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Comparing Hadoop and Fat-Btree based access method

for Small File I/O Applications

Min LUO†1 and Haruo YOKOTA†1

Hadoop has been widely used in various clusters to build scalable and high
performance distributed file systems. However, Hadoop distributed file system
(HDFS) is designed for large file management. In case of small files applica-
tions, those metadata requests will flood the network and consume most of the
memory in Namenode thus sharply hinders its performance. Therefore, many
web applications do not benefit from clusters with centered metanode, like
Hadoop. In this paper, we compare our Fat-Btree based data access method,
which excludes center node in clusters, with Hadoop. We show their different
performance in different file I/O applications.

1. Introduction

Recently, the “cloud” has attracted considerable attentions in high performance
and scalable distributed systems research. In these systems, a large number of
servers are lined up and work in parallel. Many distributed execution frameworks
have been proposed, in which, Map-Reduce in 2) is one of the most famous frame-
works in these works. There are numerous academic and commercial implemen-
tations of Map-Reduce framework because it offers a simple, functional interface
that transparently executes the computations with a good system scalability.

The most popular and public available Map-Reduce based project is Hadoop
9), an open source version under development by Apache Software Foundation.
Its core components include an implementation of Map-Reduce, with a primary
storage system called “Hadoop Distributed File System (HDFS)” to provide a
conceptually simple programming model and abstract away any knowledge of
where the data lives. Therefore, Hadoop has been widely used in both commercial
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and academic world, and shows high performance in many parallel processing
tasks 10)–11).

On the other hand, many data access methods in parallel databases 4)–6), are
other choices for data processing on the “cloud”. Besides the contributions made
by almost all the famous database vendors that are attracted in parallel databases
over the past two decades, many ongoing academic projects are also engaged to
provide better performance, scalability and failure tolerance parallel database
systems 3), 12)–14). Although the parallel database and Map-Reduce based
systems may seem to target different applications, it is in fact possible to write
the parallel processing tasks for almost all the applications with Map-Reduce
jobs or database queries with these two systems, individually 15). Therefore, it
is meaningful to have some comparisons between these two systems for the users
information.

In addition, in most recently, there is a new trends in the parallel processing
system which tries to build a hybrid system based on Map-Reduce framework and
Parallel DBMS to allow better code reusability, data independence and automatic
query optimization 15). However, almost all the forerunners do not achieve the
performance of parallel databases as well as the scalability, fault tolerance of
MapReduce-based systems. One of the reasons is the different the storage layers,
the HDFS layer or DBMS layer, they adopted. Because these storage layers have
different performance in storing different size of data, it seems interesting and
necessary to compare these two basic systems in different file I/O applications,
and this comparison results may be referred in the design of future hybrid Map-
Reduce/DBMS systems.

The purpose of this paper is to show the different I/O performance of Hadoop
in the applications of different file sizes, especially for the small file I/O case.
We compare the time consumed by Hadoop and a parallel DBMS in initializing
and accessing all their data, individually. The overhead for accessing files in
Hadoop is then discussed. In addition, a parallel database system based on Fat-
Btree index 6) is introduced and used in this comparison, whose better scalability
and availability than the Hadoop’s are also shown through the experiments and
discussion.

The rest of the paper is organized as follows: Firstly, we present background
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Fig. 1 Map-Reduce Model

work in Section 2. Then we outline the different maintain cost in Hadoop and
parallel DBMS from architecture perspective in Section 3. In Section 4 we demon-
strate and analyze the different performance in Hadoop and parallel DBMS in
different file I/O applications through experimental results. Finally, we present
related work in Section 5 and conclude our work in Section 6.

2. Background

2.1 Map-Reduce
Map-Reduce model (Fig. 1) consists two main functions, called Map and Re-

duce.
In the “Map” function, the master node reads a set of “records”, chops it up

into smaller intermediate records in a form of new (key, value) pairs, during this
process, a “split” hash function partitions the records into R disjoint buckets.
Each map bucket is written to the processing node’s disk with these R output
files. Since each map instance is assigned a distinct portion of input “records”
by the scheduler, the total intermediate files created in this process is M*R, if
there are M such distinct portions. Then, “Reduce” function transferred the
intermediate files over network from the Map node’s local disks to individual
reducers, which is called “shuffle”. Note that all the intermediate records with
the same hash values are send into the same reducer and each reducer processes
or combines the records into the final output file.

The advantage of the Map-Reduce is that the parallel and distributed pro-
cesses are actuated automatically just by calling the MAP and Reduce opera-
tions provided within this model. In contract, parallel DBMSs may require their
programmers to participate into this process, like providing the Map and Reduce
processers with User Defined Functions and aggregation operations in DBMS.

2.2 Hadoop
Hadoop is an open source software for reliable, scalable, distributed computing

which has two main components: a freely available implementation of Map-
Reduce framework and a Hadoop Distributed File System (HDFS) 9).

HDFS is a distributed file system which is suitable for distributed processing
on commodity hardware. It replicas the datasets on multiple nodes to make the
data available even there is a failure of nodes. There are two kinds of nodes in
HDFS: a metadata server called Namenode and a large number of data storage
nodes called Datanode. The Namenode is in charge of all metadata and system
actions data within the HDFS. The Datanode is in charge of all read/write and
data replication requests according to the direction from Namenode. Because
there is only one Namenode in Hadoop and it keeps all the metadata in main
memory, it appears to be the bottleneck for handling metadata requests in the
applications, especially for the applications on small files 16). In addition, this
critical Namenode introduces an SPOF (Single Point of Failure) of the system,
which is not easy to remove 25).

2.3 Fat-Btree
The Fat-Btree is a kind of parallel B-tree structure, which is proposed to provide

dynamic data management, high throughput and efficient skew handling 6).
As shown in Fig. 2, the leaf pages of the parallel B-tree are distributed among

the “Process Elements” (PEs). Each PE has a subtree of the whole B-tree con-
taining the root node and intermediate index nodes between the root node and
leaf nodes allocated to that PE. In the Fat-Btree structure, index nodes close to
the root node have multiple copies but with a relatively low update frequency,
on the other hand, leaf nodes have a relatively high update frequency but are not
duplicated. Thus, nodes with higher update frequencies have lower synchroniza-
tion overhead. Therefore, the maintain cost in Fat-Btree is much lower than the
ordinary parallel Btree structure, such as Copy-Whole-Btree and Single-Index-
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Fig. 2 A Fat-Btree

Btree in 6). We have proposed a parallel database system based on this Fat-Btree
index in 20).

3. System Discussion

In this section, we discuss some of the system operation cost in Hadoop and
Fat-Btree DBMS.

In Hadoop architecture, Map-Reduce model offers a simple, functional interface
for distributed processing, while HDFS provides a reliable, shared virtual storage
device.

HDFS stores the datasets and all the intermediate results which are generated
during Map-Reduce processes across multiple nodes. In addition, HDFS cannot
be directly mounted on an existing operating system, like Google File System
(GFS), data needs to be loaded into HDFS before and after each execution in
Hadoop. This can be very time consuming and we will examine this in the next
section. Moreover, the HDFS store the files in each individual “Block”, thus it
needs to divide or unite the files and fulfill the “Block” which is 64MB by default.
Therefore, extra metadata will be generated in the Namenode. This space uti-
lization is determined by three space requirement: metadata of directories, files
and blocks. In the HDFS which has 64 users:

Table 1 An Example of Metadata Size in Hadoop

File Vol. File Size Dir Meta Files Meta Block Meta Total Meta
DataSet-a 10 100M 10,240 1,250 250 11,790 Bytes
DataSet-b 100 10M 10,240 12,500 250 22,990 Bytes
DataSet-c 1,000 1M 10,240 125,000 250 135,490 Bytes
DataSet-d 5,000 200K 10,240 625,000 250 635,490 Bytes
DataSet-e 10,000 100K 10,240 1,250,000 250 1,260,490 Bytes
DataSet-f 20,000 50K 10,240 2,500,000 250 2,510,490 Bytes
DataSet-g 40,000 25K 10,240 5,000,000 250 5,010,490 Bytes
DataSet-h 80,000 12.5K 10,240 10,000,000 250 10,010,490 Bytes

Directory entry follows the formula as:
144 Bytes + the length of the directory name;
File entry follows the formula as:
112 Bytes + the length of the file name;
Block follows the formula as:
112 Bytes + 24 Bytes * Number of replicas;

In this paper, we assume that the directory name is in an average length of
16 characters, the file name is in an average length of 13 characters, the number
of replicas is 2 in the system. The block size is the default value of 64 MB.
Table 1 shows the metadata size for four different file size applications in which
data volume is same as 1 GBytes. As it shows, the metadata size will increase
together with the number of files or the total file size.

On the other hand, Map-Reduce model requires the Namenode to keep all
the metadata in main memory since they are regularly accessed. However, too
many of these small files will exceed the addressing capacity within this node
and those small file I/Os can flood the networking near Namenode, eventually.
Thus, it prevents the performance of the system and leaves the remaining storage
capacity unutilized. Moreover, Hadoop has to start new process for every map
task. These start-up processes will occupy a great portion of time for the small file
I/O application whose execution time of each task is relatively short. In addition,
the Datanodes in Hadoop may have large states to checkpoint, they contend for
disk and network bandwidth resources, slowing down individual checkpoints.

While for the Fat-Btree database, the metadata needed to be stored for each
tuple are limited. During data accessing process, the index pages are required
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only for locating the leaf pages stored in each PE . Therefore, it has a high cache
hit rate if the index pages are cached in each PE. Because of this high cache
hit rate and low maintain cost (Section 2.3), select and update processes in Fat-
Btree are much faster than other conventional parallel B-tree structures in 6). In
addition, the DBMS is able to achieve high performance by using the index to
accelerate join operations.

Since there is a trade-off in Hadoop who inherits the features of high scalabil-
ity and performance from Map-Reduce while contains the drawbacks mentioned
above, we would like to evaluate Hadoop performance under different file I/O
applications and compare it with a parallel database implemented with the open
source DBMS Postgres and the Fat-Btree index in 20).

4. Experiments

In this section we describe the experiments of Hadoop and our Fat-Btree
database. We focus on evaluating data load (initialize) time and data access-
ing time, as well as system scalability.

4.1 Environmental Setup
For our experiments, we used a cluster of up to 32 nodes. Table 2 shows our

experimental environment.
All the nodes run the Hadoop version 0.20.1 on JDK 1.6.0, and we deploy the

system with the default configuration settings, except for changing the replicas
number to 1 which is the same as that in Fat-Btree database so as to compare
with it later. We do not use multiple replicas because we focus on the file I/O
performance in Hadoop here. In addition, we use an individual node as the
Namenode in the experiments to ensure that the performance of Datanodes will
not be affected.

4.2 Data Load Performance
In this experiment, we load the same datasets as shown in Table 1, from the

node’s local disk into each system’s internal storage to study their performance
by examining the time it takes. Although Hadoop has been designed to run on a
very large number of nodes, the Datanode number in our experiments is only up
to 32 nodes. This is because by our observations, this software is typically used
with significantly less instances in current computation clouds. For example,

Table 2 Experimental Environment

Blade server: Sun Fire B200x Blade Server
CPU: AMD Athlon XP-M 1800+ (1.53 GHz)
Memory: PC2100 DDR SDRAM 1 GB
Network: 1000BASE-T
Gigabit Ethernet Switch: Catalyst 6505 (720GB/s backbone)
Hard Drives: TOSHIBA MK3019GAX (30 GB, 5400 rpm, 2.5 inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.6.0 18 Server VM

Fig. 3 Data Load Time of Different File Sizes

Amazon limits the number of nodes for their Hadoop application to 20 unless
the respective customer passes an extended registration request in 26).

We first use the dataset-{a, b, c, d, e} in this experiment to load HDFS by the
command-line utility provide in Hadoop. The files in these datasets are in plain
text manner to enable “wordcount” function available in later experiments.

Figure 3 shows the data load performance of loading the same volume of
dataset-1GB. The data loading time is not same from each other if the size per
each file is different. The time required for dataset-{a, b, c} are almost same.
The little difference may lie in the different file split and combination cost when
fill the data into blocks. For the dataset-{d, e} Hadoop consumed much larger
time. This reason may be that Hadoop forces each task to run in an individual
process, thus each task has to redo the same initialization in its process. When
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Fig. 4 Data Load Time Comparison

the file number is increasing, the process start-up overhead will soon come to be
un-ignorable.

Now, we use dataset-{f, g, h}, a small file dataset to make a comparison between
Hadoop and Fat-Btree database in the data load experiment.

In this experiment, Fat-Btree DBMS loads the data by executing the LOAD
SQL command sequentially from one node. Then the Fat-Btree evenly distributes
these tuples across the cluster automatically. The tuples which are inserted into
Fat-Btree DBMS contain the same content as the small files that loaded into
Hadoop. Figure 4 shows the time needed to load the same volume of datasets
both in Hadoop and Fat-Btree DBMS. As it shows, the data load time is increased
when the individual data size is decreasing in both systems. Note that when the
data (file/tuple) size is larger than 100K, the load time in both Hadoop and Fat-
Btree DBMS do not grow obviously, because a great portion of cost in writing one
piece of data is the file I/O cost. However, when the data size becomes smaller,
which means the file I/O cost in each process decreased, the extra cost turns to be
dominate. Therefore, the load time in Hadoop soon overcomes that in Fat-Btree
DBMS because the Hadoop has a larger process initialization, data combination
and metadata management costs in storing the same volume of data, while these
extra costs may be unobvious in the parallel databases, which have optimized
and sophisticated process and storage management methods.

In a short conclusion, to load the dataset from local disk into Hadoop’s virtual
disk, lots of data input/split tasks will be launched as several individual pro-
cesses. If the input file is in a small size (e.g. less than 50K in this experimental
environment), the load performance of Hadoop will decrease dramatically, and
underperform the Fat-Btree DBMS.

4.3 Data Access Performance
Now, we study the data access performance of Hadoop, including the through-

put and scalability, and make a comparison with Fat-Btree DBMS.
Firstly, we modify the demonstration Map-Reduce program “wordcount” in

Hadoop source code. To test Hadoop I/O performance: The Map function in
“wordcount” is modified to read all the words in the small files on HDFS and write
record of each word into an output file as the (key, 1) pairs, there is no calculation
function in Map to get the summary of each word’s appearance times. And then,
we remove the Reduce function in the program, thus the output generated by
each Map instance is the final output of the program. Our purpose of these
modifications is to get the time required by Hadoop to read and write every word
in all the files in HDFS while eliminate the extra cost of calculating, grouping
and shuffling. Thus the execution time of this program is mainly the time for the
file I/O process in Hadoop, then we can compare this time with that required by
the Fat-Btree DBMS.

On the other hand, we use the SQL Command like: SELECT * FROM TABLE
WHERE ID == ’X’; to fetch all the contents from the tuples in Fat-Btree DBMS
and use the SQL Command like: UPDATE TABLE SET TEXT = ’STRING’
WHERE ID == ’X’ to overwrite the same data. Each node has 4 client threads
to execute these commands in parallel to read and write all the data in the
database.

As shown in Fig. 5, Hadoop takes several hours to finish the “wordcount”
transaction, while Fat-Btree outperforms Hadoop by a factor about 400, which
only needs several minutes to read and write all the data. This is because the
start-up costs for the small file I/O applications are dominated in the execution
time. On average, each task in Hadoop needs about 20 seconds to start and run
at full speed.

In addition, Fig. 5 also shows the different scalabilities of Hadoop and Fat-Btree
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Fig. 5 Data Access Time in Hadoop and Fat-Btree

systems. We find that when the node number is increased by twice from 8 to
32, the scalability of Hadoop declines from 96% to 85% compared to that of Fat-
Btree which only decreases slightly. This is because Hadoop use the job tracker
to coordinate Datanode activities, and its overhead will increase as more nodes
are added into the system. However, Fat-Btree DBMS does not contain these
centered nodes, thus the potential bottlenecks are eliminated from the system.
The reason for the slight decline may be the raise of communication cost within
the Fat-Btree when the node number increasing.

In a short conclusion, for the small file I/O applications, Hadoop’s performance
decreased dramatically because the overhead in process start-up. It may cause
every task to wait 20 seconds on average before they are executed in full speed.
On the other hand, Fat-Btree DBMS does not suffer this problem and achieve a
better scalability.

5. Related Works

As an open source software which implements a framework of Map-Reduce,
Hadoop has been embraced by lots of data-intensive distributed applications
both in commercial and academic societies. However, Hadoop seems only to
be able to run large-scale analyses on big data. Almost all the applications
adopt Hadoop engine for the computation on huge datasets 17)–18), because the

performance for the application on small or middle size dataset in Hadoop is not
as attractive as DBMS. A lot of researches that focus on these problems have
been proposed. For instance, 19) optimizes the Hadoop in its branch project
of HPMR, which focuses on cutting off the cost in the “Reduce” process with
the High Performance Map-Reduce Engine. 17) proposes a method to reduce
the metadata for the small files in Hadoop by compressing the small data which
has some kind of semantic relations in the specific applications together. In
1), the small file metadata problem is slightly addressed in the original web
implementation of Hadoop. However, there seem no effective solutions in these
former researches for improving the small file I/O performance in Hadoop as
discussed in this paper.

Therefore, recent researches, which use Hadoop as its execution engine, adopt
a light database system into the system for organization the intermediate results
and trial datasets, as in 21)–24). These systems try to bring Map-Reduce ideas
together with DBMS system and aim to integrate declarative query constructs
from the database community into MapReduce-like software to allow better code
reusability, data independence and automatic query optimization. Different from
above interface level solutions, HadoopDB in 7) integrates Hadoop with Post-
gres in systems-level, which may be the first practice that builds a real hybrid
system of Map-Reduce and Parallel DBMS. What is more, this kind of hybrid
Map-Reduce/DBMS system is looked upon as an optimal solution for parallel
processing systems in recent future 15).

However, HadoopDB does not in general match the performance of parallel
database systems especially in data selection. Since HadoopDB use the databases
to store all the data sources similar to data blocks in HDFS, the large size of data
used in 7) may be one of the reasons that hinders the data access efficiency of
HadoopDB. Therefore, it is very important to choose the better storage layer,
database or HDFS layer, dynamically in the future hybrid Map-Reduce/DBMS
systems to store the files in the applications. To make this decision, the compar-
ison between Hadoop and parallel DBMS in their file I/O performance on the
datasets of different data size is needed for the future system design information.

As far as we know, there seems no former work that gives the comparison. In
recently, there is a similar comparison work as ours 8), which compares Hadoop
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with other two parallel DBMSs is proposed. However, they focus on the analyses
of different storage mechanism (row-based/column based) and aggregation per-
formance in the vertical/horizontal partition DBMS with Hadoop. In addition,
the size of individual data used in their experimental datasets is much larger than
that of ours. What is more, the tranditional hash and clustered index used in
these parallel DBMSs may hinder the database systems scalability. Note that the
data load performance experiment result is hence different with ours; the scala-
bility comparison result between our parallel DBMS and Hadoop is also different
from that declared in 8).

6. Conclusion

In this paper, we focus on comparing the Hadoop, which is an implementation
of map-reduce paradigm, with a parallel database system that was developed
earlier at Tokyo Institute of Technology. We have taken eight different datasets
to examine the data loading, accessing and modification cost of these two system
especially for small file I/O. These comparison results could be a note for the
information of future hybrid Map-Reduce and Parallel DBMS design.

Our results show that, Hadoop has significant overheads due to task initial-
ization; the Namenode appears as the bottleneck when the system scales up,
especially for handling the small files. Our parallel DBMS shows its higher per-
formance, over a factor of 400 in the small file I/O performance, and shows its
better scalability than that of Hadoop. Note that some of the system features
in both Hadoop and DBMS are no longer the same as they used to be in former
researches which mainly considered the data in large file size. As there is a great
contrast in file I/O performance of Hadoop and parallel DBMS when handling
the small size of data, a flexible storage layers mechanism should be considered
in the design of the future hybrid Map-Reduce/DBMS systems.
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