
Regular Paper

A Light Framework for the Unified Representation and

Execution of Variant Tasks in a Grid Based Environment

Mohamed Wahib,†1 Asim Munawar,†1

Masaharu Munetomo†2 and Kiyoshi Akama†2

Grid computing has gained a wide interest from the research community over
the past one and a half decade. The immense effort has resulted in mature tools
and technologies for grid computing. The utilization of experience and tools of
grid computing in the next generation of distributed systems (e.g. cloud com-
puting) is a logical step. However, many problems that come along with grid
computing do limit such an effort. Among these problems is the sophistication
of each production grid to a specific task type, size and dependency. In other
words, grid computing in practice up to the moment can be described as task
monolithic in terms of task scope. The approach to tackle this problem in this
paper can be viewed as virtualizing the tasks to the middleware in analogy to
how resources are virtualized, automatically provisioned and abstracted in cur-
rent distributed systems trends. The task virtualization in this case refers to
the ability of the system to host variant tasks through a generic transparent in-
terface. This paper proposes a light-weight framework using various combined
open-source grid tools to establish a grid-based system capable of executing
tasks of different types, sizes and dependencies. From the middleware’s per-
spective, designing and implementing such a model is challenged by 1) The
need of a unified model for defining and representing the tasks, and 2) A tasks
dispatching and execution manager. Experiments for using the framework in an
optimization problem solving environment is illustrated. Performance results
are presented showing the functional efficiency of the framework.

1. Introduction

Several reasons have contributed in grid computing not expanding to be
adopted by the community outside specific scientific research projects. On the
other hand, the relatively short legacy in grid computing witnessed a rapid evo-
lution of tools and technologies with many reaching the mature phase. The fade

†1 School of Information Science & Technology, Hokkaido University, Sapporo, Japan
†2 Information Initiative Center, Hokkaido University, Sapporo, Japan

away of grid computing, or limited use in specific projects at best, would be a
waste of expertise and technologies if not to be capitalized on by next generation
technologies. This paper attempts to capitalize on the existing technologies of
grid computing to generate a light-weight framework capable of executing tasks in
a distributed computing environment. The framework addresses one of the lim-
itations in grid computing that halted the expansion of grid computing; namely
the task monolithic nature of production grids in terms of scope. This limitation’s
negative effect is oftenly missed compared to the major limitations (i.e. The com-
plication in resources management, security and ownership policies.) attracting
all the attention from the designers of new paradigms tackling grid problems.
We argue that the limitation discussed in this paper is one of the major prob-
lems of grid eventhough being missed occasionly. A quick overview of grid-based
projects shows clearly that each project is tailored to a speficic triplet of task
〈type, size, dependency〉. Throughout the context of this paper a task triplet
refers to a configuration of task type, task size and task dependency associated
together (e.g. 〈computation, HPC, independent〉 triplet would mean a system
hosting computational tasks of High Performance Computing scale where all the
tasks are independent). Consequently, each individual grid project required a
phase of tuning to the tasks triplet and no model of design-once-use-for-all ex-
ists. The main impact of this limitation lead to defining several types of grids
to different triplets of tasks, hence being far from generality. To conclude, the
simplex model of designing grids hosting specific task types, sizes and depen-
dencies will no more be tolerated in comparison to the innovatve resource and
task presentation methods emerging in cloud computing and other state-of-art
paradigms. Concequently, to capitalize on grid legacy for designing next gener-
ation distributed computing paradigms, there is a need for an innovative model
for different task triplets exposure through the same abstractions. The main
motivation of this paper is to enable the hosting of different task triplets in grid
computing and grid-related paradigms. The implemented framework allows the
administrator to dynamically define task types, sizes and dependencies as well as
defining task-specific QoS (Quality of Service) attributes to each task type/size.
The task-specific QoS attributes are of great importance to later be used for task
assignment. The framework proposed can be viewed as a layer residing between

情報処理学会研究報告 
IPSJ SIG Technical Report

1 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



the presentation layer and upper middleware layer. This layer can be described
to be virtualizing the tasks to the middleware in analogy of how the resources
are virtualized to the middleware layer and resource brokers in systems adopting
virtualization. Moreover, a task manager that could manage the allocation of
such diverse tasks is an essential part.
The rest of this paper is organized as follows; the next section is a brief review
on task representation and definition in grid computing. Section 3 discusses the
proposed framework. Section 4 discusses the experiments that were conducted
using the proposed framework. Finally section 5 concludes and adds insight to
future work.

2. Task representation in grids

To review task representation in grid computing, initially a closer look to types,
sizes and dependencies of tasks in grid computing environments is essential. The
next section will give a close-up to tasks in grid computing. Section 2.2 reviews
task representation in grid computing.

2.1 Tasks in grid computing
As a part of a comprehensive grid systems classification,10) divides the tasks or

solutions in traditional and emergent grid systems into four types; computational
solutions, data solutions, service solutions and access solutions. The types, along
with the associated sizes, are as follows:
a) Computational solutions/tasks are tasks explicitly using CPU cycles. The
CPU cycles could be from variant resources including idle desktop computers,
servers or equipments and instruments. The size of tasks depends on the tempo-
ral factor. Small size computational tasks assume small tasks’ sizes with the min-
imum overhead possible. HPC tasks are applications taking into consideration
the performance and thus time is a non-negligible factor. HTC (High Through-
put Computing) tasks are massive computational tasks that are motivated by
solving previously untackled pre-grid era problems due to resources limitations,
and therefore the time factor is of no priority in such tasks. A point to mention
here is that HTC applications are usually viewed as a category different from high
performance applications from the perspective of grid systems. This paper is ba-
sically concerned with high performance tasks and not high throughput tasks.

Yet, high throughput tasks were included in the framework to better represent
the sizes of computational tasks and offer a sensible level of generality for the
framework.
b) Data solutions/tasks (hosted by data grids) are concerned with accessing,
storing and moving data in distributed data repositories. There are many key
elements upon which the size of the data task fluctuates.18) introduces a com-
prehensive taxonomy for data grids, the authors identified the keys elements
which define the data grids as organization, data transport, data replication and
scheduling. The size used in the context of this paper for data tasks solely
depending on the size of the data accessed, modified and transferred. Large
volume data flows primarily deal with providing services and infrastructure for
distributed data-intense applications dealing with massive datasets stored in dis-
tributed storage resources. Large volume data flows also involve massive datasets,
but the main target is to stage the data to third party resources that conduct fur-
ther computing. Thus, the size of handled data in this case is relatively less than
sizes in pure data grids. Nevertheless, many projects falling under this category
(e.g. computational physics projects) handle massive datasets in comparison to
pure data grids. The last size is datasets of relatively small sizes staged to com-
putational or services tasks. Usually in such a case, the grid is considered to be
a computation/service task’s grid involving data transfers between tasks.
c) Service solutions/tasks are either presentation of data or computation tasks
as/through services as in14), or services offering more sophisticated functionali-
ties (e.g. knowledge discovery systems21)). software tasks (i.e. tasks exploiting
software resources) are considered as services tasks in the context of this paper.
Service tasks cannot be expressed through the size metric due to its complex
nature. It is more appropriate to describe the differences among service tasks as
differences in behavior (in this paper behavior for services tasks is the equivalent
to size in other task types). Generally, three behaviors can be defined for service
tasks. The first includes tasks for services that are explicitly interfacing data and
computation resources. The services in this case can be considered as a gateway
or proxy to data and computational resources. Next are the tasks for services
that are offering some business logic. Even though in the backend the business
logic could be using computational and data resources, it is still different from

情報処理学会研究報告 
IPSJ SIG Technical Report

2 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



the previous behavior by having functionalities in the business logic layer that
is loosely coupled from the backend dependencies. For the third behavior, the
tasks invoke services that have business logic including calls to external (third
party) service providers whom are not part of the grid environment.
d) Access solutions/tasks are for grids encompassing distributed input/output
devices. The grid in this case is providing multiple access points to those re-
sources. Access tasks’ tools and middlewares are relatively not mature compared
to the computational, data and services task grids. Also access tasks are not
popular and limited only to specific projects. Therefore, access tasks are not
addressed in this paper.
As for the dependencies, there are several patterns for the dependencies. The pro-
posed framework is designed to host tasks with different levels of dependences.
The framework supports tasks that are either a) individual (i.e. independent
from any other task(s)), b) nested (i.e. a parent task invokes another task to be
executed and they both run simultaneously) and c) workflows.
Figure 1 includes the most notable sizes, types and dependencies in real practice.
Note that the limitation in this case (i.e. not having a comperhensive tasks cat-
egorization) is to simplify the analysis and focus the attention on the key point
(i.e. design a framework for variant task triplets in grids).

Fig. 1 Classification of grid tasks according to most notable types, sizes and dependencies.

2.2 Task representation in grid computing
This section presents an overview of the various task representation approaches

in grid computing. After presenting the approaches, the deficiencies are summa-
rized. Generally, two main approaches for task representation in grids exist, with
different methods in each approach.
Approach 1: The most common approach for task representation in grid com-
puting is defining grid types with one-to-one relation to a task triplet. For ex-
ample data grids are grids designed to execute data tasks. Data grids are further
divided into different categories based on the organization. The organization in
this case defines the hierarchy which is directly related to the scale of the grid. In
other words the task size (i.e. size of datasets in this case) defines how the data
grid hierarchy and organization are defined18). Service tasks as well have different
types of grids, each endorsing specific tools to function in a specific method to
run the type of service tasks in hand. The same mechanism prevails for computa-
tional tasks, where each grid-based project running computational tasks is tuned
to address the specific requirements of the tasks in hand. The point of interest
here (i.e. task representation) is project dependant, but the common point is
that the task representation takes a simple explicit form. This is expected due to
having the grid architecture of each project tailored for handling a specific type
of tasks in a predefined environment.
Approach 2: Other forms of task representation are adopted in grids that
combine more than one task type. The most popular combination is between
computational and data tasks. Workflows are used on a wide scale in grid-based
projects to handle two types of tasks (namely data tasks and computational
tasks). Workflows started out by adding data staging in-between the compu-
tational tasks, then it evolved to represent data tasks and computational tasks
in the same model. Generally, workflow managers using DAG(Directed Acyclic
Graph) including11),20) are more notable compared to the non-DAG managers.
Another approach defines hierarchical models for grid services in5). Both nu-
merical and deterministic techniques such as Markov models, graph theory and
queuing theory are used in this case to model the services tasks. One more ap-
proach to represent tasks in environments with different task types is to use file
description. Many file description formats have been proposed and the Open
Grid Forum unified the different formats in the Job Submission Description Lan-
guage (JSDL)17). Overall, the mentioned approaches feature all or some of the

情報処理学会研究報告 
IPSJ SIG Technical Report

3 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



following limitations:
a) Practically all mentioned solutions focus on the operations following task sub-
mission (i.e. scheduling, load balancing and resource allocation). Thus, no atten-
tion is given to defining different task sizes (e.g. computational tasks rarely have
different sizes in the same grid). A drawback in this is case is the insufficient cat-
egorization of resources leading to complications in the scheduling process such
as utilization imbalance and improper assignment.
b) In terms of Quality of Service (QoS), most of the approaches do not go far
beyond defining basic QoS attributes (i.e. time, cost, fidelity, security and avail-
ability). This is due to having invariant task types and so the relation of tasks
with resources is trivial and no non-functional characters could be defined for
the resources (variant tasks leads to defining variant resource types which en-
ables defining application-specific QoS attributes).
c) In many cases, no different parallelism patterns are defined. And so there is
sensible limitation on the flexibility of creating tasks with different parallelism
patterns.
d) Existing methods for combining variant task types (i.e. workflows) assume
task inter-dependencies, thus cannot be utilized for tasks with no dependences.

3. How the framework works

The basic components in the framework are as follows:
Web portal is the entry point to the system, the portal used is gridsphere3.12).
New Custom JSR 268 compliant Vine1.01) based portlets were implemented and
deployed in the portal. The new portlets are for a) task definition, b) QoS
function editing and c) task submission. Grid services are Resource Framework
(WSRF) compliant web services running in Globus GT4 Toolkit’s7) container.
These services are the core of the framework that orchestrate all the components
in the system.
Task manager is responsible for assigning the jobs to the appropriate resources
on the Grid. The task assignment procedure will be explained in section 3.3.
Resources pool may include any of the resource types corresponding to the
task types mentioned earlier in figure 1 (excluding access resources which are not
considered in this paper).

Section 3.1 explains the scenario of what happens in the framework from the
administrator’s perspective while section 3.2 covers the scenario from the end
user’s perspective. Section 3.3 explains how task assignment happens in the
framework.

3.1 Scenario from administrator’s perspective
The administration in the proposed framework is slightly different from the

conventional administration in grid systems (i.e. resource management and main-
taining the system functionality). The following sections will discuss each of the
scenario steps of the how the administrator interacts with the system in details.

3.1.1 Task definition
In the proposed framework, the first thing for the administrator to do is to

define the tasks’ types, sizes and dependencies for the grid in hand. To be able
to do that, a custom portlet was designed (based upon the Vine portlets1)) to
run in the portal’s portlet container. Through the Task definition portlet the
administrator adds the task triplet that will run over the grid. The portlet is
simple and includes only the basic information about the task (i.e. task type,
task size and the expected dependencies). Such a method is apparently trivial
and doesn’t support deep description of tasks. Nevertheless, it is anticipated for
this part to be extended and to support more task descriptive information that
could further improve task categorization.

3.1.2 Resource addition
Normally for resources to be added in a gridsphere portal, the Resources.xml

file containing information about the resources available in the grid should be
edited. Among the special tags for defining the resources are tags for defining
the three types of resources corresponding to the three task types mentioned
earlier in the taxonomy. Namely 〈ws-gram-resource〉 for computational resources,
〈gridftp-resource〉 for data resources and 〈service-resource〉 for service resources.
The part that Resources.xml tags is missing to be used by the framework is the
task size and dependencies. Therefore, the Resources.xml schema was extended
in the framework allowing the administrator to define new resources to be added
to the grid, where those resources are defined to be used by which task triplet.

3.1.3 Defining and adding task-associated QoS attributes
One of the main advantages of the variant task triplets is the ability to define

情報処理学会研究報告 
IPSJ SIG Technical Report

4 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



task-associated QoS attributes and include it in the scheduling process. QoS at-
tributes are non-functional characters describing a process. QoS parameters are
divided into two main groups, namely QoS metrics and QoS policies. QoS met-
rics are used to specify performance parameters including timeliness, precision,
accuracy, security requirements and availability. QoS policies, on the other hand,
capture application specific policies that govern how an application is treated by
the resource manager. In this paper QoS metrics are referred to as basic QoS
attributes, while QoS policies are referred to as task-associated QoS attributes.
In comparison to task-specific QoS attributes, a huge legacy of scheduling with
the basic QoS attributes exists. While appearntly less research effort is directed
to task-associated QoS attributes. Adopting task-associated QoS attributes in
the proposed framework makes advantage of hosting variant task triplets. This
is because the variance in task triplets enables defining new criteria other than
the basic ones to enhance the preference of which resources to choose in the task
assignment process. For example, a grid application involving service tasks that
retrieve images from a service resource could have the color depth and resolution
as QoS attributes.
Next is to define a mechanism by which the administrator could: a) represent
QoS attributes, b) include them in the scheduling process. Canfora et al.3) pro-
pose service composition binding driven by application-specific QoS. The domain
of3) is different from the work in this paper. This is because the authors are con-
cerned with the composition of services that are initially defined as an abstract
workflow, where for each service in the workflow a set of service providers are de-
fined. Then the scheduler/binder next makes a concrete workflow at which each
service in the abstract workflow is binded to a service provider. Canfora et al.
addressed how application specific QoS attributes can be defined and aggregated
to be used for scheduling. A remarkable work was done in implementing a QoS
aggregation function definition interface and a QoS definition language, so the
administrator through a simple QoS aggregation function editor could define new
QoS(s). The QoS definition in this framework here builds on and extends the
work done by Canfora though it is defined for a different discipline (i.e. Service
Oriented Architecture). It is of no-awkwardness to use a mechanism that was
originally defined in SOA service workflows to be used in a grid-based framework

as grid computing and SOA have many tangency points. This section will illus-
trate the QoS attributes representation, while the scheduling part is covered in
section3.3. The steps to represent QoS attributes in the framework are as follows:
QoS definition language : The details of the language used is out of the scope
of this paper, still a brief insight is given to ease comprehending of all framework
parts. For a language to permit specifying new QoS attributes, two things are
required; type and scale. The type can be only primitive types (integer, real
and Boolean) as in WSLA+ language16), or include collection types (i.e. a set
constituted of sets of atomic values) as Canfora did. The scale limits the set of
admissible operations. The language developed by Canfora includes the scales
required for our framework, so no change is required in this part. The point of
difference here is the set of operators and functions inherited form the Object
Constraint Language (OCL)19) that is used by Canfora. This is due to using
those operators and functions in computing overall workflow QoS, while in the
proposed framework accepts both inter-dependent task (i.e. workflows) and in-
dividual tasks. In the case of workflow tasks, the operators and functions defined
by Canfora are sufficient, while in the case of individual tasks the operators are
not used due to tasks independency. The next step is to show how the QoS
formula specification is supported by a guided editor and type-checker.
QoS aggregation : The QoS aggregator introduced by3) was implemented in
Java using the Java Compiler (JavaCC) parser generator, while for the GUI, JSP
was used. The aggregator was adopted here by including the aggregator in a
Vine portlet and adding it to the gridsphere portal. Modifications were done
to a) drop operators for individual tasks as mentioned earlier, b) associate the
newly defined Qos attribute to one of the task type/size pair registered by the
administrator and c) adapting the original JSP to work with the Adobe Flex
GUI used in gridsphere 3.1. The aggregator includes three basic modules; QoS
aggregation function editor a portlet that the administrator can use to define
new QoS attributes and their aggregation formulae, Type checker used at design
time for verifying the integrity of the aggregation formulae, QoS formulae inter-
preter that at run time evaluates QoS for a possible workflow/individual task
assignment.

情報処理学会研究報告 
IPSJ SIG Technical Report

5 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



3.2 Scenario from enduser’s perspective
In the proposed framework, the enduser is unaware of the procedure the ad-

ministrator is following. The scenario from the user’s perspective is as follows:
Task submission : Initially the user selects which task dependency he will use
for the task. For the individual tasks, the user can use the job submission port-
let to submit the task. Nested tasks in the proposed framework use the same
portlet as well (i.e. job submissino portlet) for job submission. For the last
task dependency type (i.e. workflows), a relatively large number of options and
combinations are out there (e.g. Karajan, BPEL, Pegasus, Triana, DAGMan ...
etc). For the case of this framework, a simple portlet which allows for workflow
executions without complex needs, a simple DAG, was chosen. This was decided
to focus the attention on building the framework without being drifted to com-
plications of complex workflows. To our knowledge, no such simple java-based
portlet for simple DAG workflows exists. The options are either complex and
advanced (e.g. P-Grade portal which is gridsphere based), or needs bridging to
be imported in a portlet (e.g. Taverna). The option choosen was to implement a
simple custom Vine portlet that uses Java CoG’s TaskGraph to create the work-
flow. The designed portlet does not use nice drag and drop of jobs on a canvas like
Triana or P-Grade workflow editor but uses menus to choose from available jobs,
their ports and links between them. Additionally, TaskGraph was only used to
create the workflow and not to schedule the workflow. The scheduling is carried
out by the scheduler described in the next section. One final point to mention
about job submission, the user is required to select the of triplet the task he is
submitting according to the task triplets supported by the grid as defined earlier
by the administrator. A weak point here is the dependency on the user to define
the task triplet. As the user might not know which combination to choose. Or
even mistakenly choose a wrong task triplet leading to faulty task assignment.
This problem rises from the nouvelle approach of offering different task triplets
in the same grid leading to switched task submission. Solutions derived from the
literature could be designed to solve this problem (e.g. the use of Petri Net queue
to estimate the requirements of the tasks as in6)). Nevertheless, as mentioned
earlier the main focus in this paper is to design a framework for many task grids,
and so this specific problem is out of the paper scope and user awareness of task

size/type is assumed. This specific problem is a potentially challenging point to
be addressed separately in future work.
Confirm submission : Finally, the user confirms the acceptance of the grid to
the task, and is notified later with the task result via e-mail, later the user could
view results log through the job portlet.

3.3 Task associated QoS-based scheduling
3.3.1 Related work
As a starter, a quick overview of the most relevant related work is essential

as several projects in the literature attempted multiple QoS job scheduling. All
of these projects addressed only the basic QoS attributes in their work; cost,
time, availability and fidelity. Those basic QoS attributes are agreed upon in
literature to be the metrics for job scheduling in grids. Application specific QoS
attributes were not considered in any of them as no service level presentation of
resources provided features into which application-specific QoS attributes could
be mapped. The few efforts in this area can be summerized as follows.12),13)

defined the 4 basic QoS attributes as utilities and identified an Integrated Util-
ity Function (IUF) to be used for scheduling. A slight difference between them
is that12) used an iterative scheduling technique by separating the task agents
and resources agents.6) proposed a static scheduling algorithm that uses util-
ity functions for scheduling meta-task with QoS requirements in heterogeneous
computing systems. The main aim of this project was to provide resource trans-
parency and not include application-specific QoS attributes.9) did not define a
scheduling method, yet it defined, for the basic QoS attributes, a flexible multi-
dimensional QoS performance measure that could be later aggregated to be used
for scheduling. A notable point is that the authors defined a method that is
theoretically applicable to model any new QoS attribute by representing the QoS
attribute by a feature vector. This approach is generic but if used will shift the
entire load to the application developer.

3.3.2 Problem formulation
Suppose that there are n independent users and user i is associated with task

Ti, let T =
{

T1, T2, ..., Tn

}
denote the set of n independent tasks where task Ti

is assigned to resource Rj and R =
{

R1, R2, ..., Rm

}
. Ti is not the least task

情報処理学会研究報告 
IPSJ SIG Technical Report

6 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



unit, as Ti could be a single task, double concurrent task (i.e. in case of nested
tasks) or recursively divided to T =

{
T1, T2, ..., Tl

}
in case of Ti being a work-

flow. Similarly Rj can be composed of v resources, where 1≤v≤m. The process
of QoS-constrained task scheduling could be summarized in three steps. Step
one is resource discovery, which is finding available resources complied by QoS
constraints and generate a list of resources. Step two is resource planning, which
involves selecting the optimized resources from the available resources list accord-
ing to the scheduling strategy satisfying user’s QoS constrains. The Γ : T → R

denoting the matching function is a NP complete problem4). The third step is
task execution. The tasks are scheduled to selected resources to be executed.

In the proposed framework, QoS attributes are described as utility functions.
So the integrated utility function is the accumulation of all QoS attributes utility
functions. The integrated utility is considered as the objective function of the
scheduling algorithm to drive the scheduling of resources and optimizing the task
execution with maximum utility. A very important point here is that utility
functions have long been used in QoS constrained scheduling, but for this case
a new factor requires special handling. The new factor is having different QoS
attributes defined according to each task type/size. Thus, the integrated utility
function includes a set of mutually exclusive utility functions corresponding to the
QoS attributes. The next step, after defining the integrated utility function, is to
compute the value of the utility uk, 1≤k≤d where d is the total number of QoS
constraints defined by the administrator for all the task types/sizes, what we will
call the dimension of QoS. The method used for computing the utility functions
is the same used by Canfora3) which iteratively update the selection probabilities
of the selected resources. For each task Ti a decision matrix Q = (qij)m×d is
created, among it, m represents the number of resources that can host Ti, d
represents the dimension of QoS attributes considered by the this type of task.
Q matrix is not used directly, Q is normalized to make the normalized matrix
P = (pij)m×d , j = 1, ...,m, k = 1, ..., d, where normalizing is done as follows:

pjk =





minj (qjk) /qjk if uk is optimally minimized

qjk/maxj (qjk) if uk is optimally maximized

Supposing ω = (ω1, ω2, ..., ωd) is attribute weighting vector, Then the integrated
utility function for the evaluation of the selected resources can be defined as:

Uij (ω) =
S∑

t=1

(
Ct

y∑

l=x

pjlωl

)

where S is the number of task types/sizes defined by the administrator to be
used in the system, Ct is a Boolean constant having value 1 only for the QoS
attributes subset of the task scheduled (i.e. QoS divided to subsets having a
mutually exclusive relation.). x and y denote the start and end of the QoS
attributes subset from the set of all QoS attributes defined. By sorting and
computing Ui (ω), the best resource can be selected. Weights for utility functions
in the mentioned related work are calculated by maximizing the deviations in
utiliy values. In our case the QoS attributes are defined by the administrator
according to the types/sizes of tasks. Therefore, the default weights are defined
by the administrator according to the system used. The end user could calibrate
the weights according to his interest in which QoS attributes significant for the
job he is about to submit.

3.3.3 Scheduling Algorithm
The scheduling process is basically viewed as a combinatorial optimization

problem for the integrated utility function. Several approaches are used in the lit-
erature to solve this optimization problem, most approaches depend on a heuristic
algorithm. Generally, GA (Genetic Algorithms)8) based heuristic algorithms do
not impose constraints on the linearity of the QoS composition operators, so they
are considered the best option. But because the framework is using a nouvelle
technique of having more than one task triplet, the modeling of the problem by
a fitness function will be impossible due to having more than one task triplet in
the same chromosome with mutually exclusive QoS attributes.
As shown in the previous section, QoS attributes are described as utility func-
tions, The integrated utility function aggregating all utility functions is regarded
as an objective function of the scheduling algorithm to drive dynamic schedul-
ing to the resources and optimizing the task execution with maximum utility by
accumulating all QoS attributes utility functions. Figure2 shows the algorithm
used for scheduling. One important point to note here, the algorithm is designed

情報処理学会研究報告 
IPSJ SIG Technical Report

7 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



Table 1 Testbed configuration

in a central way, which leads to weak scalability. Yet, the design of centralized
scheduling algorithms is an important step towards developing more complex
decentralized scheduling algorithms.

Fig. 2 Algorithm used for scheduling

4. Experiments and results

Experiments for configuring a grid and then submitting variant tasks with dif-
ferent triplets were done to test the functionality of the proposed model. The
experiments were executed on a grid having a dedicated 64 core mini-cluster with

Fig. 3 The effect of services tasks weight vector on execution success ratio

2 x AMD Opteron 2.6 GHz Dual Core 64 bit processors and 2GB RAM for each
node, the grid also has 2 dedicated servers each having a 2 x Xeon 2.8 GHz Dual
Core with 2GB RAM. The environment on which the framework was tested is
Meta Heuristics Grid (MHGrid): a service oriented grid application offering meta
heuristics based solvers for global optimization problems. Full details about MH-
Grid’s design and functionalities in15). MHGrid was originally designed to offer
optimizing algorithms as services. To test the task unified presentation frame-

情報処理学会研究報告 
IPSJ SIG Technical Report

8 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



Fig. 4 The effect of computational tasks weight vector on execution success ratio

Fig. 5 The effect of data tasks weight vector on execution success ratio

work, other types of tasks with different sizes and dependencies were introduced.
Table 1 shows the task types and sizes used in the experiments along with the
number of tasks submitted for each task type/size pair. MHGrid originally ex-
poses the algorithms through services to control the parallel pattern used15). To
test the proposed framework the following changes in MHGrid were done:
a) Solvers were directly accessible to have computational tasks in the systems
along with services tasks.

Fig. 6 Resource utilization for workflows with variant tasks weight values

Fig. 7 SLR for the workflows with different DAG width

b) MHGrid originally did not have data tasks, so dummy files of variant sizes
were deployed to be staged.
c) Tasks in MHGrid are either individual or nested. So a portlet for simple DAG
workflows was implemented and deployed to be used in the experiments.
The experiments were designed to cover possible task triplets. For the service
tasks, individual and nested tasks of different sizes were introduced. The size is
controlled by the problem length that the algorithms should solve. Three spe-

情報処理学会研究報告 
IPSJ SIG Technical Report

9 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



cific QoS attributes were defined; Solver to problem adequacy, the parallel pattern
used and the fidelity or quality of output. These attributes are explained in de-
tails in15). The same applies for computational tasks but with two different QoS
attributes. Long timeouts were added in the solvers to test the latency tolerance
with the solvers running in parallel mode. The other QoS attribute is data accu-
racy which is measured by round off errors resulting from float-point operations
intentionally introduced to the solvers. As for the data tasks, dummy files where
used to be transferred via GridFTP7). The file sizes varied from 100MB to 20TB
to represent different task sizes. One QoS attribute (i.e. priority) was defined
for the data tasks where each task was assigned priority rank for the scheduler
to attempt to meet the priority requirement of those tasks. In addition to that,
workflow tasks for different task types where also created by the workflow portlet
to be tested. Finally two basic QoS attributes (make span time and cost) were
used for all tasks along with the specific QoS attributes defined for each task type.

Execution success ratio is the metric used in the experiments to measure the
framework’s ability to host and schedule variant task triplets. Other metrics such
as resource utilization and task waiting time are important as well, but due to
space limitation, results in terms of execution success ratio only are illustrated to
evidate that a system hosting variant task triplets can function whilst benefiting
from QoS attributes. Figures 3, 4 and 5 show the execution success ratio for the
individual and nested tasks on different task types/sizes. The x-axis in all three
figures is a configuration state for the QoS attributes considered. The last state
(i.e. C6) is the plain state where all weights for task-specific QoS attributes are
set to zero and only the basic time and cost QoS attributes with weight = 0.5
are considered. For the other states (i.e. C1 to C5) the weights are having values
with an increasing mean from C1 to C5 and also an increasing standard deviation
to represent variant weight vector settings. Note that upon moving from C1 to
C5 the success rate tends to decrease which is normal as the more the mean of the
weight vector increases the more the scheduling process relay on QoS other than
the time and cost. This consequently minimizes the set of resource candidates for
each task and causes less success rate. Another point to note is that for figure5,
C6 gives much better performance than other weight settings. This is because the

priority QoS defined for data tasks highly effects the scheduling process making it
mostly depending on what the user wants. Figure6 shows the resource utilization
for workflow tasks. Again the change in weight value does not have a significant
effect on the resource utilization and this is because the workflows enforce an
order for task execution on the system. Figure7 shows another aspect of the
workflows. The figure shows the Schedule Length Ratio (SLR) for the workflows
that were created with different DAG widths.

5. Conclusion

This paper is concerned with grid computing based systems at which tasks
are defined to be having variant types, sizes and dependencies. First a close-up
was given to the nature of tasks in grid computing and a rough classification
was introduced. A framework enabling grids to host variant task triplets was
proposed. The proposed framework involves representing the tasks, defining QoS
attributes for the tasks and scheduling tasks in such an environment. The frame-
work was inspired by a system of application-specific QoS attributes in service
composition. While the domain is apparently different, the flexibility offered by
the service composition in defining QoS attributes is of great relevance to the
requirements of establishing an enviroment that is not limited to hosting spe-
cific task triplets. The framework attempts to conceive virtualization of tasks
in analogy to virtualization of resources from the middleware perspective. The
framework first requires initial definition of task types, sizes and dependencies
hosted by the grid. The administrator creates the task-associated QoS attributes
through a QoS aggregation function editor enclosed in a portlet. After the ad-
ministrator registers the categorized resources, the end user can start submitting
tasks to the system. With the user unaware, the system schedules the tasks on
behalf of the user, and assures the use of task-specific QoS attributes to assign
the tasks to the most appropriate resources. Experiments were conducted to as-
sure that the framework is functioning as designed. Many points are promising
to be considered as future work. A module for task size/type assurance is of
great value to eliminate endusers faulty categorization. Making the best use of
the task-associated QoS by incorporating a SLA mechanism is also an interesting
point. Investigation of heuristic-based schedulers to develop a heuristic algorithm

情報処理学会研究報告 
IPSJ SIG Technical Report

10 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12



allowing many task scheduling is as well a challenging task.

References

1) : http://vinetoolkit.org/.
2) : http://www.gridsphere.org.
3) Canfora, G., Penta, M.D., Esposito, R., Perfetto, F. and Villani, M.L.: Service

Composition (re)Binding Driven by Application-Specific QoS, ICSOC, pp.141–152
(2006).

4) Christensen, T.V.: Heuristic Algorithms for NP-Complete Problems (2007).
5) Dai, Y.-S., Pan, Y. and Zou, X.: A Hierarchical Modeling and Analysis for Grid

Service Reliability, IEEE Transactions on Computers, Vol.56, No.5, pp.681–691
(2007).

6) Doǧan, A. and özgüner, F.: Scheduling of a meta-task with QoS requirements in
heterogeneous computing systems, J. Parallel Distrib. Comput., Vol.66, No.2, pp.
181–196 (2006).

7) Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems, pp.
2–13 (2006).

8) Jong, K. A.D.: Are Genetic Algorithms Function Optimizers?, PPSN, pp.3–14
(1992).

9) Kim, J.-K., Hensgen, D.A., Kidd, T., Siegel, H.J., John, D.S., Irvine, C., Levin,
T., Porter, N.W., Prasanna, V.K. and Freund, R.F.: A flexible multi-dimensional
QoS performance measure framework for distributed heterogeneous systems, Clus-
ter Computing, Vol.9, No.3, pp.281–296 (2006).

10) Kurdi, H., Li, M. and Al-Raweshidy, H.: A Classification of Emerging and Tradi-
tional Grid Systems, IEEE Distributed Systems Online, Vol.9, No.3 (2008).

11) Lee, K., Paton, N.W., Sakellariou, R., Deelman, E., Fernandes, A.A. and Mehta,
G.: Adaptive Workflow Processing and Execution in Pegasus, gpc-workshops, Vol.0,
pp.99–106 (2008).

12) Li, C. and Li, L.: Utility-based QoS optimisation strategy for multi-criteria
scheduling on the grid, J. Parallel Distrib. Comput., Vol. 67, No. 2, pp. 142–153
(2007).

13) Li, Y., Zhao, D. and Li, J.: Scheduling Algorithm Based on Integrated Utility
of Multiple QoS Attributes on Service Grid, GCC ’07: Proceedings of the Sixth
International Conference on Grid and Cooperative Computing, Washington, DC,
USA, IEEE Computer Society, pp.288–295 (2007).

14) Middleton, S.E., Surridge, M., Benkner, S. and Engelbrecht, G.: Quality of Service
Negotiation for Commercial Medical Grid Services., Journal of Grid Computing,
Vol.5, No.4, pp.429–447 (2007).

15) Munawar, A., Wahib, M., Munetomo, M. and Akama, K.: Linkage in Evolutionary
Computation, chapterParallel GEAs with Linkage Analysis over Grid, pp.159–187,
Springer Berlin / Heidelberg (2008).

16) Nepal, S., Zic, J. and Chen, S.: WSLA+: Web Service Level Agreement Language
for Collaborations, scc, Vol.2, pp.485–488 (2008).

17) Reynaud, S. and Hernandez, F.: A XML-based Description Language and Execu-
tion Environment for Orchestrating Grid Jobs, SCC ’05: Proceedings of the 2005
IEEE International Conference on Services Computing, IEEE Computer Society,
pp.192–199 (2005).

18) Venugopal, S., Buyya, R. and Ramamohanarao, K.: A taxonomy of data grids for
distributed data sharing, management, and processing, ACM Computing Surveys,
Vol.38, p.2006 (2007).

19) Warmer, J. and Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA, Addison-Wesley (2003).

20) Wieczorek, M., Prodan, R. and Fahringer, T.: Scheduling of scientific workflows in
the ASKALON grid environment, SIGMOD Rec., Vol.34, No.3, pp.56–62 (2005).

21) Zhuge, H. and Liu, J.: A fuzzy collaborative assessment approach for knowledge
grid, Future Gener. Comput. Syst., Vol.20, No.1, pp.101–111 (2004).

情報処理学会研究報告 
IPSJ SIG Technical Report

11 ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.9
2010/7/12


