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Networks are widely used to represent many biological data. However, their 
visualization often becomes too complicated to be interpreted, particularly if they 
contain hundreds or thousands of entities. Here, we present an interactive multi-scale 
navigation method for large and complicated biological networks, powered by an 
ultrafast graph clustering technique and a biological-property-based clustering. Similar 
to Google Maps, this method provides appropriately abstracted views at any 
magnification ratio and enables researchers to effectively discover knowledge from 
network data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction  

Biologists in the post-genomic era face difficulties managing and utilizing the volume of 
biological data that are available via the Internet or obtained through high-throughput 
experiments, which are becoming increasingly common. In many cases, binary relationships 
(sets of elements and 1-to-1 associations between them) are used to represent such datasets, 
which often include protein-protein interactions (PPI), correlatively expressed gene pairs, 
genetic regulatory relationships, and signal transduction/metabolic reactions. 

These relationship data are conventionally presented using network visualization where 
nodes (vertices) and edges correspond to elements and associations, respectively [1][2]. 
Network visualization is used because it is typically assumed to be more interpretable by 
humans than a long list of associations. High quality visualization should allow for effective 
investigation of the information, hypothesis generation, and biological discovery [1]. 
Unfortunately, network representations often fail to effectively convey information to readers 
in cases where the networks are large and complicated (e.g., > 100 edges). The drawings of 
such networks, referred to as “hair balls” [2], occur frequently when analyzing 
high-throughput biological data and fail to aid biologists. Effective navigation approaches are 
required to realize the full potential of large, binary-relationship data sets [3]. 

Hierarchical clustering is a technique used with many types of data, including networks or 
graphs, that meaningfully groups data elements in a recursive manner, thereby producing a 
hierarchy, or tree, of clusters [4] (Figure 1). Higher levels in the hierarchy contain fewer, 
larger clusters, each of which encompasses more data elements (or nodes, in the case of 
networks) than lower levels. In the case of hair-balls, some methods [5][6][7][8][9] use 
hierarchical clustering to create an interpretable visualization by displaying only the high 
level clusters, thereby reducing the number of elements in the figure and abstracting the 
networks (e.g., the top panel in Figure 1). By descending the hierarchy and showing the actual 
members of each cluster, detailed information can still be intuitively shown at a particular 
scale (e.g., the dotted arrows and regions in Figure 1). A recent study reported that natural 
networks display hierarchical properties [10], suggesting that hierarchical clustering of 
biological networks is both reasonable and promising. 
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Figure 1  Application of hierarchical graph clustering to network navigation 

 
Despite the advantages of hierarchical clustering, existing visualization methods using this 

technique have some drawbacks that hinder effective investigation of large biological datasets. 
First, some methods [6][7][11] require researchers to provide information on hierarchies or 
clusters, data which is usually not known in advance. Second, existing methods do not allow 
for flexible navigation beyond fixed cluster boundaries [5][6][7][8][9]. In other words, they 
can visualize the members of one cluster at a time but do not support visualization and 
navigation of members of different clusters, despite the fact that nodes/clusters of interest to 
biologists may belong to various high level nodes in the hierarchy (e.g., nodes in the 
light-blue area in Figure 1). Third, existing methods are inappropriate for interactive, 
real-time navigation. Researchers frequently change their focus in the course of biological 
investigation to generate hypotheses and need to visualize different sets of nodes/clusters. 
Thus the long running times (minutes to hours) needed to produce the abstractions are 
unacceptable [5][8][9]. Methods that can provide appropriate abstractions of any given 
portion of the network rapidly and automatically, such as those that process about 100,000 
nodes in seconds, are therefore necessary for efficient, interactive biological investigation. In 
addition to the previously mentioned problems, the clustering techniques employed by 
existing methods are often insufficient for abstracting large networks to a level that is simple 
enough for interpretation [5][8][9]. Recent investigations have revealed that in some common 
biological datasets, hub-like nodes tend to connect with low-degree nodes and the majority of 
nodes interact with only few partners (e.g., yeast PPI networks) [12]. Large, densely 

connected regions of the network are therefore quite few in such networks; instead, small, 
densely connected modules are more frequently found. Consequently, even the highest level 
of the created hierarchies can contain over 100 clusters, resulting in cluttered and difficult to 
manage visualizations. Therefore, means for further abstraction are required to allow for 
effective navigation of large biological networks. 

We developed an interactive, multi-scale network navigation method with three 
advantages: 1) our method can work without a user-provided hierarchy, 2) the method can 
rapidly, automatically, and interactively produce abstractions of any region of the network, 
including nodes/clusters belonging to different ancestors in the hierarchy, and 3) an intuitive 
visualization with a manageable amount of information is reliably produced at every step of 
navigation. The effectiveness of our method was confirmed using real yeast protein network 
data. Our approach will aid modern biologists faced with large and complicated network data. 

 

 
Figure 2  Overview of the method 

 

2. Methods 

2.1 Overview 
Our method consists of three components: an ultrafast graph clustering component, a 

property-based clustering component, and an interface that presents an abstracted view and 
permits researchers to flexibly choose nodes/clusters (Figure 2). First, the method abstracts 
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the whole network using the ultrafast graph clustering component. It detects topologically 
dense, connected regions, which may correspond to biologically meaningful clusters, such as 
protein complexes. Second, in case the abstraction is insufficient because of the 
characteristics of the biological network, the property-based clustering component further 
abstracts the network to an extent sufficient for visual interpretation. This component groups 
clusters with similar biological properties by utilizing the fact that biological entities are often 
assigned property information, such as Gene Ontology (GO) terms. Third, the resultant 
clusters/nodes are immediately displayed with meta-edges and property edges, which 
represent the numbers of edges that exist between any members of two clusters and the 
similarities between their properties, respectively. While showing the abstracted view, the 
interface allows researchers to interactively zoom, move laterally beyond cluster boundaries, 
focus on an arbitrary set of clusters/nodes, etc. Any subset of the entire network of particular 
interest to the researcher can be fed into the clustering components and the abstracted view of 
that cluster is displayed. This cycle can be completed in a few seconds on a typical PC with a 
CPU of about 2 GHz and a memory of about 1 GB for datasets with 100,000 nodes, permitting 
truly interactive navigation of large biological networks.  

 
2.2 Ultrafast Graph Clustering 
The ultrafast graph clustering component detects clusters in networks by finding densely 

connected sets of nodes where connections of nodes within the sets are stronger/denser than 
connections between nodes inside and outside of the set. This metric is called the modularity, 
or Q function [13], and numerous graph clustering algorithms have been developed to identify 
clusters that optimize modularity [13][14][15][16][17][18]. The Newman-Girvan is a 
well-known, pioneering algorithm that iteratively removes edges most likely to lie between 
clusters, splitting the clusters into two, until no edges remain [13]. This process results in a 
dendrogram (a tree showing the order of the splits) and the best clustering can be identified 
from this tree by choosing the split with the highest modularity. This algorithm has a high 
computational cost, as it requires a traversal of all remaining edges at every step. Until 
recently, the best known algorithm developed to overcome this shortage with near-linear time 
complexity was devised by Wakita and Tsurumi [16]. However, the speed of this algorithm 
was still insufficient and the quality of the clusters produced had room for improvement when 
incorporated into an interactive navigation of large networks (e.g., human gene networks of > 
20,000 nodes) [17]. Recently, Blondel et al. developed a breakthrough algorithm for quickly 
identifying high modularity clusters in huge networks of about 100,000 nodes (the Louvain 
algorithm [17]). We found that this algorithm for finding meaningful communities in large 
and complicated networks could be applied to the problem of interactive navigation. 

The Louvain algorithm works in two phases, as follows:  
1. Starting from the state that each node belongs to a cluster different from every other node, 

for each node the algorithm considers its neighbors’ clusters and moves the node to a 
neighboring cluster. The cluster to be joined is determined by choosing the movement that 
results in the highest positive modularity gain among all possible movements to the node’s 
neighboring clusters. If no movements result in a positive gain in modularity, the node is 
not moved. This process is repeated until no members are added to/removed from any 
clusters and yields clusters with the maximum local modularity. 

2. Every cluster from phase 1 is then treated as a new node. For each pair of new nodes, an 
edge connecting them exists if there is at least one edge between any member of one of 
the new nodes and any member of the other. Edge weights are determined based on the 
number of previous edges. Self-loops are drawn on nodes to represent corresponding 
inter-cluster edges.  

The output of phase 2 is then fed back to phase 1 and the algorithm iteratively runs these two 
phases until no additional changes are made. 

This algorithm can finish clustering networks of 70,000 nodes in one second [17]. Thus, it 
works swiftly on many biological networks that generally contain less than 100,000 nodes 
(e.g., yeast or human PPI networks). The ultrafast speed of the algorithm is essential for 
accomplishing the goal of truly interactive navigation of large networks. Additionally, if 
slower property-based clustering is to be executed afterwards, the graph clustering method 
displays another advantage in that it significantly reduces the number of clusters to be input to 
the next clustering.  

The clusters produced by this algorithm, which we call Louvain Clusters or LCs, are 
characterized by high modularity. It has been shown that clusters with high modularity in 
biological networks correspond to biologically functional units (e.g., protein complexes in PPI 
networks and transcriptional modules in gene regulatory networks [19]). Thus, the LCs are 
expected to be intuitive and meaningful groups in navigation of biological networks. 

 
2.3 Property-Based Clustering 
The property-based clustering component aims to decrease the complexity remaining after 

the application of the Louvain algorithm by further grouping LCs based on property 
information typically associated with the nodes (Figure 3). The visualization step displays the 
clusters resulting from the property-based clustering instead of those generated by the graph 
clustering approach, thereby reducing the number of clusters on the screen. The VisANT tool 
works similarly to our property-based clustering and offers integrated visualization of the GO 
hierarchy and user-specified networks, but it requires the user to manually create clusters 
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containing the same GO terms [20]. In contrast, our property-based clustering automatically 
generates clusters having similar properties to achieve interactive navigation. 

 

 
Figure 3  Property-based clustering 
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property vectors are grouped by the Farthest First Traversal K-center (FFT) algorithm [4]. The 
FFT algorithm is a complexity-reducing variant of the K-means algorithm, where initial K 

cluster centers are chosen as follows. The first center (vector) is chosen randomly and each 
remaining center is determined by greedily choosing a vector farthest from the set of already 
chosen centers. The rest of the vectors are assigned to the cluster to which they are most 
similar. 

There are two main advantages of the property-based clustering. First, the property-based 
clustering allows researchers to directly control the number of clusters shown on the screen 
through the parameter K of the FFT algorithm. To solve the problem of the cluttered 
visualization produced by applying only the graph clustering, the number of clusters shown on 
the screen must be decreased to an extent that biologists can manage to interpret. In addition, 
because the preferred numbers of clusters on the screen might differ according to the 
circumstances, it is important that biologists be allowed to adjust the number of clusters 
displayed. Second, because the clusters generated by the property-based clustering are based 
on the property information that carries biological meaning, the clusters are expected to be 
highly intuitive. Note that it is also possible to continue Louvain clustering to further reduce 
the number of clusters, even if the gain in modularity becomes negative. However, in such 
cases, the biological intuitiveness of the clusters produced might be lowered due to the 
decreased modularity [19]. Therefore, it might be better to adopt another reliable source of 
information, in addition to the topology of the networks, at this stage. 

3. Results and Discussion 

The proposed method was implemented as a Java 6 Swing application with a graphical 
interface for flexible navigation (see the Results section for detail). The JUNG (Java 
Universal Network/Graph Framework) library [21] was employed to create the visualization. 
Three input files are required to run the application: a node list file, an edge list file, and a 
property information file. The node list file describes node names, property terms annotated 
with the nodes, and database names and IDs used in those databases (e.g., SGD for yeast 
proteins). The database information is used to provide URL links. The edge list file contains 
connected pairs of node names and the weights of the connections (weights describe how 
strongly the nodes are connected). The property information file describes the property terms 
in the node list file: terms’ IDs, names, display names (used in labeling clusters in abstracted 
views), namespaces, default weights, and their parent terms. In the case of the GO property 
information file bundled with the software, the default weights are terms’ depths in the GO 
hierarchy. This treats more specific terms as more important properties. In addition, each term 
belongs to one of three namespaces (biological process, molecular function, or cellular 
component). By using the namespace information, researchers can put heavier weights on all 
biological process terms at once if they want to group nodes having similar biological process 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-BIO-22 No.5
2010/7/29



情報処理学会研究報告 
IPSJ SIG Technical Report 

 5 
 

terms, rather than other namespace terms. If parent terms are provided for each term, they are 
automatically assigned to the nodes that the term annotates as well. The is_a and part_of 
relationships in GO are handled by this entry. The implemented software, NaviCluster, is 
available at http://navicluster.cb.k.u-tokyo.ac.jp/, and works on any platform that can run Java 
6. The program has a minimum memory requirement of 1 GB for networks of about 100,000 
edges. 

To confirm the novelty and capabilities of the present method, we compared it to other 
existing visualization methods such as GenePro [6], Power Graphs [8], VisANT [20], 
BioLayout Express3D [7], and jClust [9] (Table 1). Our method was the only one capable of 
representing the hard-to-manage and complicated visualization of the overwhelming numbers 
of nodes and edges and providing the capability to navigate networks beyond cluster 
boundaries. GenePro, BioLayout Express3D, and jClust can visualize clusters of nodes, but 
only at a single level. They do not support visualization of recursive clustering. VisANT 
provides multi-scale visualization; however, the user must manually create metanodes 
(equivalent to clusters) themselves. CyOog (Power Graphs) hierarchically visualizes power 
nodes (equivalent to clusters) created by the Power Graph algorithm, but the speed is not fast 
enough to be used for interactive navigation of large biological networks. 

It should be noted that our method is highly extendable in several ways. First, any type of 
property information, not just GO categories, can be used in the property-based clustering. 
For example, if a researcher is interested in diseases, she/he can use disease names associated 
with proteins derived from disease databases to investigate PPI networks by clustering 
proteins related to similar diseases. Second, because the clustering components of the present 
method can abstract any sub-network very rapidly, any interactive function for producing 
network views of interest can be achieved if modules for selecting appropriate clusters/nodes 
are implemented. For example, it is easy to devise a module that interactively produces 
networks of genes regulated by a selected regulatory factor, given information on gene 
regulatory relationships. Third, the presented method is not limited to biological applications. 
In fact, it is general enough to be tailored to network data from other sources as well, as long 
as information adequately describing the properties of the nodes is provided. For example, 
citation networks of biomedical research articles can be explored with the MeSH (Medical 
Subject Headings) vocabularies that are stored in the MEDLINE database and friendship 
networks of university students can be explored with information of class names they attend.  

To summarize, we present the first method for interactive and multi-scale navigation of 
large and complicated biological networks that displays appropriately abstracted views at all 
levels of detail. The specially designed interface enables flexible navigation across cluster 
boundaries. We believe that the method described here will aid modern biologists in 

discovering knowledge from massive binary-relationship datasets, which are accumulating at 
an accelerating pace. The implemented NaviCluster software is freely available at 
http://navicluster.cb.k.u-tokyo.ac.jp/ 

 
Table 1 A comparison table of existing approaches 
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