
情報処理学会研究報告
IPSJSIG Technical Report

文字列ごとの情報フロー追跡手法のPHPへの実装と評価

都井紘†1 塩谷亮太†1

五島正裕†1 坂井修一†1

近年，クロス・サイト・スクリプティングや SQLインジェクションといった Web
アプリケーションの脆弱性を突いたインジェクション・アタックによる被害が深刻
化している．インジェクション・アタックを検出する方法として DTP(Dynamic Taint
Propagation)が研究されている．DTPでは，外部からの入力にテイント（汚染）をつ
け，演算の入力から出力に伝播させ，最後にテイントのついたデータが ’危険 ’な使
われ方をしないかチェックする．従来の DTPでは，命令間のデータの依存関係に基づ
いてテイント情報を伝播していたため，検出漏れと誤検出のトレードオフに陥り，伝
播精度が十分ではなかった．
そこで李らは，load/store命令のメモリアクセスから文字列操作を識別し，文字列か

ら文字列へテイント情報を伝播させる SWIFTを提案している．SWIFTはこのように
ローカルでない追跡を行うため，その伝播精度は従来の DTPより高いことが示され
ている．しかし，SWIFTはハードウェア上に実装するため普及のハードルが高い．
本稿では，SWIFTを Web用スクリプト言語として現在最も多く用いられている

PHP上に実装し，典型的な文字列操作を行うプログラム，および脆弱性の確認されて
いる Webアプリケーションにおいて正しくテイント情報を伝播することを確認した．

Implementation and Evaluation of String-Wise Information Flow
Tracking to PHP

HIROSHI TOI,†1 RYOTA SHIOYA ,†1 MASAHIRO GOSHIMA†1

and SHUICHI SAKAI †1

Nowadays, security of web applications faces a threat of script injection attacks, such as
Cross-site scripting(XSS), or SQL injection. DTP (Dynamic Taint Propagation) and DIFT
(Dynamic Information Flow Tracking) have been established as powerful techniques to de-
tect script injection attacks. However, current DTP/DIFT systems still suffer from trade-off
between false positives and negatives, because these systems propagate taint from source to
destination operands.

So Li et al. propose String-Wise Information Flow Tracking, SWIFT. SWIFT traces
memory access of a program execution, detects string access and distinguishes string oper-

ations from other memory access, and propagates taint information under string operations.
This makes SWIFT provide a better accuracy on detection of script injection attacks than
current DTP/DIFT systems. Since SWIFT concentrates on address traces of a target pro-
gram, it can be implemented both on interpreters of script languages and on processors.

In this paper, We implemented SWIFT to PHP, executed typical string operations and
made injection attacks to some real-world web applications with known vulnerabilities. As
a result, SWIFT on PHP shows a high precision in our experiments.

1. Introduction

Increase in web applications leads to increase in security incidents. The internet has become

the primary conduit for attack activities, and vulnerabilities of web applications are getting more

attentions. The attackers exploit diversified security vulnerabilities to accomplish a wide variety

of malicious tasks, such as steal of secret or personal information, making a profit, or just for fun.

In the past, most predominant attacks are ones to applications in binary code on the client, as

represented bybuffer overflowattacks. This kind of attacks, however, has been subsided. It is

possibly because most of them can be prevented byNX bit.

Instead of them, the most serious attacks in recent years arescript injection attacksto web

servers, such asdirectory traversal,Remote File Inclusion(RFI), Cross-site scripting(XSS), or

SQL injection. CVE reported vulnerabilities to script injection attacks have been increased sharply

in recent years3). This is probably due to proliferation of low-grade applications written by inex-

perienced developers, and ease of exploitation of the vulnerabilities.

DTP (Dynamic Taint Propagation) andDIFT (Dynamic Information low Tracking) are pro-

posed to prevent these attacks. The idea behind DTP and DIFT is to tag data from untrusted

sources astainted, propagate taint information and check tainted data.

Though DTP/DIFT are considered to have potential to root out script injection attacks, current

systems still suffer from tradeoff between false positives and negatives.

So li et al. proposed a technique namedString-Wise Information Flow Tracking , SWIFT.

They introduce a completely different approach from conventional systems. SWIFT observes the

memory access of the target program, detects string access from address trace, distinguish string

†1 東京大学大学院　情報理工学系研究科
GraduateSchool of Information Science and Technology, The University of Tokyo

1 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

operations from common memory access, and propagates taint through string operations from load

string to store string. Since SWIFT only concentrates on address traces of a target program, it can

be implemented both on interpreters of script languages and on processors. Li et al. proposed

SWIFT on processors, but it is hard for SWIFT to be familiarized.

In this paper, We implemented SWIFT to PHP and executed typical string operations. PHP is

widely used in the world as scripting language that is designed for server-side web development.

By implementing SWIFT to PHP, coverage is limited for PHP, but the highly accurate DTP can

be made in the range of taint-support PHP. And it is easy for SWIFT to be familiarized.

The rest of the paper is organized as follows. Section 2 reviews background knowledge for

script injection attacks. Section 3, 4 and 5 summarizes current DTP/DIFTs and taint propagation

algorithms. Then, section 6 explains SWIFT in detail. Section 7 and 8 explains how to SWIFT to

PHP and evaluation. Section 9 states the conclusion.

2. Script injection attacks

From Cross-Site Scripting to SQL injection, hackers have various techniques at their disposal

to attack Web applications. This section takes SQL injection as an example to explain how script

injection attacks occur.

SQL injection is a most popular attacks. It allows an attacker to access sensitive information

from a Web server’s database. Next we explain the mechanism of SQL injection by using the fol-

lowing example. A web page shows the price of a product asking the user the name of it through

a text box. The below code shows a PHP statement in the page
$cmd = SELECT price FROM prod WHERE

name=’$name’

The string the user entered in the text box has been stored in the variable$name. Concatenating

$nameand the constant strings, the statement produces the SQL command$cmd to send to the

SQL server.

In a usual case, for example, the user entered justruby for $name, the following code is pro-

duced as:
$cmd = SELECT price FROM prod WHERE

name=’ruby’

Then the database will return the price ofruby to client. If an attacker injects the string into

$nameby using the code like:

dummy’;
UPDATE prod SET price=0 WHERE name=’ruby

Thenfollowing SQL query will be produced.
$cmd = SELECT price FROM prod WHERE

name=’dummy’;
UPDATE prod SET price=0 WHERE name=’ruby’

As a result, the database will be updated against the programmer’s intention by the attacker.

As seen in this example, a script injection attack is performed by making the victim server in-

terpret the string including attack code written in script language. As for binary injection attack,

even if an attack binary is successfully injected, execution of injected binary can be easily prohib-

ited, e.g., by NX bit. As for script injection attack, however, interpretation of injected scripts itself

cannot be prohibited, because it is the main benefit in using scripts. This is the main difficulty of

script injection attack detections.

3. DTP and DIFT

The original inspiration of this area was given by thetaint modeof Perl. The main purpose was

to prevent script injection attacks especially to web applications1).

Since then, this kind of techniques have been supported by various programming language sys-

tems, such as PHP, Ruby, Java, C and its decendants5)–9),12). These language-level supports are

often referred to asDTP (Dynamic Taint Propagation).

On the other hand, Suh et al. applied Perl taint mode to a processor in order to detect injection

attacks to binary code, and named itDIFT (Dynamic Information Flow Tracking)11). Nowadays,

the name of DIFT is often used to refer to all such techniques on processors2).

Although the purpose of DIFT was to detect binary injection attacks, DIFT can also be used to

detect script injection attacks4). In this paper, we discuss DTPs and DIFTs in a unified viewpoint.

3.1 Advantage and disadvantage of DIFT

The key advantage of DIFT in script injection attack detection is the comprehensiveness. DTP

systems are implemented on language-level, so they are language-specific. For example, Perl

taint mode cannot be used for other languages such as PHP. But DIFT systems are not language-

specific. Therefore, DIFT provides a more comprehensive platform than DTP. And obviously

DIFT is preferable script injection attack detection than DTP if its accuracy is as high as DTP.

However, until now, for the present DIFT systems, the detection accuracy is considered as a

2 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

lower one than that of DTPs. Because DIFT could not utilize information of script or high-level

languages as a support on detection. In addition, not only the mass of instructions which are ex-

ecuted during interpreting the script provides no helps in information flow tracking, but also it

behave as noise.

The two facts are supposed as the main reasons which degrade the accuracy to detect attacks.

But, evaluation results show that DIFT could provide a accuracy class which is just the same

as DTP4). The reason is that the propagation algorithms of DTP/DIFT make more influence on

their accuracies than above factors and by using proper propagation algorithms DIFT could get a

good enough detection accuracy. In next section, we will explain this point of view by discussing

information flows in program execution and taint propagation algorithms in detail.

4. Current problem

Some Web applications use Base64 to obfuscate sensitive input. In Cubecart3.0.3, we could

find the code as below:

$redir = base64decode($GET[̈redir̈]);

After this base64decode(),$redir is not sanitized, and this can lead to a remote Cross-site script-

ing attack. For example, if a user creates and inputs a specially crafted URL like:

http://[victim]cc3/index.php?act=login&redir=L3NpdGUvZ
GVtby9jYzMvaW5kZXgucGhwP2FjdD12aWV3RG9jJmFtcDtkb2NJZD0x

And the base64encoded part of variable redir is

L3NpdGUvZGVtby9jYzMvaW5kZXgucGhwP2FjdD12aWV3RG9jJmFtcDtkb2NJZD0x

After base64decodefunction, it will generate a code like this:

/site/demo/cc3/index.php?act=viewDoc&docId=1

And when the code is executed, it will cause a remote Cross-site scripting.

Existing DTP/DIFTs don’t propagate taint through Base64, so they can’t detect the Cross-site

scripting mentioned above. In the rest of this section, we will explain why existing DTP/DIFTs

don’t propagate taint through Base64.

Base64 encoding procedure is as follows:

(1) 3 uncoded bytes (8*3=24bits) are converted into 4 numbers (6*4=24bits)

(2) 4 numbers are converted to their corresponding values by using a conversion table

Base64 decoding procedure is the reverse. The point is that Base64 uses table reference as con-

version. In general, table reference is like this:

$ostr = $table[$istr];

We can regard table reference as safe in usual cases, but if it is used as conversion, it is unsafe.

When thinking from the point of taint propagation, table reference falls into a trade-off. If we

regard table reference as safe, taint isn’t propagated from $istr to $ostr, and it produces security

hole. On the contrary, if we regard table reference as unsafe, taint is propagated from $istr to $ostr,

and it results in mass of false positives. Most existing DTP/DIFTs select the former, so they don’t

propagate taint through Base64.

5. Taint propagation algorithms

This section summarizes the algorithms of taint propagation. Firstly we summarize types of

information flow and their taint propagations. Next, subsection 5.2 describes non-propagation

policy, which is one of the most important factors of propagation algorithms.

5.1 Types of information flow and taint propagation

Information flow can be divided into data, address, and control flows.

Data flowis associated with direct data dependence. In the following sample code, there are direct

data dependences from the right to the left hand objects.
$o = $i; // $o depends on $i
$o = $i + $j; // $o depends on $i and $j

In this case, taintedness can simply be propagated from the right to the left hand objects.

Address flowis associated with indirect reference through addresses. In the following sample,$o

is dependent on$i (and$table):
$o = $table[$i]; // $o depends on $i

Control flow is associated with if-statement in high-level languages or conditional branches in

binary codes. In the following sample,$o is dependent on$i:
if ($i == ’ ’)

$o = ’+’; // $o depends on $i

As described before, control flow is more difficult to track than data and address flows. DTPs

3 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

can find the dependent range of the variables appeared in the condition of if statement because it

can see the block structure of the statement, which is explicitly specified in the source code.

On the other hand, it is very difficult for DIFTs to find that of a conditional branch. In order to

do so, DIFTs must find the join point of the conditional branch, which is not explicitly specified

in usual instruction-set architectures.

As far as we know, no DIFT can track control flows, and only a few DTP can track and propa-

gate taint along with control flows.

5.2 Non-propagation policies

The output of a realistic application program is always a response to user input. Thus, aperfect

DTP/DIFT, which can perfectly track all the kind of information flow described above, would

mark all the output as tainted. Such DTP/DIFT is useless. Therefore, thenon-propagation policy,

is as important as how to propagate taint in particular in control flows. But as far as we know, all

the current DTP/DIFTs define non-propagation policy on heuristics, such as aboutsanitizationor

table reference.

5.2.1 Sanitization

Most DTPs regard sanitized string as safe. Since sanitization is often performed by regular

expression match and replace in script languages, most DTPs untaint strings which experience it.

Some DTP untaint strings tested for the presence of particular (unsafe) characters. However, this

is a well-known security hole.

5.2.2 Table reference

Most DTPs regard the values obtained from hash tables or arrays as safe, and do not propagate

taint from the input to the output. Most script languages support hash table or array in such a form

as follows:
$ostr = $table[$istr];

Hash table retrieving is performed in the following manner:

(1) The input string is converted to a scalar index by a hash function.

(2) The chain indicated by the index is selected.

(3) Following the selected chain, the key string of one tuple in the chain is compared with the

input string after another. If a key string matches the input string, the tuple is selected.

(4) Finally, the value string of the selected tuple is copied to the output string.

Most DTPs do not propagate taint through hash tables or arrays. In addition, some DTPs gen-

eralize the policy to string-to-scalar conversion, which hash functions perform8),9). These DTPs

regard all scalars as safe even if they are produced from tainted strings, because script injection at-

tacks are performed finally by strings. And most DIFTs do not propagate taint along with address

flows by default4), which prevents to propagate taint from the index to the values in hash table or

array accesses.

6. SWIFT

This section presents the proposal of SWIFT. The goal of SWIFT proposal is to provide a high

accuracy on detecting script injection attacks.

First of all, subsection 6.1 and 6.2 describes two key observations for introducing our proposal.

Then, we describe the detection of string access in subsection 6.3. Finally, we present the taint

information propagation technique of SWIFT in detail.

6.1 Command parsing

Su et al. show that SQL injection can always be perfectly detected as long as the SQL syntax is

known and the substrings are correctly detectedtrustedor untrusted10).

As the example of SQL injection we describes in section 2. The command parser of the SQL

server knows which substring must be trusted and which substring may be untrusted. Specifically,

keywords, such asUPDATE or SET, or field and table names, such asprice or prod, must be

trusted; while arguments such asruby could be untrusted. If the parser knows that the substring

of $cmd corresponding to$name, underlined data in SQL injection example, is untrusted, the

parser can easily distinguish$cmd is an attack or not.

This command parsing can also be applied to any commands raised from web applications

other than SQL such as system calls. In general, data from untrusted source should not specify the

names of the system resources, but may specify their contents. The names of the system resources

include file names, command names, or field and table names of databases.

In the example of section 2, it is very possible that the programmer may apply lower-case con-

version to$nameonly because all the name of the products in the database is stored in lower-cases.

If the programmer write lower-case conversion like figure 1(d), almost all the current DTPs untaint

$namebecause it uses a translation table. In this case, however, such an attack is still possible

even though$nameis converted to lower-case (note that the SQL keywords are case-insensitive).

Then, the current DTPs result in a false negative. So the substring corresponds to$nameshould

4 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

be always tainted even in non-attack cases. In the example of section 2, even ifruby is left tainted,

the parser can distinguish it is not an attack.

The next subsection describes appropriate non-propagation rules when used with command

parsing.

6.2 Radio-button and text-box operations

A radio buttonand atext boxare two representative user interfaces on web pages. Radio buttons

are used to choose one from some options. On the other hand, text boxes are used to get arbitrary

strings, often with string conversions, such as case conversion or coding conversion.

As described in section 2, text boxes are unsafe to injection attacks. The programmer must

carefully check the string entered through text boxes. Whereas radio buttons are considerably

safe. Since the options of a radio button are provided by the programmer, the string that the user

choose is necessarily under control of the programmer. It is practically impossible for attackers to

attack through radio buttons.

The string operations in web applications can also be divided into radio-button and text-box.

6.2.1 Radio-button operations

figure 1(a) is a sample code of radio-button. As is the case of radio buttons, the value of the

output$ostr is chosen from the strings given by the programmer according to the input$i. The

programmer cannot predict the exact value of$ostr, but can completely predict the range of the

value that$ostr will take. It can be said that the programmer has control on the output.

figure 1(b) is another implementation of figure 1(a). This is the same as hash tables described

in section 5.2. In this case, the programmer also has control on the output. It is, however, not

because hash tables are considered safe as described in section 5.2, but because the contents of the

table has been given by the programmer.

6.2.2 Text-box operations

figure 1(c) is a sample code of text-box operation. Though the switch statement in the block of

the for statement looks like the code in figure 1(a), it is actually of text-box. This is an inefficient

implementation of lower-case conversion. As described in the previous subsection, the user can

control the value of$ostr except that it is converted in lower-case, and it is still possible to attack

through this operation. It cannot be said the programmer has control on the output.

Text-box operations include string copy and all kinds of string conversions such as case con-

versions explained above, or coding conversions. URL encode/decode and character code conver-

/* ... */
switch ($i){
case ’A’: $ostr = ”alpha”; break;
case ’B’: $ostr = ”beta”; break;
/* ... */
}

(a) Sample code of radio-button operation

$table[’A’] = ”alpha”;
$table[’B’] = ”beta”;
/* ... */

$ostr = $table[$i];
(b) Sample code of radio-button operation

for ($i = 0; $i< strlen($istr); $i++)
switch ($istr[$i]){
case ’A’: $ostr[$i] = ’a’; break;
case ’B’: $ostr[$i] = ’b’; break;
/* ... */
}

(c) Sample code of text-box operation

$table[’A’] = ’a’;
$table[’B’] = ’b’;
/* ... */
for ($i = 0; $i<strlen($istr); $i++)

$ostr[$i] = $table[$istr[$i]];
(d) Sample code of text-box operation

(e) Address trace of radio-button operations of (a) and (b)

　　
(f) Address trace of text-box operations of (c) and (d)

Figure1 Radio-button and text-box operations and their address trace

5 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

sions are the most frequently used in web applications.

figure 1(d) looks like the radio-button operation of figure 1(b). In addition, the contents of the

$table is also provided by the programmer. However, in fact it is just another implementation for

figure 1(c) and of text-box.

6.2.3 Command parsing and string operations

In an application, strings travel on the route from the input to the output, experiencing one or

more radio-button and/or text-box operations. Substring of the string can be considered under

control of the programmer if it experiences at least one radio-button operation on the route.

Therefore, what we should do is to detect whether the operation that a substring experiences is

radio-button or text-box, and propagate the taintedness of input string to output string if and only

if the operation is detected as text-box.

Notice that this will propagate taintedness to the output even if it is not an attack. This is ac-

ceptable, since SWIFT is assumed to be used with command parsing described in the previous

subsection. The parser will detect it is an attack or not correctly.

6.3 Algorithm of SWIFT

6.3.1 Address trace

As described in the previous subsection, the switch statements in figure 1(a) and 1(c) are almost

the same except that the latter is included in the for statement. In order to distinguish the opera-

tion in figure 1(c) is of text-box, DTP has to know the switch statement is in the for statement and

repeatedly executed producing a single string. It is difficult for conventional DTPs, which focus

on each statement or instruction being executed as it did not grasp the overall situation.

SWIFT focus on memory access during program execution, and make use of address traces on

the string operations. Figure 1(e) and 1(f) show two examples of address traces of these string

operations. In these figures, the x-axis indicates the address, and the y-axis indicates the time.

There are four types of triangles. Upward triangles4 andN indicate load instructions to untaint

and taint data, respectively. Downward trianglesO andH indicate store instructions whose store

value should be untainted and tainted, respectively. A group of triangles connected with a line

indicates a string access. The load/store instructions that does not related to DTP are not drawn in

these figures.

6.3.1.1 Basic address traces

Figure 1(e) corresponds to the sample code of the radio-button operation shown in figure 1(a).

Figure2 Address trace of string concatenation of SQL injection

Figure3 Address trace of multi-byte string operation

The first tainted load indicates the load to input variable$i. In this case, the value of$i is ’B’ , then

the constant string”beta” is copied to the output variable$ostr.

Figure 1(f) corresponds to the sample code of the text-box operation shown in figure 1(c). The

taint input string”UPDATE” is converted to”update”.

In the both figures, the load instructions read strings and the store instructions write strings, the

actions appear in an interleaved pattern. The obvious difference is that the loads are untainted in

radio-button while tainted in text-box.

The sample code in figure 1(b)/1(d) are semantically the same as 1(a)/1(c), and their address

traces also looks like 1(e)/1(f), respectively.

Figure 1(b) is of a hash table access. As shown in section 5.2.2, the hash table access starts with

6 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

hashing the input, and ends with copying the value of the selected tuple to the output. Figure 1(e)

only shows the first taint load to the input to hash it, and the following string copy from the value

string of the tuple to$ostr. The values of the tuples are untainted, since it has been copied from

the untaint constant strings just in the reverse direction of figure 1(e).

Figure 1(d) uses a translation table. In the$i-th iteration, the$i-th character of$istr is loaded,

then the value in the$table corresponding to the loaded character is loaded, and finally the value

is stored to$i-th character of$ostr. Figure 1(f) only shows the first taint loads to$istr, and the

last stores to$ostr, omitting intermediate untaint loads to$table. As shown in figure 1(f), it can

be detected of text-box focusing on the taint loads to$istr, and the stores to$ostr.

So for script injection attacks detection, we should trace interleaving string reads and writes,

and the taintedness of the read string should be propagated to the write string. And as the result,

we can get the output of radio-button operations be untained, and the output of text-box operations

be tainted.

6.3.1.2 Other examples

Figure 2 shows the address trace of SQL injection. In this case, the constant strings and user

input $nameare concatenated to produce$cmd. As shown in figure 3, the three substrings of

$cmd should be tainted or untainted depending on the source strings are taint or untaint. And

here, the string”ruby” could be tainted because the parser will detect it is not an attack.

Figure 3 shows a copy processing of multi-byte string operation. Web applications often deal

with multi-byte characters, such as URL coding or non-ASCII character sets.

6.3.2 String access detection

6.3.2.1 Streams and Interleaving Pair

A read stream is a sequence of read accesses to a string, and a read access in a read stream is

referred to as astream read. Likewise, awrite stream is a sequence of write accesses to a string,

and a write access in a write stream is referred to as astream write.

The purpose of the algorithm is to detect aninterleaving pair of a read stream and a write

stream. Figure4 shows an example of an interleaving pair. This figure shows a address trace of

base64encode.The x and y axis show memory addresses and time. In an interleaving pair, the

stream reads and writes appear in turn. The read stream is divided into plural readsubstreamsby

occurrences of the stream writes, and vice versa. Each of the read/write substreams contains one

or more stream reads/writes. And, a read/write access in the read/write stream of an interleaving

pair is referred to as aninterleaving-stream read/write.

 56940

 56950

 56960

 56970

 56980

 56990

 57000

 57010

 57020
 150 200 250 300 350 400 450 500

tim
e

address

base64encoding

untainted_load
tainted_load

untainted_store
tainted_store

Figure4 Example of interleaving pair (base64encode)

6.3.2.2 Tables

Two tables are used to detect read and write streams. Each of the entries of the read/write stream

tables is allocated to a stream.

The entry of the tables has the following fields:

• start The start address of the stream.

• nextThe predicted next address of the stream.

• n accessThecurrent number of accesses in the stream.

• n substrmThecurrent number of substreams in the stream.

• switchedA flag to calculaten substrm.

6.3.2.3 Stream Read/Write Detection

On a read access toaddr, nextof all the entries of the read table is compared toaddr. If there

is no match, a new entry is created,start, next, n accessareinitialized toaddr, the address next

to add, and one. If there is a match,n accessis incremented andnext is advanced for the future

access. An entry withn accessgreaterthan a threshold is recognized to represent a read stream.

In other words, ifaddr matches thenextandn accessis greater than a threshold, the read access

is detected as a stream read. And, the same holds true for the write table and write accesses.

7 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

6.3.2.4 Interleaving Stream Read/Write Detection

When a stream write is detected, theswitchedflags of all the entries of theread (not write)

table are set. After that, a read access of a stream is detected as the first access to a new substream

becauseswitchedis set. Then,n substrmis incremented, andswitchedis reset for the possible

second access in the same substream. An entry withn substrmgreaterthan a threshold is detected

as the read stream of an interleaving pair. In other words, ifaddr matches thenextandn substrm

is greater than a threshold, the read access is detected as an interleaving stream read. Likewise,

the same holds true for the write table and write accesses.

6.3.2.5 Propagation and Backtracking

Every time a stream read is detected, the taintedness of the read is stored in thetaintedness.

Then, when an interleaving stream write is detected, the taintedness of the written word is set to

the value oftaintedness.

When the detector detects streams, the same number of accesses as the threshold have already

been performed. Thus,backtracking is needed, that is, these written characters should also be

tainted. Thestart field of the entry is mainly used to locate the start address of the stream.

7. Implementation of SWIFT to PHP

This section explains how to implement SWIFT to PHP. Since SWIFT only focuses on address

traces of a program execution, it can be implemented both on script interpreters and on proces-

sors. PHP is widely used in the world as scripting language that is designed for server-side web

development. By implementing SWIFT to PHP, coverage is limited for PHP, but a highly accurate

DTP can be made in the range of taint-support PHP. And it is easy for SWIFT to be familiarized.

7.1 PHP interpreter

We describe the interpreter of PHP.

Figure 5 shows a sample PHP script. We refer functions users defines as PHP user-defined

functions. In this script, caselow() is a PHP user-defined function. Strlen() in caselow() is a PHP

built-in function.

A script of PHP is compiled to the intermediate language named opcode by a runtime compiler

and is executed. Figure 6 shows a dump of opcode. PHP user-defined functionsand PHP built-in

functionsare called by opcode named DOFCALL.

PHPinterpreter is written in C. We refer functions that execute each opcode as Opcode func-

tions. We refer functions that execute each PHP built-in functionas Zif functions.

All variables in a PHP script are stored in the structure named zval after they are compiled.

Zval is Figure 7 Zvaluevalue in the zval is Figure 8 When a string in a script is stored in zval,

a pointer to the string is acquired by using macros, such as ZSTRVAL(), Z STRVAL P() and

Z STRVAL PP(),in the Opcode functions. The argument of ZSTRVAL is zval, and the rest of

the macros take the pointer to zval as their arguments.

Figure5 Sample PHP script

7.2 Acquisition of memory addresses

We explain the acquisition of memory addresses. Because we can utilize information of the

interpreter’s source code, there is no influence of interpreting noise, namely we can acquire only

memory addresses of strings. We acquire memory addresses on the source code of Opcode func-

tions and Zif functions.

7.2.1 Opecode functions

String access is done by using the macros mentioned above in Opcode functions, so we can

recognize string access. However, we don’t get memory addresses from all macros, because the

macros only return the pointer to the string. We get memory addresses only when a memory area

where string is stored moves to another memory area. There are two actual cases.

8 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

Figure6 Dump of opcode

One case is that functions that manage the memory of the interpreter take the macros as thier

arguments. The function to which we should pay attention is five of the following: estrdup(), es-

trndup(), estrnduprel(), erealloc(), memcpy(). Memcpy() is C built-in library function. The e*()s

are defined on the interpreter, and they use memcpy() internaly. For example, we can find source

code as below:

memcpy(ZSTRVAL P(result),Z STRVAL P(op1),Z STRLEN P(op1));

Figure7 Zval

Figure8 Zvaluevalue

In this case we should get addresses of ZSTRVAL P(result) and ZSTRVAL P(op1).

Z STRVAL P(op1)corresponds to read string, while ZSTRVAL P(result)corresponds to write

string.

Another case is that the macros access an element of the string by using subscript. For example,

we can find source code as below:

Z STRVAL P(T->str offset.str)[T->str offset.offset] = ZSTRVAL(tmp)[0];

In this case we should get the addresses of right and left operands.

7.2.2 Zif functions

There are about a hundred Zif functions from which we have to get memory addresses. For

example, zifurlencode(),zif base64encode(),zif ereg replace().Because only pointers to char

are passed to Zif functions, we must read the source code and get memory addresses.

8. Evaluation

8.1 Environment

We implemented SWIFT to PHP-5.3.1. As for taint-support PHP, we used PHP-taint 20080622

package.

We set the environment as below: Ubuntu 9.04, Apache 2.2.14, Mysql 5.1.37.

8.2 String operations

Table 1 summarizes the result of basic string operations. The string operations include string

copies, case and code conversions, which are commonly used in web applications. (2) to (7) are

PHP built-in functions, thus they are written in C.

(1)concatenation, (2)substr(), and (3)eregreplace()execute string copies in the ends of opera-

9 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

operation PHP-SWIFT PHP-taint
FN FP FN FP

(1) concatenation
(2) substr()
(3) ereg replace()

√

(4) ereg()
(5) strtoupper/tolower()
(6) urlencdoe/decode()

√

(7) base64encode/decode()
√

(8) untaint table
(9) taint table

√

(10) tolower (switch-statement)
√

FN: false negative FP : false positive
Table1 Results of string operation

tions, and all the models can propagate taint correctly. (4)ereg() is regular expression match, and

all the model untaint the scalar result.

(5)strtoupper/strtolower() are case conversions.

(6)urlencode/urldecode() and (7)base64encode/base64decode()do encode and decode oper-

ations. As a result, PHP-taint untaints the outputs of all these functions.

(8)untaint table and (9)taint table retrieve values from tables with taint keys.(8)untaint and

(9)taint table have been stored untaint and taint values, respectively. Since PHP-taint regards

the values from tables as safe, it results in false negative in (9)taint table. On the other hand,

PHP-SWIFT can track the flow between the input and the output values through a table.

(10) is a lowercase conversions code, shown in figure 1(c). Though the function is the same as

(5)strtolower(), it is written in PHP. (10) is written with a switch statement construction. PHP-

SWIFT produce no false positives or negatives, because PHP-SWIFT can correctly propagate

taint for all the operations. So, even if programmers use operations such as these to be the input

arguments of applications, PHP-SWIFT could also provide high precision.

8.3 Real-world web applications

We executed eight web applications with known vulnerabilities written in PHP. The applications

are phpSysInfo 2.3, QwikiWiki 1.4.1, phpBB 2.0.8, PHP-Nuke 7.5, Cubecart 3.0.3 and PHP-Nuke

7.1. These applications use some input variables as an argument without validation or even any

string operations to them. We made Script injection attacks such as Cross Site Scripting (XSS),

program attack PHP-SWIFT PHP-taint

FN FP FN FP

phpSysInfo Cross-site

2.3 scripting

Qwikiwiki Directory √
1.4.1 traversal

phpBB Cross-site √
2.0.8 scripting

PHP-Nuke SQL √
7.5 injection

CubuCart Cross-site √
3.0.3 scripting

PHP-Nuke Cross-site √
7.1 scripting

PHP-Nuke SQL √
7.1 injection

FN: false negative FP: false positive

Table2 Results of web applications

directory traversal, and SQL injection according to the exploit code. As summarized in Table 2,

SWIFT caused no false positives or negatives. But PHP-taint produced false negatives.

8.4 Accelerator

we evaluated PHP-SWIFT with a PHP accelerator. A PHP accelerator is an extension designed

to speed up execution time of software applications written using PHP. Most PHP accelerators

use opcode caches. Opcode caches work by caching compiled codes of a PHP script (opcode)

in shared memory to avoid the overhead of parsing and compiling source code on each request.

Some users and enterprises introduce accelerators in order to increase a speed of PHP code.

We used an eAccelerator?) as an accelerator. The eAccelerator is one of free accelerators. We

confirmed PHP-SWIFT worked correctly with the eAccelerator.

9. Conclusion

In this paper, we implemented String-Wise Information Flow Tracking, SWIFT, to PHP.

SWIFTis a completely different approach from conventional DTP/DIFTs. In order to detect script

injection attacks precisely, SWIFT observes memory accesses of a target programs, detects text-

box string operations and propagates taint through them. Since SWIFT only uses address traces

of a program, it can be implemented both on script language interpreters and on processors.

10 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

情報処理学会研究報告
IPSJSIG Technical Report

We implemented SWIFT to PHP and compared the accuracy with taint-support PHP. PHP-

SWIFT can correctly propagate taint for typical string operations and real-world web applica-

tions with known vulnerabilities, while PHP-taint don’t. Additionally, we confirmed PHP-SWIFT

worked correctly with the eAccelerator.

We are going to implement SWIFT to all PHP built-in functions. We plan to distribute PHP-

SWIFT.

References

1) Allen, J.: Perl Version 5.8.8 Documentation - Perlsec, http://perldoc.perl.org/perlsec.pdf
(2006).

2) Chen, H., Wu, X., Yuan, L., Zang, B., chung Yew, P. and Chong, F.T.: From Speculation
to Security: Practical and Efficient Information Flow Tracking Using Speculative Hardware,
Int’l Symp. on Computer Architecture, pp.401–412 (2008).

3) Christey, S. and Martin, R.A.: Vulnerability Type Distributions in CVE, http://cve.mitre.org/
docs/vuln-trends/ (2007).

4) Dalton, M., Kannan, H. and Kozyrakis, C.: Raksha: A Flexible Information Flow Architec-
ture for Software Security,34th Int’l Symp. on Computer Architecture, pp.482–493 (2007).

5) Haldar, V., Chandra, D. and Franz, M.: Dynamic Taint Propagation for Java,21st Annual
Computer Security Applications Conf., pp.303–311 (2005).

6) Livshits, B., Martin, M. and Lam, M.S.: SecuriFly: Runtime Protection and Recovery from
Web Application Vulnerabilities,Tech. Rep., Stanford Univ.(2006).

7) Nanda, S., Lam, L.-C. and cker Chiueh, T.: Dynamic Multi-Process Information Flow Track-
ing for Web Application Security,8th Int’l Middleware Conf.(2007).

8) Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J. and Evans, D.: Automatically Hard-
ening Web Applications using Precise Tainting,20th Int’l Information Security Conf., pp.
295–307 (2005).

9) Pietraszek, T. and Berghe, C.: Defending against Injection Attacks through Context-
Sensitive String Evaluation,8th Int’l Symp. on Recent Advances in Intrusion Detection, pp.
124–145 (2005).

10) Su, Z. and Wassermann, G.: The Essence of Command Injection Attacks in Web Applica-
tions,33rd Symp. on Principles of Programming Languages(2006).

11) Suh, G.E., Lee, J.W., Zhang, D. and Devadas, S.: Secure Program Execution via Dynamic
Information Flow Tracking,11th Int’l Conf. on Architectural Support for Programming Lan-
guages and Operating System, pp.85–96 (2004).

12) Xu, W., Bhatkar, S. and Sekar, R.: Taint-Enhanced Policy Enforcement: A Practical Ap-
proach to Defeat a Wide Range of Attacks,15th USENIX Security Conf., pp.121–136 (2006).

11 c© 2010 Information Processing Society of Japan

Vol.2010-OS-115 No.4
2010/8/3

