
IPSJ SIG Technical Report

Integrated Scheduling in a Real-Time Embedded Hypervisor

Daniel Sangorrin,†1 Shinya Honda†1

and Hiroaki Takada†1

Real-Time hypervisors are useful to support the concurrent execution of a
general-purpose operating system (GPOS) and a real-time operating system
(RTOS) in isolation. However, the integrated nature of real-time embedded
systems requires a global approach to scheduling. This paper presents the
design and implementation of an integrated scheduling architecture for a real-
time hypervisor. The proposed approach makes it possible to mix the priority of
each activity in the system (i.e., RTOS and GPOS tasks and interrupt handlers)
from a global point of view. Furthermore, the implementation provides the
mechanisms to protect the RTOS activities from any potential misbehavior of
the activities in the GPOS.

1. Introduction

Several embedded markets are currently facing the challenge of consolidating

real-time applications and high-level information software (e.g., a web browser or

media player) into a single platform to reduce product costs1)–3). In order to de-

velop high-level information software efficiently, the use of a general-purpose op-

erating system (GPOS) and its libraries is generally essential. On the other hand,

most GPOS cannot satisfy the strict requirements imposed by real-time appli-

cations in terms of security, reliability and determinism2). For instance, security

holes are discovered continuously in GPOS such as Windows R© or GNU/Linux4).

For that reason, in 5) Nakajima et al. presented SafeG (Safety Gate), a reliable

hypervisor based on common embedded security hardware (ARM TrustZone R©6)),

which supports the concurrent execution of a real-time operating system (RTOS)

and a GPOS.

This paper extends the functionality of the SafeG hypervisor through an in-

tegrated scheduling architecture. The proposed architecture supports priority

†1 Graduate School of Information Science, Nagoya University

interleaving for each activity in the system (i.e., RTOS and GPOS tasks and

interrupt handlers) from a global point of view. It makes it possible to enhance

the responsiveness of the GPOS activities while preserving the timeliness of the

RTOS activities even in the presence of GPOS execution time overruns thanks

to the use of resource reservations.

The paper is organized as follows. Section 2 reviews, briefly, the architecture

and characteristics of SafeG, a dual embedded hypervisor based on the ARM

Trustzone technology. Section 3 describes the architecture for scheduling the two

guest operating systems in an integrated fashion. A prototype implementation

is described in Section 4. Section 5 compares the presented study with previous

work. Finally, Section 6 draws some conclusions and discusses future work.

2. SafeG hypervisor

The SafeG (Safety Gate) hypervisor was originally presented in 5) as a reliable

virtualization architecture to execute concurrently an RTOS and a GPOS (in

the current implementation TOPPERS/ASP and GNU/Linux are supported) on

an embedded single processor. The architecture takes advantage of the ARM

TrustZone technology6),7) which introduces the concept of Trust and Non-Trust

states. Trust state provides similar behavior to existing privileged and user mode

levels in ARM processors. On the other hand, code running under Non-Trust

state, even in privileged mode, cannot access memory space (devices included)

that was allocated for Trust state usage, nor can it execute certain instructions

that are considered critical.

In order to control the TrustZone state, a new mode, called Secure Monitor

mode, has been added to the processor. Switching between Trust and Non-

Trust state is performed under Security Monitor mode by SafeG with interrupts

disabled. The overall organization of the system is depicted in Figure 1. Spatial

isolation of the RTOS is supported by configuring resources (memory and devices)

used by the RTOS to be accessible only from Trust state. The remaining resources

are configured to be accessible both from Trust and Non-Trust state. Time

isolation of the RTOS activities is supported by carefully allocating the two types

of interrupt. FIQ interrupts are forwarded to the RTOS, while IRQ interrupts are

forwarded to the GPOS. In Trust state, GPOS interrupts are disabled so that the

1 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9



IPSJ SIG Technical Report

Fig. 1 SafeG: hypervisor based on ARM TrustZone

GPOS cannot affect the execution of the RTOS. For that reason, the GPOS can

only execute once the RTOS makes an explicit request, through a Secure Monitor

Call (SMC), to SafeG. On the other hand, during the GPOS execution, RTOS

interrupts are enabled so that the RTOS can recover the control of the processor

(e.g., through the interrupt associated to the RTOS system timer). TrustZone is

configured to prevent the GPOS side from disabling RTOS interrupts.

2.1 Idle scheduling problem

A virtualization architecture designed for real-time embedded systems must

provide a deterministic scheduling algorithm. Most real-time hypervisors sched-

ule the two operating systems as black boxes in a way that the GPOS is only

executed once the RTOS becomes idle8),9). This method allows the RTOS to

take precedence over the GPOS and thus preserve its determinism. However

not all RTOS activities require the same degree of responsiveness10), and some

GPOS applications and interrupt handlers, such as multimedia on mobile wireless

devices, require a certain quality of service11).

Figure 2 highlights the disadvantages of scheduling the GPOS as the idle

thread of the RTOS. In the figure, an interrupt request to the GPOS gets delayed

until all the processing at the RTOS is finished. In the worst case, the interrupt

Fig. 2 GPOS as idle task

request will be attended only after a hyper-period in the RTOS schedule. The

latency that can be achieved with this method may not be enough for certain

devices. The same situation can happen for the GPOS soft real-time tasks which

require a certain quality of service to work correctly.

In the first version of SafeG5), the GPOS was only executed once the RTOS

would release the processor. More in detail, the RTOS idle task was programmed

to call SafeG (using an SMC) in order to perform a switch to the GPOS. In

order to tackle the disadvantages of the idle approach, an integrated scheduling

approach is presented in the following section.

3. Integrated scheduling architecture

This section describes the integrated scheduling architecture aimed at providing

the mechanisms to configure the priority at which each activity in the system (i.e.,

interrupts and tasks) is executed on a global basis.

Figure 3 shows the overall organization of the system. Each group of GPOS

activities is represented by a certain LTASK (Latency Task) task in the RTOS.

An LTASK task can represent a single activity or a group of them and the number

of LTASK tasks is only limited by the total number of activities in the GPOS.

LTASK tasks are all executed under an aperiodic server policy with a configurable

priority, budget and period, except for the BTASK (Background Task) task which

is equivalent to the RTOS idle task. The body of each LTASK task consists of

a loop executing a world-switch request to SafeG. It is worth mentioning that

the presented architecture does not intend to modify the priority order at which

2 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9



IPSJ SIG Technical Report

Fig. 3 Latency Tasks for fine granularity

tasks and interrupts are executed inside the GPOS. Therefore, activities assigned

to a certain LTASK task must always execute at a higher priority range than

activities assigned to a lower priority LTASK task. In particular, if several GPOS

interrupts are assigned to different LTASK tasks they must be configured with

different hardware priorities as well. For the same reason, whenever the budget of

a certain LTASK task expires, the budget of the next LTASK task in decreasing

priority order will be inherited. In other words, the neat mapping between GPOS

activities and LTASK tasks depicted in Figure 3 only holds provided that the

GPOS activities do not overrun the budget assigned to them. Otherwise they

will steal budget that was originally assigned to an LTASK task representing

a group of activities at a lower priority range. Should the execution of groups

Fig. 4 LTASK manager activation

of activities be isolated from each other, the GPOS kernel must provide the

necessary mechanisms (e.g., resource reservations) not the hypervisor.

3.1 Activation of the LTASK tasks

The activation and deactivation of the LTASK tasks is controlled by the so-

called LTASK manager. The LTASK manager is a task in the RTOS that is

configured with priority higher than any of the LTASK tasks. Each time the

LTASK manager is awakened, it determines the GPOS activity that currently

has the highest priority, resumes the LTASK task corresponding to that activity

and suspends any LTASK task with higher priority. If the budget of the current

LTASK task expires, the budget of the next LTASK task in decreasing prior-

ity order is consumed. If all budgets are expired, the background task will be

executed instead.

3.2 Shared variables

The architecture makes use of two variables that are shared between the two

operating systems as depicted in Figure 4.

• The LTASK_#ID shared variable is written by the Latency manager and read

3 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9



IPSJ SIG Technical Report

Fig. 5 TrustZone Interrupt Controller configuration manager activation

by the GPOS kernel. It indicates the identifier of the LTASK task that currently

has the highest priority. It is used by the GPOS kernel at every scheduling de-

cision in order to determine whether a voluntary return to the RTOS should be

performed or not. For instance, if the kernel schedules a task that is assigned to

an LTASK task with a different identifier than the one indicated by LTASK_#ID

then, it returns the control back to the RTOS through SafeG.

• The NT_Prio shared variable is written by the GPOS kernel and read by the

Latency manager. It indicates the priority of the task that is currently running

in the GPOS. The LTASK manager reads this variable and the raw status

of the GPOS interrupts in order to determine which LTASK tasks should be

suspended and resumed.

3.3 GPOS interrupts flow

When a GPOS interrupt occurs, the Latency manager must be awakened to

activate the corresponding LTASK task. For that reason, GPOS interrupts are

temporarily handled in the RTOS before being forwarded to the GPOS. A method

to achieve that is to leverage the features provided by the TrustZone Interrupt

Controller (TZIC12)). Figure 5 shows a typical configuration of the TZIC, where

interrupt sources (INTSRC) can be configured to produce an FIQ request to the

RTOS or forwarded to the Generic Interrupt Controller (GIC) which produces

an IRQ request to the GPOS.

Steps (1) to (6) in Fig. 4 and Figure 6 show the execution flow when the

Latency manager is awakened because the RTOS is notified about the occurrence

of a GPOS interrupt. The GPOS interrupt is temporarily handled in the RTOS

Fig. 6 LTASK manager activation timeline

by the so-called Latency handler. The Latency handler forwards all interrupts

assigned to that interrupt’s group to the GPOS (Non-Trust world) as illustrated

in steps (1) to (2). Then, the Latency handler awakes the LTASK manager which

in turn resumes the LTASK task (e.g. LTASK #1) assigned to that interrupt

(steps (3) to (4)). When that LTASK task becomes the running task, it calls

SafeG in order to switch to the GPOS where the interrupt is served (steps (5) to

(6)).

3.4 GPOS interrupt voluntary return

Once the interrupt handler is finished, the GPOS may need to return the control

to the RTOS in order to conserve the remaining LTASK budget. Steps (7) to

(13) in Fig. 4 and Fig. 6 show the execution flow when the Latency manager is

awakened because the GPOS voluntarily returns the control back to the RTOS.

After the GPOS handler finished its execution in step (7), the GPOS kernel

schedules and dispatches a task. If that task belongs to a different group of

4 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9



IPSJ SIG Technical Report

activities, the kernel sends a notification to the RTOS through SafeG in the form

of an artificial interrupt that is handled by the Latency handler (steps (8) to (9)).

Similar to steps (3) to (7), the Latency handler awakes the Latency manager

which in turn resumes the LTASK task assigned to the task (e.g., LTASK #2)

in steps (10) to (13).

3.5 GPOS tasks voluntary return

The running task may change for a number of reasons: a new task with higher

priority arrives; a task is awaken; or the running task gets blocked, etc. When a

context switch is performed the architecture tracks the currently executing task in

the NT_Prio shared variable and determines whether a voluntary return is needed

or not. If the new task belongs to a group whose identifier is different from the

current LTASK_#ID, a voluntary return to the RTOS needs to be performed to

activate the corresponding LTASK task.

4. Implementation

This section explains details about an prototype implementation of the pre-

sented integrated scheduling architecture. Details about SafeG’s implementation

can be found in 5), 13). The architecture has been implemented on a PB1176JZF-

S board, equipped with a TrustZone-enabled ARM1176jzf processor at 210Mhz.

TOPPERS/ASP version 1.3.1 was used as the RTOS and the ARM Linux 2.6.33

kernel for the GPOS.

4.1 SafeG modifications

SafeG was extended with a new Secure Monitor Call (SMC). The new call

makes it possible to generate an exception in the other operating system as a

way to notify the occurrence of a certain event. The new call increased the size

of SafeG’s code by only 16 assembler lines. The same idea can be used to create

a more generic communication mechanism between the two operating systems

and is left for future research.

4.2 Linux kernel modifications

In order to support the voluntary return functionality described in Section 3,

the Linux kernel has been extended with a new module. The implemented module

includes some initialization code (e.g., shared variables initialization) and con-

tains the table to map task and interrupt priorities to LTASK group identifiers.

It also provides the so-called switch_hook function which decides whether a vol-

untary return is required or not and updates the shared variable NT_Prio. This

hook has been inserted in the Linux scheduler (sched.c) and the Linux interrupt

code (for ARM architecture) and it can be activated or deactivated from user

space (with root privileges) through a boolean value in the debugfs filesystem.

When the hook is deactivated, the behavior of the whole system resembles the

one of the system presented in 13). The total number of source code lines (in C

language) included in the current version of the voluntary return module is 121.

The module is quite independent from the Linux version. The main maintenance

difficulty may come from inserting the switch hook in the appropriate places

in the Linux kernel. Fortunately, the ftrace kernel tracer already provides an

interface to capture any scheduling event.

4.3 TOPPERS/ASP modifications

The TOPPERS project14) follows the ITRON standard for real-time operating

systems to produce high quality open-source software for embedded systems.

ASP (Advanced Standard Profile kernel) is one of TOPPERS real-time kernels

and is based on the µITRON4.015) specification with several extensions. The

implementation of the integrated scheduling framework for the Trust side has

been accomplished in user space by using the µITRON4.0 interface provided by

ASP. The ASP kernel was only modified to provide µITRON4.0 overrun handlers,

which were used to build deferrable servers for the LTASK tasks.

4.4 Configuration and deployment tool

Since the number of LTASK tasks and their parameters (i.e., priority, budget,

period and group) will depend on the application, a configuration and deployment

tool has been created. Figure 7 shows the deployment flow of the system. First,

the application code for TOPPERS/ASP and Linux (user space or kernel space) is

designed, implemented and tested independently. Then, a graphical configuration

tool is used to specify the parameters of the LTASK tasks that are suitable to

schedule the whole system on a global basis. Task priorities are expressed by

positive values. For interrupts, priorities are expressed by negative values. The

configuration tool automatically generates the integrated scheduling code for the

two operating systems using a template and the configured values. The code

is then compiled and linked to ASP and the Linux kernel producing the final

5 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9



IPSJ SIG Technical Report

Fig. 7 Development flow

application.

5. Related work

In 11), a task grain scheduling algorithm for a virtualized embedded system

was presented. The proposed architecture used the L4-embedded microkernel

as a hypervisor running para-virtualized versions of Linux (Wombat) and TOP-

PERS/JSP (L4/TOPPERS). In order to implement task grain scheduling, each

of the guest operating systems notifies the priority of the running task to the

global scheduler (the L4 scheduler). Unfortunately, in that work the RTOS tasks

are not protected from possible misbehaviors of the GPOS tasks. For example,

it is not possible to detect an execution time overrun of a misbehaving GPOS

task with high priority, and therefore RTOS tasks with lower priority may miss

their deadlines, thus decreasing the reliability of the whole system. Compared to

that work, the approach presented in this paper provides a method to protect the

RTOS activities from the GPOS through the use of aperiodic servers. Further-

more, in addition to task-grained scheduling, integrated scheduling of the GPOS

interrupts is considered. Finally, the proposed approach does not require the hy-

pervisor to provide an scheduler since the RTOS scheduler is used instead. This

helps to improve the verifiability of the hypervisor and eliminates the overhead

in the priority notifications from the RTOS side.

6. Conclusions and future work

This paper introduced the design and implementation of a method to integrate

RTOS and GPOS activities on top of a real-time hypervisor based on common

embedded security hardware (ARM TrustZone R©). The proposed approach pro-

vides a way to configure the execution parameters of each activity in the system

from a global point of view. It makes it possible to provide a configurable quality

of service to the GPOS soft real-time activities while the reliability and timeliness

of the RTOS activities is preserved. A prototype implementation of the architec-

ture on the ARM1176jzf processor was also presented. The changes required on

the Linux kernel code were rather small.

As future work, an evaluation of the overhead and effectiveness of the proposed

approach is planned. An intercommunications system and a porting to new multi-

core TrustZone processors will be also explored in the near future.

References

1) Heiser, G.: The Role of Virtualization in Embedded Systems, 1st Workshop on
Isolation and Integration in Embedded Systems, Glasgow, UK, ACM SIGOPS, pp.
11–16 (2008).

2) Heiser, G.: Hypervisors for consumer electronics, CCNC’09: Proceedings of the
6th IEEE Conference on Consumer Communications and Networking Conference,
Piscataway, NJ, USA, IEEE Press, pp.614–618 (2009).

3) Hergenhan, A. and Heiser, G.: Operating Systems Technology for Converged
ECUs, 6th Embedded Security in Cars Conference (ESCAR), Hamburg, Germany,
ISITS (2008).

4) Kinebuchi, Y., Koshimae, H., Oikawa, S. and Nakajima, T.: Virtualization tech-
niques for embedded systems, Proceedings of the Work-in-Progress Session: the 12th
IEEE International Conference on Embedded and Real-Time Computing Systems

6 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9



IPSJ SIG Technical Report

and Applications, Sydney, Australia (2006).
5) Nakajima, K., Honda, S., Teshima, S. and Takada, H.: Enhancing Reliability in
Hybrid OS System with Security Hardware, The IEICE Transactions on Informa-
tion Systems, Vol.93, No.2, pp.75–85 (2010-02-01).

6) ARM Ltd.: ARM Security Technology. Building a Secure System using TrustZone
Technology, PRD29-GENC-009492C (2009).

7) ARM Ltd.: ARM1176JZF-S. Technical Reference Manual, DDI 0301G (2008).
8) Cereia, M.Bertolotti, I.: Asymmetric virtualisation for real-time systems, ISIE
2008, Cambridge, pp.1680 – 1685 (2008).

9) Yoo, S., Liu, Y., Hong, C.-H., Yoo, C. and Zhang, Y.: MobiVMM: a virtual machine
monitor for mobile phones, MobiVirt ’08: Proceedings of the First Workshop on
Virtualization in Mobile Computing, New York, NY, USA, ACM, pp.1–5 (2008).

10) Takada, H., Iiyama, S., Kindaichi, T. and Hachiya, S.: Linux on ITRON: A Hybrid
Operating System Architecture for Embedded Systems, SAINT-W ’02: Proceed-
ings of the 2002 Symposium on Applications and the Internet (SAINT) Workshops,
Washington, DC, USA, IEEE Computer Society, pp.4–7 (2002).

11) Kinebuchi, Y., Sugaya, M., Oikawa, S. and Nakajima, T.: Task Grain Scheduling
for Hypervisor-Based Embedded System, HPCC ’08: Proceedings of the 2008 10th
IEEE International Conference on High Performance Computing and Communica-
tions, Washington, DC, USA, IEEE Computer Society, pp.190–197 (2008).

12) ARM Ltd.: AMBA3 TrustZone Interrupt Controller (SP890) Technical Overview,
DTO 0013B (2008).

13) Sangorrin, D., Honda, S. and Takada, H.: Dual Operating System Architecture for
Real-Time Embedded Systems, Proceedings of the Sixth International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT
2010), Brussels, Belgium (2010).

14) TOPPERS: Toyohashi OPen Platform for Embedded Real-Time Systems. http:

//www.toppers.jp.
15) Takada, H. and Sakamura, K.: ”µITRON for small-scale embedded systems”, IEEE

Micro, vol. 15, pp. 46-54, Dec. 1995.

7 c© 2010 Information Processing Society of Japan

Vol.2010-EMB-18 No.2
2010/8/9


