
情報処理学会研究報告
IPSJ SIG Technical Report

 1

P2P 環境における

ファセット検索のためのデータ配置

渡辺知恵美† 斎藤真衣†

近年 P2P 技術の発達及び普及により，様々なデータが P2P ネットワークによって
共有されるようになってきている．このような環境においてデータの検索は重要
であり，近年ではキーワード検索以外にも全文検索や SQL による問合せなども提
案されている．しかしながらユーザが明確な問合せの意図を持たずどのようなデ
ータがあるかを閲覧したい場合には対応することができない．ユーザが明確な検
索意図を持たない場合，データに含まれる値のリストを表示しながら対話的にユ
ーザがほしいデータを絞り込む手法としてファセット検索が提案されているが，
この検索方式が P2P に適用されている例はこれまでにない．
そこで我々は P2P 環境におけるファセット検索インタフェースを提案し，効率的
にファセット検索を行うためのデータ配置戦略を設計した．

Data Assignment for Faceted Search in P2P

Environment

Chiemi Watanabe† and Mai Saito†

Because of the development of technologies for a P2P network, we can share various
types of data such as relational tables and xml data and can query the data not only by
using a simple keyword search but also by using an SQL-like query expression.
Applications that are developed by using these technologies should have a query
interface so that users can easily reach any information they want. In particular, in a P2P
network, when there is no rule for adding the metadata of the objects, it is not easy to
find appropriate keywords for search. In this study, we focus on ―faceted search,‖ which
is a design pattern that helps query behaviors, and we investigate data architectures and
data assignment strategies for processing the faceted search in a P2P network.

1. Introduction

Recently, sharing data in the Peer to peer (P2P) network environment has become popular.
In a P2P environment, the query interface is important for finding the data that users are
looking for. Many applications have a keyword search interface. A distributed hash table
(DHT) mechanism is appropriate for a keyword search because the data are allocated
according to the hash value of the keyword corresponding to the data. PIER [2] proposes the
mechanism for sharing relational data in a structured P2P environment; further, a user can
specify query statements by using SQL. In addition, many search techniques such as range
query [8] and full text search [5] have been developed thus far. By using these techniques, a
user can specify various types of queries to find the required data in a P2P network.

However, the existing P2P applications do not suppose that users may only have
ambiguous images about what they want and that they cannot find appropriate keywords for
search. There are also cases when the users may not have any target data; they may just want
to look at what data are shared. In such cases, the query interfaces of applications should
support the users in finding the objects that the users are looking for.
 We propose an interactive query mechanism in a P2P environment for users who cannot
find appropriate query keywords to find what they want. We focus on ―faceted search,‖ which
is a technique for accessing a collection of data represented by using a faceted classification,
thereby allowing the users to explore the data by filtering the available information. A faceted
classification system allows the assignment of multiple classifications to an object, enabling
the classifications to be ordered in multiple ways rather than in a single, pre-determined,
taxonomic order.
 In this paper, we propose a faceted search mechanism for a P2P environment. We apply
the proposed mechanism in a structured P2P network by using DHT. The features of faceted
search are as follows: (1) Faceted search is interactive. Users send queries multiple times
according to the results of the previous query. (2) Aggregations are used for generating
faceted values. Aggregate operations are difficult to process in a P2P network. DHT
algorithms such as Chord and Pastry are designed for finding an exact match to the query
keywords, and these algorithms are not good at processing aggregate operations. In a P2P
environment, aggregate operations are processed by broadcasting. In a P2P environment,
aggregate operations are processed by broadcasting. However, it is not practical that the
system carries out multiple broadcasting through all nodes on the P2P network every time the
users send their queries. Therefore, we propose a data allocation strategy that can efficiently

 † お茶の水女子大学 大学院 人間文化創成科学研究科
 Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 2

process multiple aggregate operations for faceted searches. Next, we propose a cashing
strategy to process queries interactively and efficiently.

2. Preliminaries

2.1 Faceted Search

Faceted search interfaces have recently been used by various applications. Figure 1 shows a
snapshot of a DBLP [9] faceted search interface. DBLP is a database of computer science
bibliography. The left side of Figure 1 shows the result of the keyword query
―author:chiemi_watanabe.‖ The result is a list of papers written by the author. In addition,
several facets are displayed on the right side of the page. In a faceted search, the term facet
refers to an aspect by which the target object can be classified into several groups. In Figure 1,
coauthors, conferences, and publishing years are selected as facets. In each facet column,
facet elements are listed. When a user clicks a facet element, the objects are filtered by the
entity in addition to the query keyword.

Figure 1. Screenshot of DBLP Faceted Search Interface

Users can add facet elements for narrowing down the objects according to the results , and
then, users can find what they want are looking for. To each facet element name, a number is

added. The number shows how many objects contain the facet element. For example, the facet
element name and the number ―Kazuki Joe (9)‖ shows that there are nine papers in which one
of the coauthors is Kazuki Joe. When a user selects this facet element, the system searches for
the papers whose authors are Chiemi Watanabe and Kazuki Joe; the facets and their entities
are generated according to the search result. The interactive search interface can clarify the
user‘s search purpose.

2.2 Selection of Appropriate Facets

The method of selecting appropriate facets depends on the structure of the target objects

for search. In general, the information of target objects is expressed as records of a relational
table. In this case, the attributes of the object are the candidates of facets. Suppose that
bibliographies are stored in the following tables. Table 1 shows the example tables of
bibliography that include the information of two papers.

 Paper (id, title, conference, year, start_page, end_page)

Person (id, name, affiliation, title)
Author (paper_id, person_id)

where Author.paper_id is a foreign key for the table Paper, and Author.person_id is a foreign
key for the table Person. The records of the table Paper are supposed to be the target objects
for the faceted search interface. In this example, the attributes of the table Paper, which are
title, conference, year, start_page, and end_page, are the candidates of the facets. In addition,
the attributes of tables that refer to the table Paper can be the candidates of facets. In this
example, the attributes of the table Person, namely, name, affiliation, and title, are also the
candidates of facets. From among the candidates of facets, application designers select
several attributes that are appropriate for facets according to the property of the target object
or the application.

There are several researches that propose measures for finding the appropriate facets for
the target objects.

Table 1. Example Tables of Bibliography
Paper

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 3

id title conferen
ce

year start
page

end
page

P10
1

A Query Description Model and its
Implementation as an Interactive
Query Tool for Visualization System

PDPTA 2004 359 365

P10
2

Privacy-Preserving Queries for
a DAS Model Using Encrypted
Bloom Filter.

DASFAA 2009 491 495

Person

id name affiliation title
H23 C. Watanabe Ochanomizu University Lecturer
H24 Y. Arai Ochanomizu University Student
H25 K. Joe Nara Women‘s University Professor
H26 A. Ishida Nara Women‘s University Student

Author

paper_id person_id
P101 H23
P101 H25
P101 H26
P102 H23
P102 H24

3. Faceted Search in P2P Environment

3.1 Architecture of Faceted Search Application

We define the architecture of the applications that use a faceted interface in a P2P
environment. Figure 2 shows the architecture. Each node manages its database. We do not
specify the structure of the databases. In Figure 2, node A manages data by using a relational
database system, node B manages the data by using files in the RDF format, and node C
manages a set of documents. In order to realize faceted search among these databases, we
require two types of metadata—Facet data and Object data.
Facet data:

These data are used for generating the contents in facet columns. Facets should be selected
from facet candidate attributes manually or by using one of the selection measures
proposed by previous research. For example, in the case of the bibliography described in
section 2.2, the attributes conference and year of the table Paper and the attribute name of
the table Person are selected as facets. According to the list of facets, facet names and the

facet elements that correspond to each target object should be published to the P2P
network as facet data.

Figure 2. Architecture of Faceted Search in P2P Network

Object data:

These data are used for showing the result objects in the result column of the page. The
attributes that can be used for identifying the target object should be specified as object
data. For example, in the case of the bibliography described in section 2.2, the target
objects are the records of the table Paper. Then, the values of the attribute id of the table
Paper are specified as target object ids, and the values of the attribute title are specified as
the information that can identify the object.

At each node, facet information and object data are extracted from the database and published
to the P2P network. The method of extraction of such information is defined by each node
according to the structure of the data and the purpose of the application.

3.2 Data Structure for Facet data

We defined the data structure of facet data f as the following triple:

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 4

fi = (target_object, facet_name, facet_ entity)
where target_object includes the Node ID and the ID of the target object, facet_name is the
facet name that is selected by the data manager of the node, and facet_entity is the value of the
facet_name of the target_object. The set of facet data FI is defined as follows:
 FInodeID = {fi| fi is facet information that is extracted from the data on nodeID}

The facet data of FInodeID are generated from the data on the node and are published and
shared to the P2P environment. For example, we assume that node A in Figure 2, whose node
id is ND001, manages the bibliographic data by using a relational database whose relation
schemas are the same as those described in section 2.2; the attributes conference and year of
the table Paper and the attribute name of the table Person are selected as facets. The
following faceted information is generated.
 FIND001 = {
 ...
 (‗ND001_P101‘, ‗conference‘, ‗PDPTA‘),
 (‗ND001_P101‘, ‗year‘, 2003),
 (‗ND001_P101‘, ‗author‘, ‗C. Watanabe‘),
 (‗ND001_P101‘, ‗author‘, ‗A. Ishida‘),
 (‗ND001_P102‘, ‗conference‘, ‗PDPTA‘),
 ...}
Next, we describe how to derive the data for generating the content in the facet column. We
first define the query if we manage all facet data in a single relational database. We assume
that all facet data are managed in the relational table FacetInfo(target_object, facet_name,
facet_entry). For example, suppose that a user searches for papers whose author is ―C.
Watanabe‖ from the bibliography database. The query, which gets the facet name, its facet
elements, and the number of objects that have the facet element, is described as follows:

SELECT FA.facet_name, FA.facet_entry, count(FA.facet_entry)

FROM FacetInfo FQ1, FacetInfo FA

 WHERE FQ1.facet_name=’author’

and FQ1.facet_entity=’C. Watanabe’

 and FQ1.target_object=FA.target_object

 GROUP BY FA.facet_name, FA.facet_entry

Figure 3. Query that Gets Information for Facet Search

The query statement shows the following features of the query operation for getting facet

elements and the number of objects.
(1) The query requires the self-join operations of a table for answering with tables for

query conditions. In the above query statement, a table for answers (named FA) and a
table for a query condition ―author=C. Watanabe‖ (FQ1) are generated. If a user adds
another query condition, a table for the query condition is required. We should notice
that the self-join operation takes a long time for processing the data if there are
considerable facet data.

The query needs to count the number of objects for each facet element. As described before,
the number shows how many objects have the facet element. The counting operation is a type
of aggregate operation. We should notice that it is difficult to process aggregate operations
among the data that are distributed throughout the nodes in a P2P environment.

3.3 Data Structure for Object Data

We define the data structure of object data obj with the following facet data:
 obj = (target_object, ident_attribute, value)
where ident_attribute is the attribute that can be used for identifying the target object should
be specified as object data. For example, in the case of Table 1, a set of object data is defined
as follows:
 {(‗ND001_P101‘, ‗title‘, ‗Privacy-Preserving Queries for a DAS Model Using Encrypted
Bloom Filter‘), (‗ND001_P101‘, ‗title‘, ‗A Query Description Model and its Implementation
as an Interactive Query Tool for Visualization Systems‘)}

4. Data Allocation Strategy

From the observation described above, we consider how to allocate facet data in the P2P
environment for processing operations for a facet search.

We first consider the appropriate architecture of a P2P environment. There are two types of
architecture of a P2P environment—structured network and unstructured network. A
structured network defines the connection of nodes and data allocation according to
algorithms such as Chord and Pastry. The structured network can reduce the network traffic
for queries. However, the most common type of structured network is based on a distributed
hash table (DHT); the applicable operations are limited to the ones that can be processed by
using a hash table. Unstructured networks do not use any algorithm for the organization or
optimization of network connections. Queries are flooded through the network to find as
many nodes as possible in the P2P network. The amount of network traffic is larger than that

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 5

in a structured network, but the user can specify queries that are more flexible than those in a
structured network.

We apply structured networks as the architecture of a P2P environment for two reasons. The
first reason is that we should consider the amount of network traffic because users
interactively issue several queries until they find what they want. The second reason is that
operations can be limited to an exact matching and keyword search that can be processed by
using a hash table.

Next, we consider the allocation of facet data. Because we use DHT, we define what should
be the keys of the hash table and their corresponding values for processing faceted searches.
In the previous section, we described the SQL statement for the table FacetInfo to get the
facets, facet elements, and the number of objects. PIER [2] defines the method of allocating
tuples of a relational table to process queries that are described by the SQL statement.

However, there are two problems related to the application of PIER‘s method. These
problems are caused by the features of queries used for obtaining the facet data described in
Figure 3.
(1) Self-join operations using the attribute object should be processed in the query. If pairs of

facet data, whose object value are the same, are allocated on the different nodes, the
operation needs a large amount of network traffic.

(2) PIER does not support aggregate operations. Aggregate operations over DHT have been
proposed [3]. However, PIER processes aggregate operations by using a broadcast
algorithm. It is impractical to use a broadcast algorithm because every query needs to
process a count operation, and this causes a flood of network traffic.

On the basis of these observations, we define an allocation strategy. We first define a set of
self-joined facet data JFInodeID by using the attribute object to get all pairs of the facet data for
the same object.

JFInodeID = {(fi1,fi2)| ∃fi1 ∈FInodeID, ∃fi2∈FInodeID,
 fi1.target_object=fi2.target_object}

If put(key,value) is defined as a function that adds an entry to DHT, we define a function
putFI(fi1,fi2), where (fi1,fi2) is a pair of facetdata. An element of JFInodeID is defined as
follows:

putFI(fi1,fi2) := put(fi1.facet_name + ‗ :‘ + fi1.facet_entity, fi2)
Table 2 shows pairs of the key and the value for the put function for publishing facet data in
FIND001, which is defined in section 4.2. The put(key,value) function of DHT determines which
node the value is stored in according to the result of the hash function h(key). fi1.target_name
and fi1.target_entity of (fi1,fi2) in JFInodeID shows a query condition that is processed when a
user clicks the corresponding facet element, and fi2 shows another facet element of the object

that is applied to the query condition. This implies that all information for generating a facet
list, entries of each facet, and the number of objects are allocated on the same node when a
user specifies a facet element for filtering an object. At each node, a set of pairs (fi1,fi2) can be
stored in a memory database.

Table 2. Pairs of Key and Value for put Function for Facet Data in FIND001
key value
conference : PDPTA (‗ND001_P101‘, ‗year‘,2003)
conference :PDPTA (‗ND001_P101‘, ‗author‘, ‗C. Watanabe‘)
conference :PDPTA (‗ND001_P101‘, ‗author‘, ‗A. Ishida‘)
conference :PDPTA (‗ND001_P101‘, ‗author‘, ‗K. Joe‘)
... ...
year :2003 (‗ND001_P101‘, ‗conference‘, ‗PDPTA‘)
year :2003 (‗ND001_P101‘, ‗author‘, ‗C. Watanabe‘)
...
conference :DASFAA (‗ND001_P102‘, ‗year‘, 2009)
...

The query described in Figure 3 can be processed in a P2P network by issuing the

following query on the node that corresponds to the hash value of h (‗author:C. Watanabe‘):

SELECT FA.facet_name, FA.facet_entry, count(FA.facet_entry)

 FROM FacetInfo FA

 GROUP BY FA.facet_name, FA.facet_entry

The proposed method can solve the problems described above. The first problem can be

solved because the self-join operation is already carried out. In addition, there is no problem
when the user specifies an additional facet element. All facet data that have the first facet
element are on the same node; the self-join operation does not require any network traffic. For
example, when a user selects a facet element ―PDPTA‖ of the facet ―conference‖ , the user can
obtain the results by issuing the following query on the same node.

SELECT FA.facet_name, FA.facet_entry, count(FA.facet_entry)

 FROM FacetInfo FQ2, FacetInfo FA

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 6

 WHERE FQ2.facet_name=’conference’

 and FQ2.facet_value=’PDPTA’

 GROUP BY FA.facet_name, FA.facet_entry

The second problem can be solved because all facet data are in the same node and

aggregate operations should not be processed among multiple nodes. Object data can be
published by using a put function. We define the putOI(obj) as follows:
 putOI(obj) := put(obj.target_object, obj)

5. Query Processing

In this previous section, we assumed that queries are processed on the node in which the
result facet data are stored. In this section, we first describe the steps for processing
operations for a faceted search by using an example case in which a user clicks the facet
element ―C. Watanabe‖ of the facet ―author‖.

 Step 1: When a user specifies a facet element fent1 of the facet facet1, the system accesses

the node that corresponds to the value of the hash function h(facet1+‗:‘+fent1).
 Step 2: The system gets object data that are applied to the query conditions. Table 3 shows

the set of object data as the answer of the query in the example case.
 Step 3: The system issues a query that requires a set of the following facet data; they are

facet name, facet element, and the number of objects that have the facet element.
Table 4 shows the set of facet data as the answer of the query in the example case.

 Step 4: By using the results, the system generates the result page.

Table 3. Object Data Acquired at Step 2
obj id attribute Value
P101 title Privacy-Preserving Queries for a DAS Model

Using Encrypted Bloom Filter.

P102 title A Query Description Model and its Implementation as an
Interactive Query Tool for Visualization System

Table 4. Facet Data Acquired at Step 3

facet name facet element number of
objects

conference DASFAA 2
conference PDPTA 10
...
Year 2010 4
Year 2009 1
...
Author K. Joe 9
...

5.1 Getting Object Data

In step 2, the system gets the object data of the objects that are applied to the query
conditions. The system first gets object ids by issuing the following query string:

 SELECT DISTINCT target_object

 FROM FacetInfo FA

Next, the system gets the object data corresponding to the object ids of the result objects.

Now, we notice that only 5~10 result objects can be shown in a result page at once although
there are many result objects. Then, the system selects 5~10 object ids to show in the result
page, and the system gets the object data of these object ids. Object data are published to DHT
by using the putOI function. The putOI function uses the id of the object as the key, and the
value is the object data. Then, the system gets the object data of the object by issuing the DHT
function get(key).

5.2 Getting Facet Data

In step 3, the system gets the facet data of the objects that are applied to the query
conditions. We can obtain facet data by issuing the query described in section 5. However, we
have the two alternatives for where the system should process the query.

(1) Processing queries at the client (Figure 4(a))

When a user specifies a facet element, the system gets the facet data by using the DHT
function get(facet1+‗:‘+fent1). We store the results in the database at the client and issue
the query described in section 5 to the database at the client. By getting the facet data

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 7

once, we can process the subsequent queries at the client without accessing the P2P
network. On the other hand, the client may have to download a large amount of facet data,
and this may take a considerable amount of processing time.

(2) Processing queries at the node (Figure 4(b))
When a user specifies a facet element, the system accesses the node that corresponds to
the value of the hash function h(facet1+‗:‘+fent1) and issues the query on the node. The
client can get the results of the query. The size of the results is always small. On the other
hand, the system needs to access the P2P network for issuing every query, and the total
processing time may be considerable if the user issues interactively queries for several
times on the faceted search interface.

Figure 4. Two Alternative Ways of Processing Queries

We evaluate the total response time when the user interactively issues queries twice.

Figure 5 shows the result of evaluation. For this evaluation, we prepare artificial data. On an
average, for each facet, the number of target objects is 10000, the number of facets is 10, and
the number of facet elements is 10. The number of joint facet data becomes 9,000,000. We

published these joint facet data in a P2P environment that consists of 10 nodes. We implement
the P2P environment by using Overlay Weaver [7] and apply Chord as an algorithm for DHT.
In this evaluation, we fix the selection ratio of the second query a 50% and evaluate the
response time by using various selection ratios of the first query.

Figure 5. Total Response Time for Two Facet Search Operations

The result shows that the query needs to be processed at the node until the query result is
sufficiently filtered. When the number of result objects is small, the system should get all
facet data from the node to process the subsequent queries at the client.

6. Conclusion and Future Works

In this paper, we proposed a faceted search in the P2P environment and discussed how to
allocate data for the faceted search over DHT. Because query operations include self-join
operations and aggregate operations, we proposed an allocation strategy that does not require
self-join and aggregation across the several nodes on the P2P network. In addition, we
discussed which query operations should be processed at the client or the corresponding node
from the evaluation of the total response time of queries for the faceted search. As a future
work, we will develop and provide a framework for faceted search in the P2P environment.

References

1) D. Abadi, A. Marcus, S. Madden, and K. Hollenbach: Scalable Semantic Web Data Management Using
Vertical Partitioning, In Proc. of the 33rd International Conference on Very Large Data Bases, pp.

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

 8

411–422, (2007).
2) R. Huebsch, J. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica: Querying the Internet with
PIER, In Proc. of the 29th International Conference on Very Large Data Bases, pp. 321–332, (2003).
3) J. Li, K. Sollions, and D. Y. Lim: Implementing Aggregation and Broadcast over Distributed Hash
Table, ACM SIGCOMM Computer Communication Review, Vol. 35, No. 1, pp. 82–92 (2005).
4) E. Oren, R. Delbru, and S. Decker: Extending Faceted Navigation for RDF Data, In Proc. of the 5th
International Semantic Web Conference, pp. 559–572, (2006).
5) W. Rao, A. W. Fu, L. Chen, and H. Chen: STAIRS: Towards Efficient Full-Text Filtering and
Dissemination in a DHT Environment, In Proc. of the 25rd IEEE International Conference on Data
Engineering (ICDE'09), pp. 198–209 (2009).
6) S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania: Minimum Effort Driven Dynamic Faceted
Search in Structured Databases, In Proc. of the 17th ACM Conference on Information and Knowledge
Management, pp. 13–22 (2008).
7) K. Shudo, Y. Tanaka, and S. Sekiguchi: Overlay Weaver: An Overlay Construction Toolkit, Computer
Communications (Special Issue on Foundations of Peer-to-Peer Computing), Elsevier Science, Vol. 31,
No. 2, pp. 402–412 (2008).
8) C. Zheng, G. Shen, S. Li, and S. Shenker: Distributed Segment Tree: Support Range Query and Cover
Query over DHT, In Proc. of the Fifth International Workshop on Peer-to-Peer Systems (IPTPS) (2006).
9) DBLP Computer Science Bibliography, http://www.informatik.uni-trier.de/~ley/db/index.html.

ⓒ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.5
2010/7/12

