IPSJ SIG Technical Report

An Improvement of Switch-on-Future-Event Multithreading

NARUKI KURATA, ! RyoTa SHIOYA, 512 JUN NAKASHIMA, !
MASAHIRO GOsHIMAT! and SHUICHT SAKAT T!

“Delinquent” instructions are a small number of static instructions that cause most branch
prediction misses and cache misses in a program. One of the important features of those
delinquent instructions is that most of them are executed in small loops. We have proposed
a new scheme of multithreading called Switch-on-Future-Event Multithreading (SOFE-MT)
that hides a latency of delinquent instructions by multithreading execution of a loop in a
single program. The conventional SOFE-MT did not assume periodic memory cache misses
or memory access order violation between threads which often occur in a loop. We propose
a memory access prediction system and a memory confliction detection system to deal with
such problems. Simulation results shows that our proposal achieves performance improve-
ment by an average of 2.4% and a maximum of 15.3%.

1. Introduction

“Delinquent” instructions are a small number of static instructions that cause most
branch prediction misses and cache misses in a program. One of the important features
of those delinquent instructions is that most of them are executed in small loops®. In
Section 2 , we point out many programs in SPEC CPU2006" have delinquent instruc-
tions in loops that consist of up to a few hundreds of instructions.

One of the typical topics for delinquent load instructions is prefetching.9> In most
researches they prefetch data based on predicted access pattern, triggered by a cache
miss. However, their techniques work only on a simple access pattern; otherwise, they
need high cost predictors.

There is another effective technique to hide the latency of delinquent instruction; mul-
tithreading. There are two types of multithreading classified by degree of communica-
tion granularity among threads.

o throughput oriented multithreading The throughput oriented multithreading is

11 Graduate School of Information Science and Technology, The University of Tokyo
12 Research Fellow of the Japan Society for the Promotion of Science (DC2)

Vo0l.2010-ARC-190 No.27
2010/8/4

to execute independent programs simultaneously in order to maximize total execu-
tion throughtput of the processor. For example, in Switch-on-Event multithreading,
when a load instruction misses the cache, the processor switches the thread in order
to hide the latency of memory access®. However, the throughput oriented multi-
threading cannot improve execution throughput of each single program.

o helper threading The helper threading is to execute a helper thread earlier than

the original thread in order to improve performance. The helper thread consists of a
delinquent instruction and its dependent instructions only, so the helper thread can
execute the delinquent instruction earlier than the main thread. The helper thread-
ing executes part of actual instructions so it can prefetch data from the memory
more accurately than the prefetch system using prediction. Furthermore, the helper
threading can also execute an actual branch instruction earlier than the main thread,
so it can realize highly-accurate branch prediction using the result of the helper
thread.
However, if the distance between delinquent instructions is short, the helper thread
cannot be executed sufficiently early. Furthermore, the helper thread becomes rel-
atively large, so it disturbs the execution of the main thread. As most delinquent
instructions are relatively in small loops, this is a big problem in such particular
cases.

To hide a latency of branch prediction misses and cache misses occured by delinquent
instructions, we have proposed Switch-on-Future-Event multithreading(SoFE-MT)?. In
SoFE-MT the processor regard each iteration of a loop as a thread and executes them si-
multaneously with the structure of SMT. Figure 1 shows hiding of the latency of a delin-
quent instruction. In this figure, the processor executes other iterations until it gets the
result of branches. This implementation just switches threads and always executes the
main context, while the helper threading executes extra instructions as a helper thread.
Therefore, SOFE-MT is free from the problems which the helper threading suffers from.

SoFE-MT must guarantee that the result of the program is the same as the sequential
execution. Consequently, the processor must resolve dependencies among threads. We
have also proposed some techniques to deal with this problem in the conventional SoFE-
MT model.

There are two problems in this implementation. First, the predictor cannot regard
a load instruction which miss the cache periodically as a delinquent instruction. For

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Time
if([e]){ ty
. if([1]){ 1
fo;-(F? ‘Eih]l)‘){{ if([2]){ L
_— if([0 t..
else
} (8126 part> cthen part> tO
}
} <else part> 5]
<then part> 1)
v

figure1l Hiding Latency by Multithreading

example, if a load instruction accesses the memory sequentially, it misses the cache at
first, and then hits for several times. When it goes off the cache line, the cache misses
again. Such access pattern derives periodic cache misses. Although such case often
occurs in loops, the processor cannot predict such instruction as a delinquent instruction,
as it does not focus on dynamic features of delinquent instructions. Second, violation
of memory access between threads occur frequently in some cases we state in Section
4.4 . We did not assume such cases so the performance degrade unexpectedly in the
conventional implementation.

In this paper, we propose two new techniques for Switch-on-Future-Event multi-
threading to avoid those two problems. First is a new load hit/miss predictor in order
to predict a load miss which occurs periodically. It can predict periodic cache misses
including sequential cache accesses as stated above. Second, we implement a system of
predicting a pair of load/store instructions that access the same address between differ-
ent threads. The processor waits fetching the instruction of the following thread until
the instruction of the precedent thread to avoid violation of memory access.

2. Delinquent Instructions and Loops

In recent processors, branch predictors are equipped in order to hide latencies of
branch instructions. Similarly, they have the cache memory to reduce the latency of
load instructions. However, some of the branch/load instructions cannot be solved by
those systems. In this section, we take a look at such “delinquent” instructions.

Vo0l.2010-ARC-190 No.27
2010/8/4

2.1 Branch Instruction

When the processor fetches a branch instruction, it predicts the result of the instruction
in order to keep fetching instructions and executing the program. For example, in a loop,
most of the time a branch instruction shows the processor should execute the loop again.
Thus, in many cases, directions of branch instructions have statistical features and the
predictor can predict the right way.

However, some branch instrucions cannot be predicted in such a conventional way
and they can be one of the causes of degradation of the processors. When a prediction
misses, speculatively fetched instructions are flushed and the right instruction is going
to be fetched. It takes some extra cycles to flush the mispredicted instructions so the
efficiency of using the pipeline degrades.

One example of such instructions is a virtual function, as recent programming lan-
guages implement.

2.1.1 Example of Delinquent Instruction: Virtual Function

The virtual function is implemented in order to realize polymorphism in object ori-
ented languages. The polymorphism reduces workload of programmers because a group
of data which have similar characteristics can be handled with the same procedure by
using polymorphism.

Figure 2 shows an example of a class that uses polymorphism. In this example, Circle
and Square are derived classes of Drawable and drawables is a polymorphic list of these
classes. Both Circle and Square override Draw() which is declared as a virtual function
of Drawable class, so if we call Draw() as a function of Drawable, actually, it is called
as a function of either Circle or Square. Which function is called depends on the past
control flow, so it is difficult for conventional branch predictor to predict which way the
branch instruction indicates.

2.2 Load Instruction

A load instruction transfers data from the main memory to a register in a few hundred
cycles, so generally the processor has two or three layers of fast and small caches. The
cache has a locality of space and time, so most of the time the cache hits. However,
if a load instruction misses the cache, the following dependent instructions cannot be
executed in many cycles. Especially, if a load instruction misses the cache every time,
it can be a large factor of degradation of performance. To avoid this problem, there is a
technique of prefetching data from the main memory in advance®®,

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

class Drawable {

public:

virtual void Draw (void) = NULL;
bi
class Circle : public Drawable {
public:

void Draw (void) { .. };

Vi

class Square : public Drawable {
public:
void Draw (void) { .. };

bi
Drawable **drawables;
for (int 1 = 0; NULL != drawables[i]; i++) {

0
drawables[i]->Draw() ;

}

figure2 Example of Virtual Function.

In most researches of prefetching, they prefetch data based on a predicted access pat-
tern, triggered by a cache miss. However, their techniques effectively work only on a
simple access pattern: otherwise, they need extremely high cost predictors.

2.3 Relationship Between Delinquent Instructions and Loops

Delinquent instructions are a small number of static branch/load instructions that cause
most of the branch prediction/cache misses. Consequently, one static instruction is exe-
cuted many times. Generally, the program counter (PC) increases monotonically, so the
same address of the instruction is executed twice or more means that a backward branch
is executed once or more. In addition, an iteration structure with a backward branch is
what we call a loop. Thus, we can say that a delinquent instruction is in loops.

Consequently, we focus on a relationship between sizes of loops and the number of
delinquent instructions in the loops and run exploratory evaluation. We assume that the
distance between the same PC of two different dynamic instructions as the size of the
loop.

We used 29 programs from the SPEC CPU2006" benchmark with ref data sets. The
parameters of the simulator are the same as we will mention at Section 6 .

Figure 3 and figure 4 show the results of evaluation of branch prediction misses and
L2 cache misses, respectively.

Vo0l.2010-ARC-190 No.27
2010/8/4

250000

200000

140000

120000

100000

150000

80000

100000 ” 60000

40000

20000

Accumulation number of L2 cache miss

. ————

Accumulation number of branch prediction miss.

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Loop size Loop size

figure3 Accumulation Number of Branch
Prediction Misses at Every Loop Size

figure4 Accumulation Number of L2 Cache
Misses at Every Loop Size

In figure 3, in most of the programs, the number of branch prediction misses saturate
within the loop which consists of 200 static instructions. figure 4 has the similar property
as figure 3. In most programs, the number of branch prediction misses saturate within
the loop which consists of 400 static instructions.

Thus, most of the delinquent instructions are executed relatively in small loops. In
these loops, conventional techniques for delinquent instructions do not work effectively
as we state in the next section.

3. Conventional Multhreading Techniques for Delinquent Instructions

The techniques of hiding the latency of delinquent instructions by multithreading is
classified by degree of communication granularity between threads; the throughput ori-
ented multithreading and the helper threading.

3.1 Throughput Oriented Multithreading

The throughput oriented multithreading processor basically executes independent pro-
grams simultaneously in order to maximize total throughput of the processor. The typi-
cal reseach of throughput oriented multithreading for delinquent instructions is Switch-
on-Event multithreading®?. This technique is to switch a thread to another when a load
instruction misses the cache in order to hide the latency of the cache miss. Furthermore,
there are some reseaches for SMTs that speed up processors by optimizing not to fetch
delinquent instructions”?®.

However, in these techniques, the processor switches the thread when an event such as
a cache miss occurs. Therefore, the dependent instructions of the load instruction stuck

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

in the instruction window and degrades execution efficiency. Moreover, they cannot deal
with delinquent branch instructions because when a branch instruction is executed and
found that the branch predictor mispredicted, there is no chance to hide the latency of the
misprediction. Furthermore, they improve total execution throughput of the processor,
but they cannot improve execution throughput of each single program.

3.2 Helper Threading

The helper threading is to execute a helper thread earlier than the main thread. The
helper thread consists of a delinquent instruction and instructions which the delinquent
instruction depends on, so the helper thread can execute the delinquent instruction early
and realize prefetching or accurate branch prediction. Among them, there are some re-
seaches that directly use the result of the helper thread and increase in performance'?.
The helper threading executes the actual instructions so it works even when a load in-
struction accesses the memory irregulary and simple prefetching mechanism does not
work well.

However, the helper thread cannot lead the main thread when the distance between
delinquent instructions is short, like small loops. Furthermore, in small loops, the helper
thread is relatively large compared with the main thread. In such case, the helper thread
prevents the main thread from executing its instructions and the performance degrades
as aresult. As noted above, most of the delinquent instructions are executed in relatively
small loops, so the helper threading cannot improve the performance of the processor
effectively.

3.3 Problem of Conventional Multithreading Techniques

The problem of conventional multithreading techniques can be summarized as fol-
lows.

As stated in Section 2.3 , delinquent instructions are mainly in small loops. To hide
latency of the delinquent instructions effectively, we must consider this fact, otherwise
the elaboration ends up with no effect. The throughput oriented multithreading has the
problem that they improve total execution throughput of the processor, but they cannot
improve execution throughput of each single program. Furthermore, in the Swith-on-
Event multithreading, they cannot hide the latency of branch prediction misses. On
the other hand, in the helper threading, the helper thread must lead the main thread
sufficiently. However, if the distance between delinquent instructions is short like small
loops, the helper thread cannot lead enough and the result of the helper thread misses

Vo0l.2010-ARC-190 No.27
2010/8/4

the time for the main thread. To make matters worse, the helper threading consumes the
resouces of the processor, so the main thread is interrupted to execute. This problem is
unavoidable as long as the helper threading executes extra instructions.

Thus, these conventional is ineffective for most of the delinquent instructions which
are in small loops.

4. Switch-on-Future-Event Multithreading

We have proposed the technique of hiding the latancy of delinquent instructions, called
Switch-on-Future-Event multithreading(SoFE-MT) . This technique regards each itera-
tion of a loop as a thread and executes them simultaneously with the SMT processor. As
we mentioned above, most of the delinquent instructions are executed in small loops,
so the processor cannot enjoy the benefits of the helper threading. On the other hand,
SoFE-MT switches the thread from an iteration to another iteration, triggered by a fetch
of a delinquent instruction. Therefore, SOFE-MT can hide the latency without suffering
from the problem like them.

4.1 Behavior of Processor in Target Loop

To execute each iteration simultaneously with the same physical structure of the SMT
processor, we propose some special instructions.

SoFE-MT starts when a pstart instruction is executed. Figure 5 shows the alloca-
tion of threads on the number of n logical processors in the SMT processor. t; in the
figure shows the thread which corresponds to the ith iteration. At the beginning of the
multithreading, Oth to ¢ — 1th thread are created on corresponding logical processors.

Each thread ends with pend instruction. When the pend is committed, the thread
right after the number of logical thread is going to be created. In figure 5, for example,
when the logical processor 0 has committed pend in the thread ¢, it creates the new
thread of ¢,, on itself. An instruction pexit shows the end of the loop. When the pexit
has committed, multithreading is finished and the processor executes next instructions
with single threading.

Some threads in SOFE-MT use the result of precedent threads if there is a dependency
among them. In that case, the processor must resolve those dependencies. We propose
instructions send and recv to resolve this problem. Each logical processor is connected
with unidirectional ring and communicates with neighbor processors. As we show in
figure 5, the logical processor ¢ sends data to the logical processor (i+1)%n (% indicates

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Processor 0 Processor 1 LI Processorn-1
Ceo |
v | R v | PPN | S

. . .

- L] .

. . .

figure5 Allocating Threads to n Logical Processors

cycle

fo br [IF[[[[SCE
UEL [[|

A1

11
’ QEL_L [[SCEEX

figure 6 Hiding Branch Instruction Latency by Multithreading
a modulus operator).

These special instructions are inserted statically by the compiler.

4.2 Hiding Latency of Delinquent Instructions

The processor predicts if a branch/load instruction is a delinquent instruction with
saturation counters in the table we call Delinquent Instruction Table(DIT). A counter
is incremented when the branch prediction or the cache misses and decremented if it
hits. Most of the instructions that does not miss the branch prediction or the cache
never consumes the entry of the DIT. Therefore, the DIT can be small enough to work
effectively.

The processor determines if the instruction is a delinquent instruction by the MSB of
the counter when it fetches instructions.

For example, figure 6 shows hiding of the latency. In this figure, the instructions
of the pipeline chart that the background is not painted belong to thread tj, while the
background is painted belong to thread ¢;. This figure shows a branch instruction br of
to is predicted as a delinquent instruction. In this situation, the processor fetches ¢ and
keep executing the program. As the br has executed, the processor switch the thread
again and fetches instructions of ¢y. In this example, the processor does not use branch
prediction to hide the latency of br. This is one example for a branch instruction, but the

Vo0l.2010-ARC-190 No.27
2010/8/4

processor can do the same thing to load instructions. When it fetch a load instruction
that seems to miss the cache, it switches the thread. This prevents instructions after the
load instruction from being stacked in the processor.

4.3 Detail of Implementation

The Switch-on-Future-Event multithreading guarantees that the result of the execution
is the same as the sequential execution. Consequently, in genaral, the thread of the
following iteration cannot execute until the thread of the precedent iteration has finished
executing all the instructions. In this situation, instructions of the following thread get
stuck in the instruction window and degrade the performance of the processor. To make
matters worse, these instruction might cause deadlock of the instructions. To avoid this
problem, we have proposed the technique of controlling the optimal thread switching.
Additionally, the following threads commit their instructions tentatively. In this case, a
memory access order violation might occur. To deal with this problem, we have also
implemented memory confict detection system.

4.3.1 Control of Thread Switching

If the processor fetches recv of the following thread and its dependent instructions
before fetching send of the preceding thread, they stuck in the instruction window and
results in degradation of performance. To avoid this problem, the processor fetches the
most preceding thread basically.

To realize this, we add some Wait Delinquent instruction Flag(WDF) and Iteration
Number(IN) to each logical processor. WDF shows that a delinquent instruction is
fetched and not finished executing in the logical processor. On the other hand, IN shows
an iteration count from the beginning of the loop. The processor decide which thread
to fetch with WDFs and INs. It fetches the thread which WDF is not set and has the
smallest IN among them. If all the WDFs of the threads is set, the processor fetches the
most preceding thread.

4.3.2 Conflict Detection

To guarantee the results of execution, if a memory instruction raise access order vio-
lation between threads, the processor should revert the thread. We detect this violation

') The deffierence between Transac-

with a system similar to Transactional Memory
tional Memory and the proposal technique is that the threads have priority.
To detect memory confliction, we add Speculative Read bits(SR bits) and Speculative

Write bits(SW bits) to each L1 cache line. The number of SR bits and SW bits are

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Cacheline
N[1] 4> N[2] 45 — — —» N[n-2] —5N[n-1]
é N[n+1] =5 N[n+2}—p- — — —pN[2n-2]—pN[2n-1]
B N[2n] [2n+1]}3N[2n+2]—- — — —N[3n-2]»N[3n-1]

1 < 1 | 1 1

figure7 Periodical Cache Miss on Array

the same as the number of logical processors. These bits indicate that a thread has
loaded/stored data to the cache line, respectively. Each logical processor checks these
bits when they access a cache line and if any bit is set, the processor flushes the following
threads except only SR bits are set and the thread accesses the cache line to load the
data. In addition, the SR bit and the SW bit of the most preceding thread are always
unset because the memory access of the thread is always non-speculative.

To avoid occuring those violation so frequently , the processor adds the instruction just
before the instruction which cause violation to DIT. The WDF of the thread that stops
with this delinquent instruction is not unset until the preceding thread fetches pend.

4.4 Problem of Conventional SOFE-MT

There are two preblems in this model. First, the processor cannot regard a load in-
struction which miss the cache periodically as a delinquent instruction. For example,
the processor often accesses an array sequentially in a loop. In such case, if the array
has not been set on the cache, the cache line misses periodically(figure 7). However, in
the conventional SOFE-MT, we cannot predict such an easy pattern. The DIT can predict
if an instruction has a static characteristic, but it cannot predict when a load instruction
has a dynamic characteristic of cache misses.

Second, memory confliction still occurs even we implement the technique mentioned
in Section 4.3.2 . In that implementation, a pair of those memory instructions are put
into the instruction window simultaneously and the instruction of the following thread
may be executed earlier. This results in continual memory access violation and degrades
execution efficiency.

5. Improvement of Switch-on-Future-Event Multithreading

The SoFE-MT system is better than other conventional multithreading techniques as
we stated above. However, there are some problems in the prediction of cache misses

Vo0l.2010-ARC-190 No.27
2010/8/4

Hit Count Table

Index

r b

Saturating Counter Table

! Index

PC @l Branch History |®| Hit Count |

MsB <
HIT or MISS
figure 8 Stride Hit Miss Prediction

and detecting memory access order violation. We propose Stride Hit Miss Predictor and
Memory Confliction Detection System to solve these problems.

5.1 Stride Hit Miss Prediction

Prediction of load hit/miss is important for some processor architectures. For example,
the Alpha 21264 microprocessor architecture adopts a load hit/miss predictor in order
to handle issue timing of instructions which are dependent on a load instruction'?. The
predictor on Alpha 21264 is the MSB of a 4-bit saturating counter which decrements by
two when there is a load miss, otherwise it increments by one when there is a hit.

In the SOFE-MT, however, such predictor does not work effectively because it cannot
predict periodical cache misses like figure 7. Consequently, we propose a new load
hit/miss prediction system for the SOFE-MT showed in figure 8.

There are two tables in the system. The Hit Count Table(HCT) increments when a
load instruction hits the cache, otherwise it resets to zero when it misses the cache.
It is indexed by the PC of a load instruction, so it can count the number how many
times each static instruction hits the cache consecutively. Each line of The HCT has a
confidence counter and the instruction is predicted as a cache hit when the prediction is
unreliable, because load instructions often hit the cache. A static instruction is added to
the HCT only when it misses the cache, so the HCT can be small enough to get sufficient
perfomance. On the other hand, Saturating Counter Table(SCT) increments when a load
instruction misses the cache, otherwise it decrements when it hits the cache. The SCT is
indexed by a convoluted number of the PC, the branch history and the hit count produced
by the HCT. We convolute the branch history in order to deal with multiple loops. The

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

Commit Table

t tin PCTable o bt -t b

Commit?‘
v

WAIT or FETCH

figure9 Memory Confliction Detection System
MSB of the SCT is a prediction result whether a load misses or not. Thus, A load

instruction can be predicted if it misses the cache periodically.

5.2 Memory Confliction Detection System

In the conventional SOFE-MT, if the preceding thread fetches pend the following
thread starts fetching instructions even when the WDF is set by memory confliction.
This implementation has possibilities to occur the memory access order violation again
as we stated above. To avoid this, we proposed Memory Confliction Detection System.
Memory Confliction Detection System consists of the PC table and the commit table.
When access order violation occurs, the PC of the instruction in the preceding thread is
put in an entry of the PC table, indexed by the instruction in the following thread. The
commit table has an equal number of bits to the number of logical threads in each entry,
which shows if the instruction of the corresponding thread has been committed.

Figure 9 shows the behavior of Memory Confliction Detection System. When an
access violation occurs, the PC of the instruction in the preceding thread is registered in
the PC table, indexed by the PC of the instruction in the following thread. The following
thread always access to the PC table when it tries to fetch a memory access instruction.
If a PC is registered in the corresponding entry, it accesses the commit table using the
PC in the table. If the commit table shows that all the preceding threads have committed
the corresponding instruction, the processor fetches the instruction. Otherwise, it waits
for all the preceding threads have committed the instruction. The number of static load
instruction that occurs access violation is small as the number of static instruction is
small in loops, so the tables in this system can be small enough.

Vo0l.2010-ARC-190 No.27
2010/8/4

table 1 Simulation Configurations

ooooo 0

ISA Alpha 21164A
logical thread 4 way

fetch width 4 inst.

execution unit int: 2, fp: 2, mem: 2.
instruction window | int: 32, fp: 16, mem: 16
register file int : 256, fp : 256

branch prediction 8KB g-share

miss penalty 10 cycle

BTB 2K entry, 4-way

L1C 32KB, 4-way, 64B/line, 2 cycle
L2C 4MB, 8-way, 64B/line, 10 cycle
main memory 100 cycle

table 2 Evaluated Benchmarks

Benchmark Sets
SPECCPU 20067 perlbench] mef0) hmmer h264ref(] astar
MediaBench'® adpcm_dec adpcm_enc

EEMBC'Y dither

OOCSB A C++ benchmark!® | deltablue

Applications

table 3 Parameters of Switch-on-Future-Event

Name Value
DIT 1KB, 4-way,

3 bits/count
HCT 160B, 2-way

8 bits/count

2 bits/conf
SCT 2568, 2 bits/count
PC Table 256B, 2-way
Commit Table 16B, 2-way

6. Evaluation

We evaluated using the following models on a cycle-accurate processor simulator
Onikiri2'®. Parameters for the evaluation are showed in table 1.

Table 2 shows the benchmarks we used for evaluation. We modified the compiler gcc-
4.3.3 to insert special instructions mentioned in 4.1 . We used the compile option “-03”
to compile benchmarks. We selected the benchmarks which delinquent instructions are
obvious and insert the instructions to the corresponding loops using dedicated pragma
for SOFE-MT.

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

18
16
14
12

0.8
0.6
04
0.2

0

perlbench mcf hmmer h264ref astar adpcm_enc adpcm_dec dither deltablue

=

W Conventional SoFE-MT M Proposed SoFE-MT

figure 10 Relative IPC of SoFE-MT to Single Thread Program

We skipped 1G instructions and evaluated the next 100M instructions except Media-
bench benchmark. As the number of instructions is small, we executed all the instruc-
tions in Mediabench applications.

Table 3 shows the configuration parameters of SOFE-MT. Each entry of the DIT in-
crements by two when the branch/cache hit prediction misses, while decrements by one
when it hits. The instruction is regarded as a delinquent instruction when the entry of
the instruction is not zero. On the other hand, each entry of the SCT increments by one
when a load instruction misses the cache, otherwise it decrements by one when it hits
the cache.

In the evaluation, we detect memory access order violation only when different threads
access the same memory address other than the same cache line.

6.1 Results

Figure 10 shows the relative IPC of conventional SOFE-MT and the proposed SoFE-
MT to the single thread programs. The proposed SOFE-MT model achieves performance
improvement by an average of 23.1% and a maximum of 67.7% from the single thread
model. Compared with the conventional SOFE-MT model, the proposed model achieves
performance improvement by an average of 2.4% and a maximum of 15.3%.

Some applications show slight performance degradation by a maximum of 1.4% com-
pared with the conventional SOFE-MT. This degradation of performance occurs because
the threads wait too much by Memory Confliction Detection System system. In addi-

Vo0l.2010-ARC-190 No.27
2010/8/4

tion, the application astar still degrades performance by 6.0% compared with the single
thread model. This is because a recv instruction and its dependent instructions wait for
the send instruction of the preceding thread and stuck in the instruction window.

7. Conclusion

In this paper, we proposed two new systems to improve SOFE-MT which hide the
latency of delinquent instructions. The Stride Hit Miss Prediction System enables to
detect delinquent load instructions that occur periodical cache miss. On the other hand,
the Memory Confliction Detection System suppresses continual memory access order
violation between threads.

Our evaluation shows that the proposed model of SOFE-MT achieves performance
improvement by an average of 2.0% and a maximum of 15.3% from the conventional
SoFE-MT. However, some applications show slight performance degradation. This is
because instructions of following threads stuck in the instruction window and degradate
execution efficiency. Our plan for the future study is to solve such degradation.

Acknowledgement

This research was partially supported by Grant-in-Aid for Scientific Research
No.20300015.

References

1) The Standard Performance Evaluation Corporation: SPEC CPU2006 suite
http://www.spec.org/cpu20006/.

2) Farrens, M. and Pleszkun, A.: Strategies for achieving improved processor throughput,
ISCA, pp.362-369 (1991).

3) McNairy, C. and Bhatia, R.: Montecito: a dual-core, dual-thread Itanium processor, Micro,
IEEE, Vol.25, No.2, pp.10-20 (2005).

4) Shioya, R., Kurata, N., Nakashima, J., Goshima, M. and Sakai, S.: Switch-on-Future-
Event Multithreading, Symp. on Advanced Computing Systems & Infrastructures, pp.157—
165 (2010).

5) Palacharla, S. and Kessler, R.: Evaluating stream buffers as a secondary cache replacement,
ISCA, pp.24-33 (1994).

6) Joseph, D. and Grunwald, D.: Prefetching using Markov predictors, Computers, IEEE
Transactions on, Vol.48, No.2, pp.121-133 (1999).

7) Luo, K., Franklin, M., Mukherjee, S. and Sezne, A.: Boosting SMT performance by specula-
tion control, International Parallel and Distributed Processing Symposium, pp.9 pp.— (2001).

(© 2010 Information Processing Society of Japan

IPSJ SIG Technical Report

8) Eyerman, S. and Ecckhout, L.: A Memory-Level Parallelism Aware Fetch Policy for SMT
Processors, HPCA, pp.240-249 (2007).

9) Liao, S.S., Wang, P.H., Wang, H., Hoflehner, G., Lavery, D. and Shen, J.P.: Post-pass bi-
nary adaptation for software-based speculative precomputation, Proceedings of Conference
on Programming language design and implementation, New York, NY, USA, ACM, pp.117-
128 (2002).

10) Roth, A. and Sohi, G.: Speculative data-driven multithreading, HPCA, pp.37-48 (2001).

11) Herlihy, M. and Moss, J. E.B.: Transactional Memory: Architectural Support for Lock-Free
Data Structures, ISCA, pp.289-300 (1993).

12) Mclellan, E. and Webb, D.: The Alpha 21264 Microprocessor Architecture, /ICCD, p.90
(1999).

13) Lee, C., Potkonjak, M. and Mangione-Smith, W.: MediaBench: a tool for evaluating and
synthesizing multimedia and communications systems, MICRO, pp.330-335 (1997).

14) The Embedded Microprocessor Benchmark Consortium: http.://www.eembc.org/.

15) OOCSB: Object-Oriented Compilers at UCSB: A C++ Benchmark Suit
http://www.cs.ucsb.edu/urs/oocsb/.

16) Shioya, R., Goshima, M. and Sakai, S.: Design and Implementation of a Processor Simulator
”Onikiri2”, Symp. on Advanced Computing Systems & Infrastructures, pp.120-121 (2009).

Vo0l.2010-ARC-190 No.27
2010/8/4

(© 2010 Information Processing Society of Japan

