家庭内センサーネットにおける信頼性無線 フィードバック制御のための帯域効率化 MAC プロトコル

トウルイ[†] 山﨑達也[†] 浜口清[†]

ネットワークを用いたセンシングと制御を統合することで、家庭内エネルギーモ ニタリング・マネジメントを含む広い範囲のアプリケーションが可能となる.し かしながら、センシングと制御のためにネットワークメディアを共有すること は、遅延やパケットロスの原因となる.本論文では、家庭内ネットワークにおけ るセンシングと制御のため、メディアアクセス制御(MAC)層での信頼性無線フィ ードバックを扱う.ホームネットワークでのフィードバックは収集される多量の センシングデータと関連することを前提に、信頼性フィードバック制御に必要と される大容量の帯域要求と、共有ネットワークメディアでの限られた帯域の間で 生じる矛盾によりもたらされる問題について議論する.そして、信頼性フィード バック制御要求に適した動的帯域割当方式を提案し、帯域利用効率を高めること で問題解決を行う.

Bandwidth-efficient MAC Protocol for Reliable Wireless Feedback Control in Home Sensing-Control Networks

Rui Teng[†] T atsuya Yamazaki[†] and Kiyos hi Hamaguchi[†]

Integration of networked sensing a nd n etworked control leads to wide applications including home energy monitoring and management. Using shared network media for sensing and control introduces the delay and p acket loss. This paper studies the Media Access Control (MAC) layer support of reliable wir eless feedback for the sensing and control in home networks. Bearing in mind that the networked feedback in home network is associated with the collected large a mount of sensing data, we discuss the p roblem caused by the contradiction between large bandwidth requirement of reliable feedback control and the limited bandwidth in the shared network media. We propose a dynamic bandwidth assignment approach that fits the reliability requirement of feedback control and enables a high bandwidth utilization to solve the problem.

1. Introduction

Networked sensing and control for smart ho me appliances are essential to the home energy management. By equipping each home appliance with sensors such as electric current sensors and communic ation interfaces, ener gy consu mption of appl iances can be monitored and controlled [1]. Home appliances periodically report the sensing data to the controller that is in charge of management and control of home appliances. Examples of control messages include changing p ower mode of appl iances and adj ustment of sensors' sampling rate, etc. The network communication media provide s lin ks bet ween sensing and control of home appliances, and enlarges their operation scopes.

Feedback control is one of the important operations in smart home energy networks, since it performs as a response of controller to the sensing data of each hom e appliance. Successful feedback control enables the a daptive power adjustment of a ppliances, and copes with the unusual stat us at appliances, e tc. The feedback control messages can be, for example, the average room t emperature being sent t o an a ir conditioner, the sampling rate to adopt at a home appliance, or a desired power mode of a home appliance [2].

Wireless feedback eases the connection s between home appliances and a home controller. On the other hand, the wireless bandwidth constraint introduces the high possibility of packet loss and delay s of packets in the sensin g-control operation s. The feedback control has a different requirement with regards to the packet delivery reliability and delays. Unlike sensing data, which are periodically sampled, delivered and are proce ssed in a collec tive manner, a feedback control has a higher requirement on the reliability for successful packet delivery and confined delay. Loss or over-delay of feedback control message have an substantial impact on the s uccessful home appliance operations s uch as power adj ustment, and re sponse to the unusual status etc.

Because Media Access Control (MAC) highly affects the success of packet delivery and delay in local hom e networks, this paper studies MAC mechanism for rel iable wireless feedback. There has been much research e ffort directed to ward efficient MAC for wireless networks and sensor networks [3]-[7]. Ho wever, few studies addre ssed the integration o f networked sensing and feed back control o perations in a shared communication channel, i n which a control message generally requires a definitely reliable delivery within a certain delay, while sensing data ask for enough bandwidth for sending data packets.

Our target is to design a bandwidth-efficient MAC protocol for wireless networked sensing and reliable control. The de sired MAC protocol should provide success packet delivery with delay guarantee for feedback control messages in home networks, while keeps the flexibility

[†]National Institute of Information and Communications Technology (NICT), Japan

of sen sing dat a collection. Due to the pot ential lar ge am ount of feedback packets corresponding to the sen sing data of many appliances, we particular consider the band width efficient issues to deal with the bandwidth constraints in wireless networks.

The contributions of this paper are as follows. First, we study the features of sen sing and wireless feedba ck control, and introduce the edesign princ iples of MAC particular f or networked sensing and feedback control. Second, we propose a reliable MAC protocol that formulates the collective us e of bandwidt h with time compartment of s ensing and feedback control operations, providing both eas y access for s ensing data and reliable deliver y of feedback control me ssages with delay guarant ee. Third, to achieve the optime ization of bandwidth u sage, we propose a dynamic bandwidth assi gnment scheme based on a feedback with the minimum frequency of control slots in the bandwidt h optimization follows the Nyquist sampling theorem in that the minimum allocated control slots should have a 2-times frequency to the sensing -control frequency, in other word s, 2 control slots s in a sensing-control cycle.

The rest of this paper is organized as follows. Section 2 introduces related works. Section 3 describes the network model and design principles. Section 4 presents the proposed approach of MAC protocol and section 5 concludes.

2. Related Work

MAC protocols can be categorized as contention-based approaches (Aloha, CSMA, S-MAC [3], etc) and contention -less app roaches (TDMA, C DMA, freq uency hopping, etc). Contention-based approaches are widely utilized in the shared network media. For exa mple, CSMA-based approaches are adopted in the Ethernet, WL AN, ZigBee. Those approaches have flexibility for easy media access, but al so have the disadvantages of high probability of packet loss when there is large network traffic [4].

On t he other hand, contention-less ap proaches have the ad vantage of the successful delivery of packets but with little flexibility. A typical contention-less MAC is TDMA, which divides time into time slots and allocates them to each node [5]. As for smart home appliances, the TDMA based MAC leads to the complexity of node configuration such as synchronization for the data transmission in each slot. The channel utilization is a problem in case there are a number of nod es in a network, since the slot is generall y a ssigned for each node in the network even though it does not use the channel.

There are many studies focusing on the improvement of CSMA based MAC. IEEE 802.11 protocols include a reservation scheme that helps avoid collisions even in presence of hidden terminals. Collision avoidance uses the RTS-CTS frames. Although RTS/CTS exchange help

avoid collision, it also introduce s the delay and consumes bandwidth resources, especially in case of small data delivery in sensor networks.

IEEE 802. 11e propo ses a QoS supp orted MAC on the b ase of CSMA, with especially considering the multimedia data such a s voice and vide o data. There are multiple levels of priority for data traf fic to acce ss channel. High priority traffic has a higher chance of being sent than low priority traffic. In other words, a station with high priority traffic waits a little less be fore it sends it s packet, on average, than a station with low priori ty traffic. The time-constrained data such a s voice and vide o data have hig her priories than general data traffic. This enables the QoS improvement in the contention-based approaches but does not guarantee the successful delivery of packets.

Hybrid MACs attempt to combine contention-based and contention-less protocols, Such as ABR OAD [6] and Z-MAC [7]. ABR OAD integrates a CSMA based contention protoc ol within each slot of a TDMA allocation protocol. Each node has priority to access the chan nel in its a ssigned slot. Z-MAC has a similar idea but with a main target of improving channel utilization. In this study the time slot unit is supposed to be large enough for being used by various candid ate nodes. Up to the prese nt, mo st hy brid MAC approaches con sider independent node operations in the network. Few studies consider delay guarantee for various types of messages, and correlations of nodes that operate for both sensing and control.

IEEE 802.15.4 and 802.1 le also propo se optional h ybrid MAC mechanisms with contention-based access and contention-less access by utilizing a superframe. Time is divided into superframes. Each superframe consists of two period CFP(Contention Free Period) and CP(Contention Period). The su perframe gives an option of ad opting both contention-based and contention-less access control. But it is just a framework without specifying mechanisms for managing the network resource and providing delay guarantee.

We have proposed a QoS-MAC which considers the relia ble networked control in h ome network [8]. Arbitrary network ed control is the study object in the considered applications. The arbitrary control message in the paper consists of a few bits c ontrol message such as on/off control, and multiple control messages can be aggregated in a control packet. The feedback control is different with the arbitrary networked control in that the feedback may generate a potential large amount of control packets associated with sensing data. Furthermore, the size of a feedback control packet is generally similar to that of sensing data packets, and is generally larger than that of the sm all control messages such as on/off s witch. Hence, the MAC layer in feedback control should particularly consider the features of fe edback control and deal with the bandwidth constraint for the potential large feedback control messages.

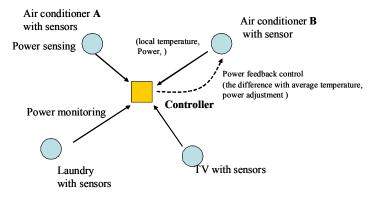
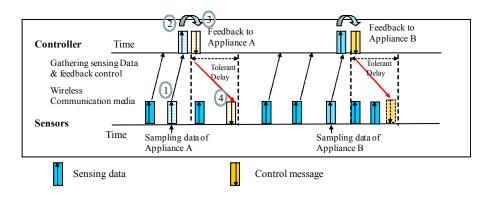


Figure1. An example of sensing-control model

3. System Model

3.1 Wireless Sensing-Control Model


As shown in Fig.1, a smart home network system consists of home a ppliances and a controller, which collects sensing data of home appliances and provides feedback control to the home appliances. Each home appliance is equipped with CPU, sensor s and a communication interface, so as to have capability of computing, power sensing, and network communication. Each home appliance has a unique network ID to distinguish it from other appliances.

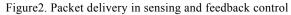

Sensors and the controller share the wireless communication media to delivery data to each other. The cont roller generates control pac ket according t o the received s ensing data. Each packet of sensing data might trigger a feedback control message as the response to the sensing data. An example of feedback control is illustrated in Fig.1. The controller sends the feedback, which includes the information of power adjustment and temperature, to an air conditioner B after comparing the received sensing data at the air conditio ner with the av erage value o f sensing data in the room.

Figure 2 illustrates the delivery of feedback control messages and collection of sensing data in the s hared communication media. A feedback control message has a tolerant dela y (TD), within which a control message is expected to be successfully delivered to the home appliance, as shown in Fig.2. The success of the feedback packet deliver y requires the pa cket collision avoidance.

3.2 Design Principles

The design principles of QoS supported MAC are as follows:

(1. A sensor at appliance A reports a packet to the cont roller; 2. The controller receives the sensing packet; 3, the controller generates a feedback packet to appliance A according to the received packet; 4.the sensor at appliances A receives the feedback packet within the tolerant delay.)

(1) Successful delivery of feedback control messages - Ea ch control message, when generated acc ording to the received sensing data, should be delivered from a controller to appliances with a high successful delivery rate.

(2) Guaranteed delay - Each feedbac k control message should be received by appliances within the required tolerant delays.

(3) Bandwidth efficiency for potential large amount of feedback control messages- Under the principles of (1) and (2), utilization of communication channel and bandwidth should be efficient so that collection of sensing data has abundant available time of channel usage.

(4) Being simple for use and easy for configuration to home appliances.

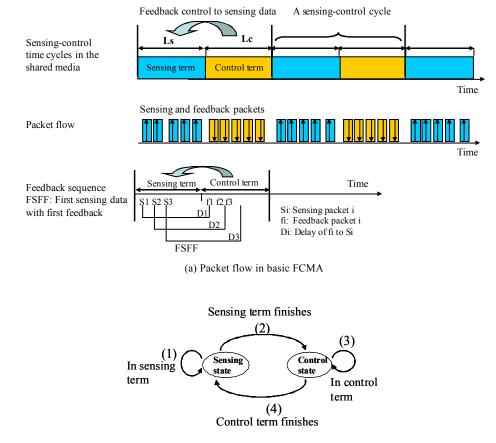
4. Wireless Feedback MAC Protocol

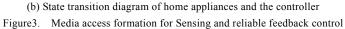
We propose a wireless sensing-control MAC protocol of FCMA (Feedback Control Media Access) that aims to support reliable feedback control with bandwidth efficiency. According to the design principles described in section 3.2, we introduce the proposed protocol with two correlated parts- basic approach and ad vanced approach. The basic approach introduces how the F CMA supports success ful delivery feed back control within the tolera nt delay while keeping the easy access of communication media for networked sensing. The advanced part of FCMA introduces the bandwidth optimization for sensing and control on the basis of first part

of the proposal.

4.1 Basic FCMA: Media Access Formation for Sensing and Feedback Control

Following the basic desi gn pr inciples, the desired MAC should let each successfully transmitted sensing packet be able to get a corresponding feedback within a confined delay in case the feedback is required. W e can further observe that collective sensing data should be followed with collective feedbacks within the tolerant delay.


In basic FCMA, to enable success delivery of feedback control, the time is divided int o continuous sen sing-control cy cles. As shown in the Fig.3(a), one sensing-control cy cle consists of a sensing term and a control term. A control term follows a sensing term and is correlated with the sensing data transmitted in the sensing term . Each hom e appliance and controller formulates the time according to the sensing-control cycles so as to be in the same term s imultaneously. S uch form ation of a s ensing term and a control term enables each feedback successfully response sensing packets with a limited delay.


Figure.3 (b) illustrates the state transition diagram of home appliances and the controller in a sensing-control cycle. In a sensing term, both home appliances and the controller are in the sensing state. And h ome appliances access t he communication m edia in a n opportunistic manner, e.g. CS MA, to report sensing data, while the controller is in a receiving mode to collect sensing data from home appliances. In a control term, both home appliances and the controller are in the controller are in the controller are in the control state. And the controller transmits feedback c ontrol packets to home appliances, while each home appliance is in a receiving mode to get control packet from the controller.

Now the problem shifts to how to decide the term length of sensing and control. We define the length of sensing term and control term ac cording to the principles with regard to control delay. Let *Ls* denotes the length of sensing term, and *Lc* denotes length of control term. Thus a period of sensing-control cycle is Psc=Ls+Lc, and the frequ ency Fsc of a sen sing-control cycle is Fsc=(1/Psc)=1/(Ls+Lc). S uppose a s ensing packet that triggers for a feedback corresponding to only one con trol feedback pack et that has same packet-s ize with s ensing data packet. the n *Ls=Lc*. Let *Dm* denotes the maxi mum delay of sensing dat a and suppo se each control message has t he s ame T olerant Delay (*TD*). We can get the following proposition.

Proposition 1: The maximum length of a sensing term should be the tolerant delay of *TD*.

Proof: Note that the lar gest delay *Dm* of a feedback packet corresponding to a s ensing packet should not be larger than *TD*. To minimize the largest delay of a feedback response to a sensing packet, the feedback should response the sensing packet in a "FSFF: First sensing

data with fir st feedback" order, as sh own in Fig.3(a). That is, the earlier received sensing packet should correspond to a faster feedback. Therefore, the lar gest delay of a feedback control packet is Dm=Ls. Consequently, the length of sensing term Ls should not be lar ger than TD to support that even the first packet in the sensing term can get a feedback within the tolerant delay TD.

Furthermore we can know the band width u sage ratio of control ter m is

Rc=(Lc/(Ls+Lc)=50%,

in case of a feedback packet that s ensing data triggered has the same packet size of sensing data.

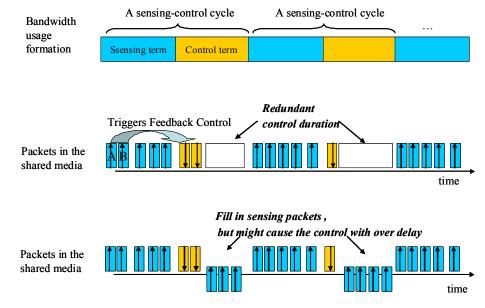
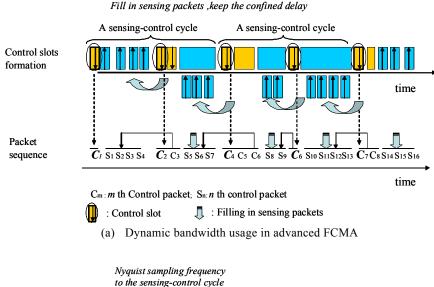
4.2 Advanced FCMA: Optimization of Bandwidth Allocation for Sensing with Relaible Feedback Control

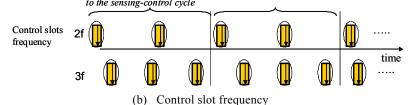
The basic FCMA highlights the formation mechanism of time usage to support reliable feedback to each sensing data packet. The ad vanced FCMA aims to optimize the bandwidth efficiency on the basis of basic FCMA. The bandwidth efficiency is defined in the design principle 3. That is, under the support of reliable feedback control, the utilization of shared bandwidth should be efficient so that collection of sensing data has abundant available time for bandwidth usage.

Figure 4 illustrates the proble m of bandwidth inef ficiency in basic FCMA. The control term will include the redundant use of bandwidth in case there are sensing packets which do not ask for or t rigger off the feedback control. As sho wn by the example in Fig.4, the first sensing term only requires the feedback to packets A and B. Therefore, only two feedback packets are generated in the control term, the left time for bandwidth usage in the control term is wasted. Such redundant use of control term is particular raised in case there are a lar ge number of sensing data packets, which do not ask for the feedback control in response to the sensing data. The waste of bandwidth usage will potentially introduce many packet collisions in sensing data delivery.

To optimize the bandwidth efficiency, a straightforward approach is to fill in the redundant duration of control term with the sensing packets so as to increase the bandwidth utilization. However, there is a require ment of maintaining the reliable control to all sensing packets, including those being filled in the redundant control term.

According to the above discussion, we design a dynamic bandwidth usage mechanism that optimizes the bandwidth efficiency by minimizing the redundant duration of control term. The key idea is ill ustrated by Fig.5. Rather than proactive for mation of the whole ti me of bandwidth usage into sensing and control term, the advanced FCMA adopts partial formation of bandwidth usage in its initial setup. That is, time is partially and proactively formulated by the periodic control slots that dynamically assign the length of each control term according to the requirement of sensing packets. Sen sing packets are delivered in each interval from the time in a control term that the feedback is finished to the time that next control slot starts. We illustrate the sensing control procedure base d on the exam ple shown in Fi g.5(a). At the beginning of sensing control slot the controller gains the access to the communication media


Figure4. Bandwidth efficiency problem in basic FCMA

and generates a control packet that includes fe edback control information and also tells the appliances how m any feedback control packets will follow. For exa mple, control packets C1 and C2 are initiated at the control slots in the first sensing-control cycle. Since C1 is the first packet in the sensing control procedure, it does not feedback to any sensing data, but sets the period of control sl ots to home appliance s. Each control packet in a control slot can announce the n umber of feedb ack control packets (C2 and C3) to home appliances. The number of feedback c ontrol packet s a nnounced in c ontrol slot is a ccording t o the sen sing data received in the interval between the control slot and its previous control slot.

Proposition 2: Comparing with the period of the largest sensing-control cycle, the setup of control slot frequency follows a Nyquist sampling theorem. That is, the m inimum frequency of control sl ots is 2 tim es of the lar gest sensing-control frequency. In other word s, the minimum number of control slots in a largest sensing-control cycle is 2. This rule is applied to the cases that tolerant delay is larger than 1 packet slot time.

(1)

(2f: 2 times frequency of sensing-control cycle, 3f: three times frequency of sensing-control)

Figure 5. Advanced FCMA with formulation of control slots and dynamic bandwidth assignment

Proof. We use a proof by contrapositive as follows. If the maximum interval between the two consecutive control slot s is lar ger than TD, the feedba ck delay for the sensing data delivered in the interval between these two consecutive intervals might larger than TD. Thus in the periodic setup of control slots, the interval between two control slots should not be larger than TD. Note the largest sensing-control cycle denoted by max_Psc is two times of TD, therefore the max_Psc is 2 times of the largest interval of two consecutive control slots. In

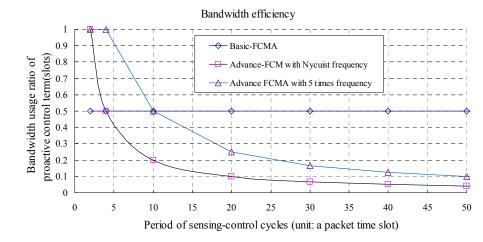


Figure6. Bandwidth efficiency performance

other words, the minimum frequency of control slots is 2 times of the largest sensing-control frequency.

With the minimum frequency of control slots, we can know the ratio bandwidth of control slots is:

$$Rc_A=2/(Ls+Lc), \qquad (2)$$

in case of a feedback packet that sensing data triggered is with the same packet size of sensing data.

Figure 6 shows the band width efficiency of control ter ms (slots) with varying periods of sensing-control c ycles. In fact, it reveals essential phe nomena of de signing FCMA. The bandwidth efficiency is highly impacted by the correlation of the control slot f requency and the largest sensing-control cycle, which is 2 times of *TD*. When the period of sensing control cycle is very small, and the frequency of control slot is large, the control slot will take all or most ban dwidth usage and t he basic FCMA performs better. In case the peri od of sensing control cy cle is lar ge and the frequency of control slot is small, the control slot will take relative small bandwidth usage, and the advanced FCMA has better performance. The control slot with the minimum frequency that is 2 times of sensing control cycle frequency, gains the smallest usage of band width while keeps t he success delivery of control packets within the tolerant delay. The larger the control slot frequency it is, the larger bandwidth is used by the control slots.

5. Conclusion

This paper introduced a bandwidth-efficient MAC approach- FCMA, for networked sensing and feedback control in h ome appliance networks. We describe the d esign p rinciples especially for s ensing and relia ble feedback c ontrol. The proposed approach FCMA consists of two parts. Basic FC MA enables re liable delivery of control packets while keeps the flexibility of sensing data collection. On the other hand, the a dvanced FCMA optimizes the bandwidth usage by dynamic assignment of bandwidth usage. This paper also highlights that the highest bandwidth efficiency is achieved by adopting the minimum frequency of proactive control slots, such a frequency is two times of the sensing control cycle frequency.

REFERENCES

1) M.Inoue, T.Higuma, et al, "Network architecture for home energy management system," IE EE Transactions on Consumer Electronics, Aug. 2003.

2) R.Teng, and T.Yamazaki, "Start-Time Sh ifting Algorithm for the Energy Opti mization of Home Appliances with the Hybrid Power Supply System," IEICE Society conference, Sept.2009.

3) W.Ye, J .Heidemann, and D.Estrin, "An En ergy-Efficient M AC Protocol for Wireless Se nsor Networks," in IEEE INFOCOM 2002, June 2002.

4) S.Mangold, S. Choi, G.Hiertz, O.Klein, B.Walke, "An alysis of IEEE 802.11e for Qo S support in wireless LANs," IEEE Wireless Communications, Dec.2003.

5) P. Havinga and G. S mit, "Energy-effcient T DMA m edium access control protocol s cheduling," Asian International Mobile Computing Conference, Nov.2000.

6) I .Chlamtac, A.Myers, V.Syrotiuk, and G.Zaruba, "An a daptive M edium Access Control(MAC) Protocol for Reliable B roadcast in wireless Networks", IEEE I nternational Conference o n Communications, 2000.

7) I. Rhee, A. Warrier, M. Aia and J. Min, "Z-MAC: a Hybrid MAC for Wireless Sensor Networks," IEEE Transactions of Networking, June 2008.

8) R.Teng, T.Yamazaki, K.Hamaguchi "Qo S Sup ported MAC for Arbitrary Networked Control in Home Networks", the 2nd IEEE International Conference on Advanced Computer Control, Mar 2010.