
Evaluation of Natural Language Processing on

Local and Public Cloud Resources

Hao Sun †1 and Kento Aida†2,†1

In high-performance computing, parameter survey applications, which con-
sists of a lot of independent tasks with different input parameters are typical and
conventionally run on local computing resources with batch scheduler systems
such as SGE and Condor. Our targeted PSA application is a Natural Language
Processing (NLP) application. It uses Support Vector Machine (SVM) to learn
and eliminate abuse words from the commercial bulletin board systems (BBSs)
documents. Security issues become important because it processes confidential
documents including personal informations. In this paper, we implemented an
effective and secure hybrid mechanism with our previous work, InterS. It adds
IaaS Cloud resources to the batch schedulers when the local resources are in-
sufficient due to failures or overhead by external application tasks. It utilizes
Amazon VPC service to enable the secure computation of our NLP application.
InterS run the NLP application in our experiment and the evaluation of time
efficiency is shown from the results.

1. Introduction

A parameter survey application (PSA) is known as a typical application running
on high-performance computing systems. PSA consists of a lot of independent
tasks with different input parameters, and tasks are executed in parallel on dif-
ferent CPU (cores). A batch scheduler, e.g. SGE1) and Condor2) is used to run
tasks on local computing resources such as a PC cluster operated in the user
site. In this case, tasks are submitted to the local batch queue and the batch
scheduler dispatches tasks to free CPU (cores) in the local resource pool. Natural
Language Processing applications usually run machine learning tasks in the PSA
style. Our target NLP application is developed to detect and eliminate abuse
words in documents on the internet bulletin board systems (BBSs). It runs the

†1 Tokyo Institution of Technology
†2 National Institute of Informatics

machine learning method, the Support Vector Machine (SVM), to learn input
sample documents and then produces the high quality model to detect abuse
words. The machine learning method needs to evaluate huge number of different
SVM parameters. The input documents include personal information, thus, the
computation needs to be executed in secure environment.

Infrastructure-as-a-Service Cloud (IaaS Cloud) providers such as Amazon3) pro-
vides computational resources to users in an on-demand manner by virtualizing
their physical resources. A user purchases the (virtualized) resources in a pay-
as-you-go fashion and usually is charged in an hourly basis. Security is one of
issues4) in the current IaaS Cloud environment. In some cases, input files of an
application may include confidential data that should be protected from other
users, e.g. anonymous data or data including personal information.

Some batch schedulers, e.g. SGE and Condor, currently support job submis-
sion interfaces for Amazon EC2. Also, the hybrid execution mechanism and the
scheduling performances have been studied in5),6). However, the discussions are
limited to the hybrid execution mechanism. To the best of our knowledge, no
previous work discusses a mechanism and performance to run PSA in the hybrid
and secure manner.

In this paper, we propose a hybrid and secure execution mechanism to run the
NLP application with both local computing resources and IaaS Cloud resources.
The proposed mechanism enables a user to submit NLP tasks through the local
batch scheduler, or SGE. The submitted tasks run on local computing resources
when sufficient resources are available in the local resource pool. Also, the pro-
posed mechanism controls resources so that the submitted the application meet
the deadline. When local computing resources are not available by failures or
overload due to external application tasks, the proposed mechanism automati-
cally creates virtual machine (VM) instances in IaaS Cloud (Amazon EC2) and
add the VM instances into the resource pool of the local batch scheduler. Also,
the proposed mechanism deletes the VM instances in the resource pool when suf-
ficient local resources are available. The Amazon Virtual Private Cloud (VPC)7)

service is utilized to enable secure computation of the target application. The
communication between the local computing resources and Amazon EC2 is se-
curely performed by establishing virtual private network between both sites.

IPSJ SIG Technical Report

1 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

We implemented the proposed mechanism in our job scheduler, InterS8), and
conducted experiments by running the natural language processing application
(NLP). Our experimental results show that the proposed mechanism enable hy-
brid and secure execution of NLP utilizing local computing resources and IaaS
Cloud.

The rest of the paper is organized as follows: Section 2 discusses related work,
and our target application, NLP, is introduced in Section 3. The proposed mech-
anism and its implementation are presented in Section 4. Section 5 shows the
experimental results, and Section 6 summarizes our work and outlines the future
work.

2. Related Work

This section reviews related work. First we review batch schedulers that sup-
port interfaces to IaaS Cloud, or Amazon EC2. Then performance studies of
scheduling algorithms for hybrid resources, local and public cloud resources are
presented.

2.1 Batch Schedulers with Amazon EC2 Interface
Sun Grid Engine (SGE) is distributed resource management software. It is

widely used as a batch scheduler of local resources, e.g. PC clusters. SGE 6.2
enables a user to submit jobs to resources in Amazon EC2 through the Hedeby
Grid Engine service adapter9),10).

Condor is a workload management system, which dispatches user tasks to re-
sources using the matchmaking mechanism11). It is used as a batch scheduler
on not only local resources, e.g. a computing resource pool in a local site, but
also distributed computing platforms such as the grid. Condor also supports the
Amazon EC2 interface and it enables hybrid execution of tasks between local re-
sources and Amazon EC2 resources by creating instances from the pre-configured
Amazon EC2 AMI for the Condor worker process.

Both SGE (with Hedeby) and Condor work as batch schedulers. Although
they improve overall system performance, e.g. throughput, performance of each
application is sometimes sacrificed. Also, a user needs to create VM instances
and save them in Amazon S3/EBS, that is, the user need to pay for the storage
usage of Amazon S3 even when he/she does not run tasks.

The goal of the proposed mechanism is to enable application scheduling with
hybrid and secure execution of PSA(s). It run PSA tasks to guarantee QoS, e.g.
deadline, by utilizing both local resources and Amazon EC2 resources in hybrid
and secure manner. Also, in the proposed mechanism, VM instances for Amazon
EC2 are created and uploaded at runtime, and the instances are deleted when
the application finishes. Thus, it minimizes the cost for using Amazon services.

2.2 Scheduling Algorithms for Hybrid Resources
Scheduling algorithms for hybrid resources have been studied in literatures5),6).

The work in5) proposes two kinds of market-oriented scheduling policies for hybrid
execution and evaluated the efficiency with the Gridbus broker. In6), the authors
discuss the cost benefit of six scheduling strategies to utilize IaaS Cloud resources
with local batch schedulers and shows the improvement of local system response
times. While the focus of the above work is to discuss performance of scheduling
algorithms on hybrid resources, the focus of this paper is to propose a hybrid
and secure task execution mechanism. Both work are complementary, i.e. the
scheduling algorithms discussed in5),6) could be used on the proposed mechanism
in this paper.

3. Target Application and Requirements

This section presents an overview of the application program used as the bench-
mark in this paper.

A bulletin board system (BBS) and a social network system (SNS), such as
Facebook12) and Mixi13), are widely used in the world. One of problems in these
systems is abuse words posted in the systems. They may include information
that is contrary to public policy or personal information. Administrators of
these systems try to eliminate the abuse words in their systems; however, it is
too hard to eliminate the words effectively. We used the natural language
processing application, or NLP, as the benchmark in this paper. NLP is designed
to help people to eliminate abuse words efficiently and quickly. NLP runs in two
phases, the learning phase and the elimination phase. Figure 1 shows that in the
the learning phase, the NLP reads sample input documents collected from BBS
as training data and learns using the machine learning method, or the Support
Vector Machine (SVM). The annotation data, which identifies abuse words, are

IPSJ SIG Technical Report

2 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

Fig. 1 Overview of the NLP application

also given to NLP with the training data. Figure 1 also shows that 90% of the
input documents are used for training and 10% of the data are used for validation
of the learning results. Finally, the model to eliminate abuse words is generated.
In the elimination phase, the generated model is used to eliminate abuse words
in the target documents.

In the experiments, we collected training data from six or seven commercial
BBS/SNS in Japan and ran the learning phase of NLP with the collected training
data. SVM is implemented as PSA, that is, it runs training tasks using different
SVM parameters. We used the SVM parameter ranging from 1 through 100.
Running one training task spend about 50 minutes on a PC with 2.4GHz (one
core of a dual core AMD Opterontm processor)

The training data, or documents in commercial BBS/SNS, may include anony-
mous or personal information, e.g. addresses and phone numbers; thus, we need
to run NLP in secure environment. Also, we need to run NLP with a batch
scheduler, e.g. SGE, because NLP is implemented as scripts to submit array jobs
thorough SGE.

4. Proposed Method

This section outlines the proposed mechanism and presents implementation

in details. The proposed mechanism efficiently utilizes both local computing
resources and IaaS cloud resources, or Amazon EC2, to meet a deadline of the
summated PSA. The proposed scheduling mechanism is implemented in our job
scheduler, or InterS.

A user submits a PSA, or tasks in the PSA, to InterS indicating the deadline
to finish the PSA. Then, InterS runs a part of tasks in the submitted PSA fully
utilizing local computing nodes. After the tasks finish on the local computing
nodes, InterS investigates execution time of the finished tasks and estimates the
time to complete all tasks in the submitted PSA. If the estimated completion
time is before the deadline, InterS runs the rest of tasks on local computing
nodes. If the estimated completion time is after the deadline, InterS computes the
number of external computing nodes, or VM instances in Amazon EC2, required
to complete all tasks before the deadline and runs the rest of tasks both on
local computing nodes and VM instances in Amazon EC2. The communication
between the local computing nodes and the VM instances in Amazon EC2 is
securely performed by the Amazon VPC service.

The rest of this section presents detailed implementation of the proposed mech-
anism: (1) the hybrid resource management, (2) resource extension and reduction
and (3) secure communication with Amazon VPC.

4.1 Hybrid Resource Management
InterS works as a frontend interface of SGE. InterS configures two queues in

SGE, all.q and ec2.q, to submit tasks to local resources and Amazon EC2, respec-
tively. When resources in Amazon EC2 resources are required, InterS initiates
VM instances in the VPC subnet and add VM instances into ec2.q. Communi-
cation between InterS and SGE is implemented using the Distributed Resource
Management Application API (DRMAA)14). Figure 2 shows an example of
scripts running in InterS to add Amazon EC2 resources to ec2.q.
• Preparation

InterS uses Amazon EC2 command line tools to upload pre-configured AMI
files to Amazon S3 and then register the VM image (line 1 in Figure 2). This
step requires user credentials such as Amazon service access keys: a key,
s key and upload destinations, e.g. bucket, mani file.

• Provisioning

IPSJ SIG Technical Report

3 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

// AMI preparation

1. ec2-upload-bundle -b $bucket -m $mani_file -a $a_key -s $s_key

2. ec2-register $bucket/$mani -n $bucket

// Extension

3. ./inst_sge -x -auto $configure_template_file

4. qconf -aattr hostgroup hostlist $hostname @ec2hosts

5. qconf -aattr queue slots [$hostname=$numOfCores] ec2.q

6. ssh root@$hostname sudo -usgeadmin /etc/init.d/sgeexecd.inters-ec2 start

Fig. 2 Methods to extend SGE resources

// Uninstall

1. qconf -dattr hostgroup hostlist $hostname @ec2hosts

2. qconf -dattr queue slots [$hostname=$numOfCores] ec2.q

// AMI deletion

1. ec2-deregister $ami_id

2. ec2-delete-bundle -a $a_key -s $s_key -b $bucket -p $mani_file

Fig. 3 Methods to reduce SGE resources

InterS uses Amazon APIs to initiate Amazon EC2 resources.
• Extension

InterS creates template files and installs the SGE system with the automatic
installation method15). To generate the installation template file, configu-
rations of hostname, SGE ROOT, SGE CELL and other values should be
collected for each Amazon EC2 resource. After the initiation of Amazon
EC2 resources, InterS installs SGE systems with the configuration files by
command inst sge (line 3 in Figure 2). To utilize the new Amazon EC2 re-
source, InterS should add it to the proper host group and queue of SGE,
@ec2hosts and ec2.q are used in our implementation. Finally, InterS starts
SGE service through ssh.

When Amazon EC2 resources are no longer required, InterS deletes the VM
instances from ec2.q, shutdowns the VM instances and deletes the AMI files from
Amazon S3 resources. Figure 3 shows an example of scripts to delete Amazon
EC2 resources.

4.2 Resource Extension and Reduction
InterS periodically checks statuses of queued tasks and adds/deletes resources

Table 1 Summaries of Amazon EC2 Instance Types

Type Cores Capacity [GHz]∗1 RAM [GB] Cost [$/h]
m1.large 2 2 (4) 7.5 0.34
m1.xlarge 4 2 (8) 15.0 0.68
m2.xlarge 2 3.25 (6.5) 1.7 0.50
m2.2xlarge 4 3.25 (13) 7.5 1.20
m2.4xlarge 8 3.25 (26) 15.0 2.40
c1.xlarge 8 2.5 (20) 7.0 0.68
*1. (n) stands for the number of ECUs, the CPU capacity unit for Amazon EC2 service.

Cec2 = MAXIMUM

Nt local = bNlocalslotsTremain/Tlocalc
if Nt now > Nt local then

for cpu capacity in all Capacity [GHz] of Table 1 do

5: if Tcpu capacity = 0 then

Tcpu capacity = Tlocal × CPUlocal/cpu capacity

end if

Nec2slots = d(Nt now − Nt local)Tcpu capacity/Tremaine
Scpu capacity = planEC2Resources(Nec2slots, cpu capacity)

10: Cec2now = calculateCost(Scpu capacity)

if Cec2now < Cec2 and Cec2now ≤ Budget then

Sec2 = Scpu capacity

end if

end for

15: end if

// To extend resources

initiateEC2Resource(Sec2)

moveQueuingTasksToEC2(Nt now − Nt local)

Fig. 4 Resource Extension Algorithm

to execute the tasks so that all tasks finish before the deadline. In the current
implementation, we configure InterS to do the above procedures every 60 seconds.
Amazon EC2 offers multiple types of VM instances as shown in Table 1. InterS
chooses the cheapest one that completes all tasks before the deadline.

Figure 4 shows the algorithm for resource extension, or adding VM instances in
Amazon EC2 into ec2.q. First, InterS obtains the number of queued tasks Nt now.
The queued tasks means tasks both running in resources and waiting in queues.
Then, InterS estimates Nt local, the number of queued tasks that can finish before
the deadline in the local resources. Line 3 shows the equation to compute Nt local.
Nlocalslots indicates the number of available cores in the local resources. Tremain

means time to the deadline computed by Deadline − CurrentT ime and Tlocal

IPSJ SIG Technical Report

4 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

indicates the average execution time of tasks that ran on the local resources. If
Nt now is greater than Nt local, InterS adds Amazon EC2 resources and estimates
costs for the Amazon EC2 resources. InterS chooses one or more instance types
with the same Capacity [GHz] (in the third column in Table 1) for the Amazon
EC2 resources. There might be multiple options to choose instance type(s) for
the Amazon EC2 resources. InterS compute a total cost for VM instances for each
option and chooses the cheapest option under the user budget. (This algorithm
is presented from the line 5 through 15). We implemented functions presented
in Table 2 on InterS. (They are indicated in the boldface in Figure 4).

The number of VM instances, which are added to ec2.q, should be appropri-
ately decided so that all tasks finish before the deadline. The line 10 in Fig. 4
computes the number of CPU cores (in VM instances) added to ec2.q, Nec2slots.
Tcpu capacity indicates the average task execution time on VM instances of the
”cpu capacity” type in the Amazon EC2 resources. Nec2slots is computed for all
VM instance types in Table 1 and the cheapest type is chosen (line 13).

Figure 5 presents the algorithm to delete VM instances from ec2.q. When a
task running on an Amazon EC2 resource finishes, InterS checks if other tasks
are associated to the same VM instance as the finished task (Line 4 through line
7). If no tasks are associated to the VM instance, or the VM instance is no longer
needed, InterS sets the shutdown flag in the VM instance from the line 8 through
9. InterS does not shutdown the flagged instance at this time. A VM instance in
Amazon EC2 is charged for a slot of 60 minutes duration. Thus, InterS delays
the shutdown by the end of the charged slot, so that it avoids frequent shutdown
and initialization of VM instances and paying extra cost.

4.3 Secure Communication with Amazon EC2
We implemented InterS with Amazon VPC to establish secure communica-

tion between local resources and Amazon EC2 resources. Amazon VPC is a
secure and seamless bridge between local infrastructure and the AWS Cloud7).
Table IV summarizes the prices for the VPC service. In the implementation,
local resources and Amazon EC2 resources communicate through gateways, the
customer gateway associated with the local resources and the VPC gateway as-
sociated with Amazon EC2 resources. The secure communication between the
gateways is established via the IPSec-VPN tunnel16). To establish IPSec-VPN

Table 2 Functions for Resource Extension

Function Details
planEC2Resources(Nec2slots, cpu capacity) Return Amazon EC2 resources such as [(m1.xlarge,1)]

when Nec2slots is 3 and cpu capacity is 2GHz
calculateCost(Ncpu capacity) Return the cost of the Amazon EC2 resources. e.g

returns $0.68 for [(m1.xlarge,1)] for one hour.
initateEC2Resource(Sec2) Create Amazon EC2 resources and extend SGE

resources. Sec2 is the Amazon EC2 resources set,
such as [(m1.xlarge,1)]

moveQueuingTasksToEC2(Nec2tasks) Move tasks from all.q to ec2.q.

Table 3 Functions for Resource Extension

Function Details
waitAnySGETasks() Return a finished task
getEC2Resource(J) Return the corresponding Amazon EC2 resources

of task J .
getUnfinishedJobsWithResource(R) Return all unfinished tasks with the Amazon EC2

resource R.
markEC2ResourceShutdown(R) To mark resource R status as shutdown.
deleteTask(J,R) To delete task J from the corresponding resource

R.

loop

// Detect if any job finished

J = waitAnySGETasks()

if J is a task running on Amazon EC2 resource then

5: // Get the EC2 resource handle of job J

Rj = getEC2Resource(J)

Jr = getUnfinishedJobsWithResource(Rj)

if sizeof(Jr) == 0 then

markEC2ResourceShutdown(Rj)

10: else

deleteTask(J, Rj)

end if

end if

end loop

Fig. 5 Resource Reduction Algorithm

tunnels between local cluster and Amazon VPC, the open source software ipsec-
tools17) and quagga18) are used19). Parts of the configuration are shown in Figure
6. The racoon.conf configures IPSec connection algorithms and other connec-
tion informations (e.g Line 1 shows the IP address of the VPC gateway), the

IPSJ SIG Technical Report

5 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

Table 4 Summaries of Amazon VPC Pricing

VPN Connection [h]
$0.05

VPN Data Transfer In [$/GB]
free until 11/01/2010
$0.10 after 11/1/2010

VPN Data Transfer Out [$/GB]
First 1 GB/Month $0.00
Up to 10 TB/Month $0.15
Next 40 TB/Month $0.11
Next 100 TB/Month $0.09
Over 150 TB/Month $0.08

ipsec-tools.conf configures the rules when to use IPSec-VPN for communication.
For instance, through line 1 to line 4, it shows the rule: when send packets from
the customer gateway to the Amazon VPC gateway, secure it with VPN and the
secure algorithms and parameters are used from the lines 14 to 17 in racoon.conf .

InterS uses the Java API of Amazon EC2 to manipulate Amazon VPC service.
There are mainly six steps to initialize and finalize the VPN connection: to cre-
ate VPC and subnets, then to create the customer gateway, VPN gateway and
VPN connections between them. Finally, InterS attach the VPN gateway to the
Amazon VPC. InterS detects the required information and do the above works
automatically. Users just need to make sure the required packages: ipsec-tools
and quagga are installed properly. Amazon VPC uses Pre-Shared-Key method
for the authentication and to setup such credentials requires root privilege of
the customer gateway, InterS uses sudo command to avoid this kind of prob-
lems. Communication between resources in Amazon VPC and resources outside
of Amazon VPC needs to be performed through the customer gateway7). This
may cause serious performance degradation when resources in Amazon EC2 share
files in Amazon S3. Let us suppose that Amazon EC2 and S3 resources are op-
erated in a datacenter in US and local resources are located in the other country,
e.g. Japan. In the case that two VM instances in Amazon EC2 access files in
Amazon S3, data for the file access is transferred through the customer gateway
in Japan. We do not use Amazon S3 to avoid the performance degradation.

/etc/racoon/racoon.conf

1. remote 72.21.209.225 {

2. exchange_mode main;

3. lifetime time 28800 seconds;

4. proposal {

5. encryption_algorithm aes128;

6. hash_algorithm sha1;

7. authentication_method pre_shared_key;

8. dh_group 2;

9. }

10. generate_policy off;

11. }

12. sainfo address 169.254.255.2/30 any address

13. 169.254.255.1/30 any {

14. pfs_group 2;

15. lifetime time 3600 seconds;

16. encryption_algorithm aes128;

17. authentication_algorithm hmac_sha1;

18. compression_algorithm deflate;

19. }

/etc/ipsec-tools.conf

1. spdadd 169.254.255.2/30 169.254.255.1/30 any -P out ipsec

esp/tunnel/136.187.33.82-72.21.209.225/require;

2. spdadd 169.254.255.1/30 169.254.255.2/30 any -P in ipsec

esp/tunnel/72.21.209.225-136.187.33.82/require;

3. spdadd 192.168.200.0/24 169.254.255.2/30 any -P in ipsec

esp/tunnel/72.21.209.225-136.187.33.82/require;

4. spdadd 169.254.255.6/30 192.168.200.0/24 any -P out ipsec

esp/tunnel/136.187.33.82-72.21.209.193/require;

Fig. 6 Configurations of IPSec-VPN connection

We put a NFS server in Amazon VPC for file sharing among VM instances in
Amazon EC2.

5. Experimental Studies

Table 5 Experimental Settings

(a) Local Resource Information

8 SGE execution nodes, 4 cores (2.4GHz AMD) in each node.

(b) Summarization of Task Workloads

NLP Tasks AET∗1 [s] on 2.4GHz AET [s] on 2GHz AET [s] on 3.25GHz

100 2564.90 (±266.05) 2689.50 (±233.79) 2923.6 (±1043.21)

*1 AET stands for average execution times.

In this section, the proposed method is evaluated and the execution time and
the costs of utilizing Amazon EC2 are discussed. The NLP application user
executes 100 tasks in a local cluster with 32 cores (2.4GHz AMD) within 9000
seconds. To guarantee the deadline, InterS used three kinds of resources with

IPSJ SIG Technical Report

6 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

Fig. 7 Job Distribution with Hybrid Resources

different CPU capacities: the local cluster resources and m1.*, m2.* resources
in Amazon EC2. We assume one EUC as one 1GHz CPU, so m1.* types of
Amazon EC2 resources have 2GHz CPUs and m2.* types have 3.25GHz. The
details of the tasks and local cluster information are summarized in Table 5.
The execution time with each CPU capacity is calculated as the average of 100
different tasks. From the results, we can see the execution time do not change
linearly between different CPU types, so the execution time estimation is also a
challenge. Since evaluation of the hybrid execution method efficiency is the aim
of this experiment, we left the problem to our future works.

We will show the scheduling performance of our proposed method below.
Figure 7 shows the task distribution of local resources and Amazon EC2 re-

sources. The x axis stands for elapsed time, and the y axis stands for the number
of remaining tasks. There are four lines in each figure, and the meaning of them
are as follows: line local shows locally running tasks and line ec2 shows that of
Amazon EC2 resources, line leftjobs stands for remaining tasks and is the sum of
local and ec2. To compare the scheduling performance with local only method,
the local only line is added to show the number of remaining tasks. We can
see that InterS adds Amazon EC2 resources and makes the total execution time
shorter than the local only one.

InterS calculates the average of finished tasks, and regards it as the execution
times of further tasks. InterS needs the execution information to extend local

Fig. 8 Amazon EC2 Resource Allocation

Table 6 Resource Extension Details

Time Remain [s] #RJ∗1/cores (local or ec2) #JCF∗2 (#Tasks, Resources)

6631 99/32 (local) 91 (8,m1.xlarge*2)

6565 89/32 (local) 88 (4,m1.large*2)

4753 56/32 (local) 55 (2,m1.large)

4571 54/32 (local) 53 (2,m1.large)

4450 52/32 (local) 51 (2,m1.large)

4268 50/32 (local) 49 (2,m1.large)

*1. RJ stands for remaining jobs.

*2. JCF stands for jobs can finish within the remaining time.

resources, so it can not start hybrid execution until any one of the tasks finish.
The first 2000 seconds in the front of Figure 7 and Figure 8 shows the waiting
time of the first finished task and the time of initializing the first Amazon EC2
instance. Table 6 shows the resource extension steps for the NLP tasks. InterS
uses the resource extension algorithm and detects that only 91 tasks can be
finished within the remaining 6631 seconds, but 99 tasks are running with 32
cores in local resources. Thus, 8 tasks should be executed with Amazon EC2
resources and until the deadline, the m1.xlarge type of Amazon EC2 instance
with four cores can executes two cycle before the deadline, so InterS allocates
two of them and assigns the 8 tasks to the resources. InterS repeated such
process to guarantee the QoS of the applicaion. And finally, the 100 tasks cost
8065 seconds to finish and takes $5.44 to allocate eight Amazon EC2 instances.
We can see that InterS successfully guaranteed the deadline.

IPSJ SIG Technical Report

7 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

In Figure 8, the x axis stands for elapsed time and the y axis indicates the
number of available cores. Plocal shows the available cores in local clusters and
pec2 shows that of Amazon EC2 resources. The line pec2 in Figure 8 shows that
InterS allocated Amazon EC2 resources six times (Table 6) and It only allocated
resources when required. Finally, InterS utilized eight Amazon EC2 instances
and guaranteed the deadline successfully.

6. Conclusions

In this paper, we proposed a hybrid and secure execution mechanism of PSA
applications on local and public Could resources. It can help users to guarantee
their deadline as while as providing a secure execution environment. We imple-
mented the system by adding three functions to our job scheduler, InterS: (1)
the hybrid resource management, (2) resource extension and reduction and (3)
secure communication with Amazon VPC. Out target PSA is a natural language
processing application, it uses the Support Vector Machine method to learn docu-
ments from commercial BBS/SNS systems, and then creates high quality models
for detecting abuse words on the internet BBS/SNS(s). In our experimental
study, a user runs much more tasks than the number of available cores in the
local resources. From the results, we can show that the proposed method can
allocate resources from Amazon EC2 properly and successfully guarantee the
deadline. For the future works, we need to improve the accuracy of execution
time estimation so as to provide a more cost effective mechanism.

Acknowledgment

A part of this work is supported by Japan Society for the Promotion of Science
(JSPS) within the framework of Global COE Program ”Photonics Integration-
Core Electronics”.

References

1) Gentzsch, W.: Sun Grid Engine: Towards Creating a Compute Power Grid, In CC-
GRID ’01: Proceedings of the 1st International Symposium on Cluster Computing
and the Grid, IEEE Computer Society, p.35 (2001).

2) Online: Condor Project Homepage. http://www.cs.wisc.edu/condor.
3) Online: Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.

com/ec2/.
4) Rittinghouse, J.W. and Ransome, J.F.: Security in the Cloud, chapterSecurity in

the Cloud, pp.153–154, CRC Press (2009).
5) Salehi, M.A. and Buyya, R.: Adapting Market-Oriented Scheduling Policies for

Cloud Computing, chapterSyntax-directed program modularization, pp.351–362,
Springer Berlin / Heidelberg (2010).

6) de Assuncao, M.D., di Costanzo, A. and Buyya, R.: Evaluating the cost-benefit of
using cloud computing to extend the capacity of clusters, HPDC ’09: Proceedings of
the 18th ACM international symposium on High performance distributed computing,
New York, NY, USA, ACM, pp.141–150 (2009).

7) Online: Amazon Virtual Private Cloud (Amazon VPC). http://aws.amazon.com/
vpc/.

8) Sun, H. and Aida, K.: Interactive Application Scheduling with GridRPC, IPSJ
Transaction on Advanced Computing System, Vol.3, pp.88–100 (2010).

9) Online: hedeby: Hedeby Project Overview. http://hedeby.sunsource.net/.
10) Online: SGE Hedeby and Amazon EC2. http://wiki.gridengine.info/wiki/

index.php/SGE-Hedeby-And-Amazon-EC2.
11) Raman, R., Livny, M. and Solomon, M.: Matchmaking: Distributed Resource Man-

agement for High Throughput Computing, In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, pp.28–31
(1998).

12) Online: Facebook. http://www.facebook.com/.
13) Online: ソーシャル・ネットワーキング サービス [mixi(ミクシィ)]. http://mixi.jp.
14) Online: Distributed Resource Management Application API Specification 1.0.

http://www.ggf.org/documents/GWD-R/GFD-R.022.pdf.
15) Online: Sun Grid Engine: Automating the Installation Process. http://wikis.

sun.com/display/GridEngine/Automating+the+Installation+Process.
16) Online: Guide to IPsec VPNs. http://www.hhs.gov/ocr/privacy/hipaa/

administrative/securityrule/nist80077.pdf.
17) Online: IPSec-Tools. http://ipsec-tools.sourceforge.net/.
18) Online: Quagga Routing Suite. http://www.quagga.net/.
19) Online: Amazon VPC with Linux. http://openfoo.org/blog/amazon vpc with

linux.html.

IPSJ SIG Technical Report

8 ⓒ 2010 Information Processing Society of Japan

Vol.2010-HPC-126 No.40
2010/8/5

