore, we can say Oi is a k-dominant object. Similarly,
if an object Oj is k-dominated by another object, it must be (k − 1)-dominated
by the object. Therefore, any k-dominated object cannot be a (k − 1)-dominant
object. ♦

The conventional skyline is the k-dominant skyline where k = n. If we decrease
k, more objects tend to be k-dominated by other objects. As a result, we can
reduce the number of k-dominant skyline objects. Using above properties, we
can compute Skyk−1(DB) from Skyk(DB) efficiently. For example, O1, O2,
O11, and O12 of Table 1 are not in Sky6(DB) because they are 6-dominated by
O4 and O8. Therefore, they cannot be a candidate of k-dominant skyline object
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for k < 6. We can prune such non-skyline objects for further procedure of the
k-dominant query. If we consider 5-dominant query, O3, O6, O7, O9, and O10

are 5-dominated objects. Therefore, we can prune all of those nine objects in
4-dominant query computation. Thus, by decreasing k, more dominated objects
can be pruned away.

4. k-Dominant Skyline Algorithm

In this section, we present our algorithm for computing k-dominant skyline
objects in n-dimensional database DB and how to maintain the result when
an update occurs. In order to handle updates efficiently, we adopt a divide and
conquer strategy in k-dominant skyline computation. First of all, we horizontally
partitioned DB into m segments S1, S2, · · · , Sm, i.e., DB = S1 ∪ S2 ∪ · · · ∪ Sm.
We compute intermediate skyline for each segment. We denote a set of all skyline
objects in Sl(1 ≤ l ≤ m) as Skyn(Sl). We conquer those m intermediate results,
i.e., Skyn(Sl)(1 ≤ l ≤ m) to compute Skyk(DB).

We use a filter based algorithm to compute Skyk(DB), efficiently, it consist
of two parts. One is sorting by domination power, which is in Section 4.1, and
another is k-dominant skyline calculation, which is in Section 4.2. In Section 4.3,
we discuss the k-dominant skyline maintenance problem when an update occurs
in the dataset.

4.1 Domination Power Calculation
Objects whose sum of all their dimension values is small are likely to domi-

nate other objects, while objects whose sum is large are likely to be dominated.
Chomicki, et al. 4) proposed an efficient algorithm that sort the whole tuples (ob-
jects) in ascending order of the sum of all dimension values. By using the ordered
tuples, we can eliminate some of non-skyline objects easily. Chan, et al. used this
ordered tuples in their OSA algorithm for k-dominant query 6). However, this or-
dered tuples is not effective for k-dominant query computation especially when
values of each attribute is not normalized. For example, assume Oi = (3, 2, 3)
and Oj = (7, 1, 2) are two objects in 3D space. Although Oi has smaller sum
than Oj , Oi does not 2-dominant of Oj . Instead, Oi is 2-dominated by Oj .

In order to prune unnecessary objects efficiently in the k-dominant skyline
computation, we compute domination power of each object. An object is said to

Table 2 Segmented dataset1.

Object D1 D2 D3 D4 D5 D6 Sum
O4 3 3 4 5 1 2 18
O3 1 2 3 4 5 5 20
O2 7 6 5 6 3 2 29
O1 7 7 4 5 4 2 29

Table 3 Segmented dataset2.

Object D1 D2 D3 D4 D5 D6 Sum
O8 1 1 6 3 2 1 14
O6 2 5 2 3 3 4 19
O5 4 4 1 2 6 3 20
O7 3 2 3 2 6 5 21

have δ-domination power if there are δ minimal values in which it is better or
equal to all other objects of DB. We sort objects in descending order by their
values of domination power (δ). If more than one objects have same domination
power then sort those objects in ascending order of the sum value. This order
reflects how likely to k-dominate other objects. Higher objects in the sorted
sequence are likely to dominate other objects. Thus this preprocessing helps to
reduce the computational cost of k-dominant skyline. However, sometimes, lower
object can k-dominate higher object.

4.2 k-Dominant Skyline Calculation
For each segment Sl(1 ≤ l ≤ m), we first compute Skyn(Sl), which is conven-

tional skyline objects in Sl, by SFS method proposed in Ref. 4). After computing
all Skyn(Sl), results are send to the coordinator. The coordinator computes
Skyk(DB) from m intermediate results.

Assume there is a database as in Table 1 and we divide the database into
three segments, say S1, S2, and S3. The segments sorted by sum are shown
in Tables 2, 3, and 4. In the example, the underlined objects in Tables 2, 3,
and 4 are Sky6(S1) = {O4, O3}, Sky6(S2) = {O8, O6, O5, O7}, and Sky6(S3) =
{O10, O9, O11}, respectively. Remember that we can avoid segmentation and
Sky6(Sl) computation procedure if no update is necessary.

Next, we compute k-dominant skyline of DB, i.e., Skyk(DB). We first make an
union set of Skyn(Sl) (1 ≤ l ≤ m) and sort the union set by domination power
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Table 4 Segmented dataset3.

Object D1 D2 D3 D4 D5 D6 Sum
O10 2 6 4 5 1 3 21
O9 5 6 4 3 3 1 22
O11 1 2 6 5 4 4 22
O12 2 3 6 5 8 4 28

Table 5 Union of intermediate skyline, DB′.
Object D1 D2 D3 D4 D5 D6 DP Sum

O8 1 1 6 3 2 1 3 14
O5 4 4 1 2 6 3 2 20
O4 3 3 4 5 1 2 1 18
O3 1 2 3 4 5 5 1 20
O7 3 2 3 2 6 5 1 21
O10 2 6 4 5 1 3 1 21
O9 5 6 4 3 3 1 1 22
O11 1 2 6 5 4 4 1 22
O6 2 5 2 3 3 4 0 19

and the sum value. Let DB′ be the sorted object sequence of the union set.
Note that an object in Skyk(DB) must be in this union set. Thus, Skyk(DB′)
and Skyk(DB) represent the same k-dominant objects set. Moreover, the sorted
sequence roughly reflects the importance of objects and our method can progres-
sively output the k-dominant objects based on the sequence.

Table 5 is the example of sorted database DB′. In the sorted database, object
O8 has the highest domination power 3. Note that object O8 dominates all
objects lie below it in three attributes D1,D2, and D6.

Algorithm 1 shows our Sort-Filtering algorithm with domination power ap-
proach. In the first scan of DB′ (steps 3 to 14), a set of candidate k-dominant
skyline objects, Skyk(DB′) is computed progressively by comparing each ob-
ject O ∈ DB′ against the computed objects in Skyk(DB′). If an object is
k-dominated then it is removed from Skyk(DB′). During this scan we also re-
moved some non-skyline objects to non-Skyn(DB′), if they are all dominated by
Skyk(DB′) objects. To eliminate the false positives produced by the first scan,
a second scan of DB′ (step 15 to 18) is necessary. During the second scan we
can exclude all Skyk(DB′) as well as non-skyline objects for further k-dominant
checking.

Algorithm 1 Sort-Filter (DB′, k)

1. Sort DB′ by domination power and sum
2. Initialize Skyk(DB′) = ∅ and non-Skyn(DB′) = ∅
3. for each object O ∈ DB′ do
4. initialize isDominant = true
5. for each object O′ ∈ Skyk(DB′) do
6. if (O′ n-dominates O) then
7. add O in non-Skyn(DB′)
8. if (O′ k-dominates O) then
9. isDominant = false
10. break
11. if (O k-dominates O′) then
12. remove O′ from Skyk(DB′)
13. if (isDominant) then
14. add O in Skyk(DB′)
15. for each object O ∈ DB′ do
16. for each object O′ ∈ Skyk(DB′), do
17. if ((O k-dominates O′) and ((O′ �= O) or (O′ /∈ non-Skyn(DB′))) then
18. remove O′ from Skyk(DB′)
19. return Skyk(DB′)

From Table 5, at the end of first scan we can see that Sky5(DB′) =
{O8, O5, O4, O7} and non-Sky6(DB′) = {O11}. After the completion of the sec-
ond scan, we obtain Sky5(DB′) = {O8, O5, O4} as a 5-dominant result. Because
objects O7 is 5-dominated by non-k-dominant object O3. Next, using Sky5(DB′)
objects, we get Sky4(DB′) = {O8}. Notice that without applying δ-domination
power sort 5-dominant skyline computation for DB′ takes 19 comparisons. How-
ever, if we apply δ-domination power sort then it takes 15 comparisons.

4.3 k-Dominant Skyline Maintenance
The proposed k-dominant skyline algorithm described above computes the

Skyk(DB) from scratch. In this subsection, we discuss the maintenance problem
of Skyk(DB) after an update (insertion/deletion) is occurred in a segment Sl

for l ∈ [1,m]. Maintenance of Skyn(Sl) consists of two operations: (i) checking
whether an updated object is dominated by the current Skyn(Sl) and (ii) retriev-
ing the objects that are dominated by the recently deleted skyline object, since
only these objects are candidate for entering into Skyn(Sl). We can perform the
second task efficiently by utilizing the following observation.
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Algorithm 2 Skyn(Sl) Maintenance framework

1. Input: Sl, skyline Skyn(Sl) ⊆ Sl, inserting object OI , deleting object OD

2. if OI not dominated by current Skyn(Sl) then
3. Add OI in Skyn(Sl) and remove any dominated objects from Skyn(Sl)
4. end if
5. Insert OI in Sl

6. if OD is in current Skyn(Sl) then
7. Find objects in Skyn(Sl) dominated by OD and use them to mend Skyn(Sl)
8. end if
9. Delete OD from Sl

Lemma 1: Assume O1.Ds ≤ O2.Ds for all dimensions Ds (s = 1, · · · , n) for
O1, O2 ∈ Sl(1 ≤ l ≤ m). If O1 is not deleted from Sl, O2 will never be in the
skyline of Sl.

Proof: Since O2 is n-dominated by O1, it is dominated by O1 until deletion
of O1. Therefore, while O2 is in the Sl, there will be at least one object, namely
O1, that dominates it and consequently cannot become a Skyn(Sl). ♦

The lemma implies that a significant number of objects in each Sl is irrelevant
for the skyline maintenance task, since they can never become part of Skyn(Sl).
For example in Table 2, the skyline objects for this segment, S1 is {O4, O3}.
Objects O2 and O1 are not in skyline, because both are n-dominated by O4.
Thus, O2 and O1 are irrelevant objects for maintaining skyline of S1 while O4 is
in S1. Algorithm 2 summarizes the high level strategy that is employed in order
to keep Skyn(Sl) up to date. Notice that Skyn(Sl) is a subset of Sl.

Thanks to the divide and conquer strategy, we can localize the side effect of an
update and can compute Skyk(DB) efficiently.

Lemma 2: Assume O1.Ds ≤ O2.Ds in k dimensions among n dimensions for
O1, O2 ∈ Sl(1 ≤ l ≤ m). If O1 is not deleted from Sl, O2 will never be in the
k-dominant skyline of DB.

Proof: Since O2 is n-dominated by O1, it will also k-dominated by O1 because
(k ≤ n). Therefore, while O2 ∈ Sl, there will be at least one object, namely O1,
that k-dominate it and consequently cannot become a k-dominant skyline. ♦

The lemma implies that only Skyn(Sl) objects are relevant for the k-dominant
skyline maintenance task, since according to theorem 1 other objects can never
become part of Skyk(DB). Because they are already n-dominated by Skyn(Sl)

objects.
Assume that an object O is inserted into Sl. We scan objects in Skyn(Sl) and

check k-dominance with O. If Skyn(Sl) is not modified by the insertion, we don’t
have to modify Skyk(DB). Otherwise, we have to update Skyk(DB) by using
modified Skyn(Sl) as follows:
( 1 ) If no object in Skyn(Sl) is discarded, which means O is added into Skyn(Sl)

as well as DB′, then
a) At first scan objects in Skyk(DB) to check k-dominance with O. i) If O

is k-dominated and there is no change in Skyk(DB) then the maintenance
is completed. ii) If O is k-dominated and change occurs in Skyk(DB) then
update Skyk(DB).
b) If O is not k-dominated by any object in Skyk(DB) then check k-
dominance with {DB′−Skyk(DB)}. i) If O is k-dominated and no change
in Skyk(DB) then the maintenance is completed. ii) If O is k-dominated
but change occurs in Skyk(DB) then update Skyk(DB).
c) If O is not k-dominated by any object in DB′ and no change in
Skyk(DB) then insert O into Skyk(DB).
d) If O is not k-dominated by any object in DB′ but change occurs in
Skyk(DB) then update Skyk(DB).

( 2 ) If any of Skyn(Sl) is discarded after the insertion, we recompute Skyk(DB)
from updated Skyn(Sl).

Current k-dominant skyline objects of DB are Sky5(DB) = {O4, O5, O8},
Sky4(DB) = {O8}, and {DB′ − Skyk(DB)} = {O3, O6, O7, O9, O10, O11}. If
we insert object O13 = (6, 6, 6, 6, 6, 6) into S1. By scanning Skyn(S1), we can
find that the insertion does not modify Skyn(S1). Therefore, we immediately
complete the maintenance of Skyk(DB). If we insert O14 = (6, 6, 6, 6, 6, 1) into
S1, it becomes a Skyn(S1). In this case, we scan each object in Sky5(DB) =
{O4, O5, O8} to check k-dominance with O14. After the domination checking, we
can find that O14 is 5-dominated by O8, then we add it into {DB′ −Skyk(DB)}
= {O3, O6, O7, O9, O10, O11, O14} and the maintenance is completed. If we insert
O15 = (2, 2, 3, 4, 3, 2) into S1, it also becomes a Skyn(S1). After domination
checking with Sky5(DB) = {O4, O5, O8}, O15 is 5-dominated by O8 and also
becomes the 5-dominant of O4, then add O4 and O15 into {DB′−Skyk(DB)} =
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{O3, O4, O6, O7, O9, O10, O11, O14, O15}. Now that k-dominant skyline becomes
Sky5(DB) = {O8, O5} and Sky4(DB) = {O8}. If we insert O16 = (3, 3, 2, 5, 1, 3)
into S1, then it is in Skyn(S1). After domination checking with Sky5(DB) =
{O5, O8}, O16 is not 5-dominated and can’t becomes the 5-dominant of any ob-
ject in Sky5(DB), then we check k-dominance of O16 with {DB′ − Skyk(DB)}.
After the checking, we find that it is 5-dominated by O4, then we add it into
{DB′−Skyk(DB)} = {O3, O4, O6, O7, O9, O10, O11, O14, O15, O16} and the main-
tenance is completed. Next, if we insert O17 = (3, 2, 3, 2, 6, 2) into S1, then
it is in Skyn(S1). After domination checking with Sky5(DB) = {O5, O8},
O17 is not 5-dominated by Sky5(DB) but becomes the 5-dominant of object
O5, then we check k-dominance of O17 with {DB′ − Skyk(DB)}. We find
that it is 5-dominated by O15, add both objects into {DB′ − Skyk(DB)} =
{O3, O4, O5, O6, O7, O9, O10, O11, O14, O15, O16, O17} and now the Sky5(DB) be-
comes {O8}. If we insert O18 = (2, 2, 2, 2, 3, 3) into S1, then it is in Skyn(S1). Af-
ter domination checking with Sky5(DB) = {O8} as well as {DB′ − Skyk(DB)},
O18 is not 5-dominated. Then we add it into Sky5(DB) and Sky5(DB) be-
comes {O8, O18}. Next, if we insert O19 = (1, 2, 2, 6, 1, 3) into S1, it be-
comes a Skyn(S1). After domination checking with Sky5(DB) = {O8, O18}
as well as {DB′−Skyk(DB)}, O19 is not 5-dominated, but becomes 5-dominant
of O18. Then we have Sky5(DB) = {O8, O19} and {DB′ − Skyk(DB)} =
{O3, O4, O5, O6, O7, O9, O10, O11, O14, O15, O16, O17, O18}. If we insert O20 =
(1, 1, 1, 1, 1, 1) into S1, then discarding all other objects it becomes the member
of Skyn(S1). We recompute Skyk(DB) from the union set of Skyn(S1) = {O20},
Skyn(S2) = {O8, O6, O5, O7}, and Skyn(S3) = {O10, O9, O11}. We obtain k-
dominant skyline as Sky5(DB) = {O20} and Sky4(DB) = {O20}.

Next, assume that an object O is deleted from Sl. If the deleted object is not
in Skyn(Sl), we do not have to recompute Skyk(DB). Otherwise, we have to
recompute Skyk(DB) from the union set of m intermediate results, Skyn(Sl).

Consider the running example again. Assume Skyn(S1) = {O20}, Sky5(S2) =
{O6, O5, O8, O7}, Sky5(S3) = {O10, O9}, and k-dominant skyline as Sky5(DB) =
{O20}, Sky4(DB) = {O20} in the current database. If we delete O1 or
O2 from S1, we do not have to recompute Skyk(DB) and the maintenance
is completed. Again, if we delete O20 from S1, Skyn(S1) is modified from

{O20} to {O18, O19, O15, O16, O17, O4, O3, O14}. Now, we have to recompute
Skyk(DB). After the recompilation, Skyk(DB) becomes Sky5(DB) = {O8, O19}
and Sky4(DB) = {O8}.

5. Performance Evaluation

We conduct a series of experiments to evaluate the effectiveness and efficiency
of the proposed method. In lack of techniques dealing directly with the problem
of maintaining k-dominant skyline in this paper, we compare our method against
TSA, which was the most efficient k-dominant skyline search algorithm proposed
in Ref. 6). To handle updates, we adapt a variant of the TSA called ATSA
(Adaptive Two-Scan Algorithm). Let n be the total number of objects in DB.
ATSA takes O(n2) to compute all k-dominant objects from scratch. If an object
is inserted in the DB, ATSA has to perform k-domination check of the inserted
object against all objects. Therefore, for each insertion ATSA takes O(n). If
an object is deleted from the DB, ATSA has to recomputed entire k-dominant
skyline objects because some objects that are not in the current k-dominant
skyline objects may be “promoted” as k-dominant skyline objects. Therefore,
for each deletion ATSA requires O(n2) time.

Though the time complexity of our proposed method is substantially the same,
we can drastically reduce comparisons for k-dominant skyline computation by
the segmentation and localization. Let m be the total number of segment. The
proposed method takes O(n/m) to compute each local skyline objects. Let n′

be the total number of objects in DB′, where DB′ is the union set of all local
skyline objects. We compute k-dominant skyline objects from n′ objects, which
takes O(n′2). We can expect that n′ is much smaller than n. For each inser-
tion, proposed method takes O(n/m) time to perform k-domination check, if the
inserted object /∈ the local skyline. Otherwise, it takes O(n′) time to perform k-
domination check, if the inserted object is in the local skyline. For each deletion,
if the deleted object is not in the local skyline then the proposed method takes
O(1). Otherwise, it takes O(n′2). Results of all experiments support our claim
that we can reduce the number of comparisons drastically.

We conduct simulation experiments on a PC running on MS Windows XP
professional. The PC has an Intel(R) Core2 Duo 2 GHz CPU and 3 GB main
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memory. All experiments were coded in Java J2SE V6.0. Each experiment
is repeated three times and the average result is considered for performance
evaluation.

5.1 Performance on Synthetic Datasets
As benchmark databases, we use the databases proposed in Ref. 2). Objects

are generated using one of the following three value distributions:
Anti-Correlated: an anti-correlated database represents an environment in
which, if an object has a small coordinate on some dimension, it tends to have a
large coordinate on at least another dimension. As a result, the total number of
non-dominating objects of an anti-correlated database is typically quite large.
Correlated: a correlated database represents an environment in which objects
with large coordinate in one dimension are also have large coordinate in the other
dimensions. In a correlated database, few objects dominate many other objects.
Independent: for this type of database, all attribute values are generated in-
dependently using uniform distribution. Under this distribution, the total num-
ber of non-dominating objects is between that of the correlated and the anti-
correlated databases.

The generation of the synthetic datasets is controlled by three parameters, n,
“Size”, and “Dist”, where “Size” is the total number of objects in the dataset and
“Dist” can be the any of the three distributions. In addition, we have generated
smaller synthetic datasets for all insertion experiments. For example to conduct
insertion experiment on 100 k synthetic dataset, we have also generated additional
10 k dataset. As for deletion experiments, we choose the deleted objects randomly
from the experimental dataset. The number of insertions and deletions are equal
for any update experiments. Unless otherwise stated, we use the following setting
in our study: data cardinality to 100 k, m to 10, and the data distribution to
anti-correlated.

Some of updates change the result of k-dominant skyline query and some of
updates do not. In order to grasp the probability, we conduct an experiment to
count how many updates change the result of k-dominant skyline query. Table 6
shows the result for all type datasets. The second row of Table 6, represents that
among 1,000 insertions only 270 insertions have the effect on the k-dominant
skyline result for anti-correlated dataset. For this experiment, we set data car-

Table 6 Number of changes in processing insertion & deletion.

#Update Anti-Correlated Correlated Independent

#Changes #Changes #Changes #Changes #Changes #Changes
by Ins. by Del. by Ins. by Del. by Ins. by Del.

1 k 113 132 42 56 78 83
2 k 270 241 57 63 150 178
3 k 371 415 69 87 230 281
4 k 483 574 94 118 287 370
5 k 608 669 141 170 363 397

Table 7 Comparisons reduction.

Data Anti-Correlated Correlated Independent

Size(k) #Comp. #Comp. RR #Comp. #Comp. RR #Comp. #Comp. RR
by by (%) by by (%) by by (%)

ATSA(k) DCSA(k) ATSA(k) DCSA(k) ATSA(k) DCSA(k)
100 15,276 10,540 31 734 431 41 14,255 9,891 31
200 28,920 21,275 26 1,597 884 45 26,015 18,601 29
300 48,394 33,977 30 2,391 1,445 40 41,383 29,816 28
400 64,078 49,245 23 3,178 1,962 38 61,518 43,283 30
500 66,480 50,310 24 3,936 2,507 36 69,606 50,991 27

dinality to 100 k, m to 10, n to 7, and k to 6.
In the following sections, we will refer our proposed Divide and Conquer based

Sort-Filtering method, as DCSF . To study the potential advantages of δ-
domination power on sort by sum, we evaluate comparisons of DCSF against
ATSA and compute the reduction rate. The reduction rate is defined as

ReductionRate, (RR) =
(

1 − Comp.byDCSF

Comp.byATSA

)
× 100; (1)

where Comp. by DCSF and Comp. by ATSA is the summation of all pairwise
comparisons to compute k-dominant skyline by DCSF and ATSA respectively.
To be a fair comparison, we do not apply segmentation process to DCSF . We
set n to 7, k to 6, and vary data cardinality from 100 k to 500 k. From Table 7
we notice that the number of comparison of DCSF is smaller than that of ATSA
and the reduction rate varies from 23% to 45%.

Next, we evaluate performances of DCSF against ATSA and examine the effect
of cardinality, dimensionality, and segmentation. In each experiment, we evaluate
total time to compute k-dominant skyline. Then, we evaluate the performance
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Fig. 2 k-dom. Skyline computation for different datasize.

Fig. 3 Update performance for different datasize.

for handling updates. Similar to most of the related work in the literature, we
employ the elapsed time as the performance metric.

5.1.1 Effect of Cardinality
For this experiment, we vary dataset cardinality ranges from 100 k to 500 k and

set the value of n to 7 and k to 6.
Figure 2 (a), (b), and (c) shows the time to compute k-dominant skyline. For

all distributions, the time of proposed method is better than ATSA and it is
increases if the data cardinality increases.

Figure 3 (a), (b), and (c) shows the time to maintain k-dominant skyline
for update ranges from 1% to 5%. In the update experiments, 1% update for
100 k database implies that there are 500 insertions and 500 deletions (total 1 k
updates) occurred in the database. The time is the sum of the maintenance time
for each update. The result shows that if the update ratio and data cardinality
increases the maintenance time also increases. Even though, the time is much
smaller than that of ATSA.

Fig. 4 k-dom. Skyline computation for different dimension.

Fig. 5 Update performance for different dimension.

5.1.2 Effect of Dimensionality
For this experiment, we vary dataset dimensionality n ranges from 3 to 9 and

k from 2 to 8.
Figure 4 (a), (b), and (c) represents the effect of dimensionality. For all distri-

butions, the response time of the proposed method is better than ATSA approach
and it is increases if the data dimensionality n increases. This is because by in-
creasing the number of dimensions, the probability that an object dominates
another one is reduced significantly.

Figure 5 (a), (b), and (c) shows the update performance. The result shows
that if the dimensionality and the update ratio increase the time grows steadily,
which is much less than that of ATSA.

5.1.3 Effect of Segmentation
In this experiment, we examine the effect of the number of segments, m. We

fix the dimension n to 9, k to 8, and vary m from 5 to 25.
Figure 6 (a), (b), and (c) shows the time to compute k-dominant skyline. The
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Fig. 6 k-dom. Skyline computation for different segmentation.

Fig. 7 Update performance for different segmentation.

proposed method is better than ATSA for m in all distributions. However, if
the number of segmentation is too small or too large then the performance can
become slower. This is because for small m sometimes DCSF fails to take the
advantage of update effect localization. Again for large m it can localize the
update effect but the k-dominant skyline changes frequency increases as a result
the performance becomes slower.

Figure 7 (a), (b), and (c) shows the update performance. The result shows
that if the update ratio and data segmentation increases the response time of
the proposed method becomes better. This is because for large m the size of
each segmented k-dominant skyline decreases, as a result, DCSF can localize
side effect of an update into a smaller segment.

5.2 Performance on Real Datasets
To evaluate the performance for real dataset, we used NBA and FUEL datasets.

Those are extracted from www.nba.com and www.fueleconomy.gov, respectively.
NBA contains 17 k 13-dimensional data objects, each of which corresponds to the

Fig. 8 Experiments on NBA dataset.

statistics of an NBA player’s performance in 13 aspects (such as points scored,
rebounds, assists, etc). FUEL is 24 k 6-dimensional objects, in which each object
stands for the performance of a vehicle (such as mileage per gallon of gasoline in
city and highway, etc.).

5.2.1 Experiments on NBA dataset
We perform four experiments on NBA dataset and fix the default value of m

to 8. In the first experiment, we study the effect of dimensionality when n varies
from 5 to 13 and k from 4 to 12. Figure 8 (a) shows the result. NBA dataset
exhibits similar result to synthetic dataset, if the number of dimension increases
the performance of both algorithms becomes slower. Figure 8 (a) represents that
proposed method is faster than ATSA. In the second experiment, we study the
effect of segmentation. We vary m from 2 to 16. This experiment consider all
aspect of NBA player’s and set k to 12. Figure 8 (b) shows that the number
of segmentation increases the performance of DCSF increases, but no change in
the performance of ATSA because it does not consider any segmentation. In
the next experiment, we study the effect of update. For this experiment, we
divide the NBA dataset into two set. One set (16 k) is used for k-dominant
skyline computation and the other set (1 k) is used for update purpose. The
update ratio varies from 1% to 5%. Figure 8 (c) shows the results. There exist
significant difference on the performance of both methods and DCSF is 10 times
faster than ATSA.

5.2.2 Experiments on FUEL dataset
For FUEL dataset, we perform similar experiments like NBA dataset. We fix

the default value for m to 8. For the first experiment, n varies from 3 to 6 and
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Fig. 9 Experiments on FUEL dataset.

k varies from 2 to 5. Result is shown in Fig. 9 (a). In the second experiment, m

varies from 2 to 12 and we set k to 5. Figure 9 (b) shows the result. In the final
experiment, we study the update effect. For this experiment, we divide the NBA
dataset into two set. One set (20 k) is used for k-dominant skyline computation
and the other set (4 k) is used for update purpose. Figure 9 (c) shows the result.
For all of these experiments with FUEL dataset, we obtain similar result like
NBA dataset that represents the superiority of DCSF method against ATSA.

6. Conclusion

In this paper, we consider k-dominant skyline query problem and present a
method for computing and maintaining the query result. By applying a di-
vide and conquer strategy, we can localize the update effect and recompute the
k-dominant skyline query result efficiently. Using real datasets and synthetic
datasets, we demonstrate the efficiency and scalability of our proposed method.
Intensive experiments show the superiority of the proposed method against the
ATSA method.

Though the proposed methods increases the performance of k-dominant sky-
line computation in most of the cases, the performance of k-dominant skyline
computation is not sufficiently small if the number of segmentation is too small
or too large. To find proper guide for choosing the right parameter values, such
as the number of segmentation, is an open problem.
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