
情報処理学会研究報告
IPSJ SIG Technical Report

線形分離オートマトンの
高速な状態数最小化アルゴリズム

沼 井 裕 二†1 小 林 聡†1

本論文では，著者らが過去に提案した線形分離オートマトン（LSA）の状態数最小
化アルゴリズムを高速化する．LSA は有限オートマトンを拡張したモデルで，実ベク
トル系列を受理する能力を持ち，各状態には重み関数と閾値系列が付随する．この二
つによって，各時点でのある状態からの遷移先状態が決定する．
過去の著者らの論文では，与えられた LSA M の状態数を最小化する理論を確立

し， O(n2) 時間の状態数最小化アルゴリズムを提出した．n は M の状態数である．
本論文では， O(n logn) 時間にまで高速化した状態数最小化アルゴリズムを与える．

Efficient State Minimization Algorithm of
Linear Separation Automata

Yuji Numai†1 and Satoshi Kobayashi †1

In this paper, we present a faster state minimization algorithm of a linear sep-
aration automaton (LSA for short) than the algorithm we recently proposed.
An LSA is an extended model of a finite automaton. It accepts a sequence of
real vectors, and has a weight and a threshold sequence at every state, which
determine the transition from the current state to the next at each step.
We established a theory of minimizing the number of states of a given LSA

M , and proposed an O(n2) time state minimization algorithm of M , where n is
the number of states of M . This paper gives an O(n logn) time efficient state
minimization algorithm of M .

†1 電気通信大学大学院電気通信学研究科情報工学専攻
Department of Computer Science, Graduate School of Electro-Communications, The University

of Electro-Communications

1. Introduction

The theory of computational models that can deal with sequences of real valued vec-

tors is an important research topic if we consider problem domains including weather

forecasting5), motion recognition3),4), and time-sequential image analysis9).

We proposed a computational model, called a Linear Separation Automaton (LSA for

short). The LSA is an extended model of a finite automaton. It accepts a sequence of

real vectors, and has a weight and a threshold sequence at every state, which determine

the transition from the current state to the next at each step. If we consider the learning

problem of automata, it is essentially important to establish the theory of minimizing

the number of states of a given automaton. It is often the case that learning algorithms

try to find a minimum state automaton consistent with a given set of examples.

In our previous works, we established a theory of minimizing the number of states

of a given LSA7), and proposed an O(n2) time state minimization algorithm6). This

paper gives an O(n logn) time efficient state minimization algorithm of a given LSA.

2. Preliminaries

In this section, we introduce some basic definitions and notation, and introduce a

linear separation automaton.

2.1 Basic Definitions and Notation

By R, we denote the set of real numbers. For a positive integer d, by Rd we denote

d-dimensional vector space over R. For x, y ∈ Rd, x ⊗ y denotes the inner product of

x and y. We define (Rd)∗ as the set of all finite sequences of elements in Rd. For a

sequence α = ⟨x1, . . . , xn⟩ ∈ (Rd)∗, we denote the length of α by |α|, i.e., |α| = n. An

element in (Rd)∗ of length 0 is called an empty sequence, and is denoted by λ. For

sequences α, β ∈ (Rd)∗, we denote the concatenation of sequences α and β by αβ. For

α = ⟨x1, . . . , xn⟩ ∈ (R1)∗, α is said to be increasing if the inequality xi < xi+1 holds

for every i.

Let S be a set. A partition π = {S1, . . . , Sk} of S is the set of mutually disjoint

non-empty subsets Si of S for 1 ≤ i ≤ k such that ∪i=1,...,kSi = S. A partition

π = {S1, . . . , Sk} of Rd is said to be linearly separable iff there exist w ∈ Rd and an

1 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

increasing h = ⟨h1, . . . , hk−1⟩ ∈ (R1)∗ such that, for any x ∈ Rd,

hi−1 < w ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k)

holds, where h0 = −∞ and hk = ∞.

Consider equivalence relations ≡,≡1, and ≡2 over (Rd)∗. The number of the equiva-

lence classes of ≡ is called the index of ≡. An equivalence relation ≡1 is finer than an

equivalence relation ≡2 (or ≡2 is coarser than ≡1) iff x ≡1 y implies x ≡2 y for any x

and y. An equivalence relation ≡ is right invariant iff α ≡ β implies αγ ≡ βγ for any

α, β and γ.

Consider partitions π1 and π2 of Rd. A partition π1 is finer than a partition π2 (or

π2 is coarser than π1) iff for any block B1 ∈ π1, there exists a block B2 ∈ π2 such that

B1 ⊆ B2. We say that π1 is a refinement of π2 iff π1 is finer than π2.

2.2 Linear Separation Automata

A linear separation automaton (LSA) M is formally defined as an 8-tuple

M = (d,Q, q0, F, w, h, s, δ) ,

where d is a positive integer specifying the dimension of input vectors to M ; Q is a finite

set of states; q0 is an initial state (q0 ∈ Q); F is a finite set of final states (F ⊆ Q); w

is a weight function from Q to Rd such that w(q) is a unit vector for any q ∈ Q; h is

a threshold function from Q to (R1)∗ such that h(q) is increasing for every q ∈ Q, and

is denoted by h(q) = ⟨h(q)1, . . . , h(q)|h(q)|⟩; and s is a sub-transition function from Q

to Q∗, and is denoted by s(q) = ⟨s(q)1, . . . , s(q)|s(q)|⟩. If |s(q)| ≥ 1, then the equality

|h(q)| = |s(q)| − 1 holds for every q ∈ Q.

In order to improve the readability, we write iq = |h(q)| for any q ∈ Q.

δ is a state transition function from Q×Rd to Q; and is defined in the following way

by using w, h, and s. Consider any state q ∈ Q and vector x ∈ Rd. The definition

of δ is separated into three components. First, in the case of |s(q)| = 0, the value

δ(q, x) is undefined. Secondly, suppose that |s(q)| = 1. The value δ(q, x) is defined as

δ(q, x) = s(q)1. Finally, assume that |s(q)| ≥ 2. The value δ(q, x) is defined as follows:

δ(q, x) =



s(q)1 if w(q)⊗ x ≤ h(q)1

s(q)2 if h(q)1 < w(q)⊗ x ≤ h(q)2
...

...

s(q)iq if h(q)iq−1 < w(q)⊗ x ≤ h(q)iq

s(q)iq+1 if h(q)iq < w(q)⊗ x .

Consider a state transition diagram as in Fig. 1. Suppose that δ(q, x) = p holds if

h(q)i < w(q) ⊗ x ≤ h(q)i+1. In the diagram, the transition from q to p is associated

with the interval (h(q)i, h(q)i+1].

For α = ⟨x1, . . . , xl⟩ ∈ (Rd)∗, we write δ(p, α) = q if there exists a sequence

p1(= p), p2, . . . , pl+1(= q) of states such that δ(pi, xi) = pi+1 holds for any i. We

define the set of sequences accepted by an LSA M , denoted by L(M), as L(M) = {α ∈
(Rd)∗ | δ(q0, α) ∈ F }. A subset L of (Rd)∗ is said to be regular if there exists an LSA

M such that L = L(M). We define the size of M as the cardinality |Q| of Q.

A state q ∈ Q is said to be reachable if there exists α ∈ (Rd)∗ such that δ(q0, α) = q.

A state q ∈ Q is said to be unreachable if q is not reachable.

Example 1. Consider an LSA M1 in Fig. 1. Let α = ⟨x1, x2, x3⟩ be an input sequence

of vectors in R2 with x1 = (3
√
10, 2

√
10), x2 = (−

√
5, 2

√
5), and x3 = (−3

√
10,−2

√
10).

It holds that δ(q1, x1) = q6, δ(q6, x2) = q4, and δ(q4, x3) = q4 ∈ F . Hence, the sequence

α is accepted by M1.

3. Basic State Minimization Algorithm of LSA

In this section, we give some theoretical results for LSAs, showed in 7), and review a

basic algorithm to minimize the number of states of a given LSA, presented in 6).

3.1 Theoretical Results

For any subset S of (Rd)∗, we define an equivalence relation ≈S over (Rd)∗ as follows:

α ≈S β
def⇔ ∀γ ∈ (Rd)∗ (αγ ∈ S iff βγ ∈ S) .

Let M = (d,Q, q0, F, w, h, s, δ) be an LSA accepting S with no unreachable states.

2 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

q1:w1

q5:w1

q2:w1

q3:w1

q10:w1

q7:w1

q4:w1

q6:w2

q9:w2

q8:w2

(, 0]

(

, 10]

(0, 10]

(10,)

(, 5]

(5
 ,

)

(, -10]

(
5

 ,

)(20,)

(

 ,

20
]

(, 0]

(0, 5
]

(, 20]

(2
0,

)

(, -10]

(
5

 ,

)
(

 ,
10

]

(10,)

(

, 2

0]

(20,
)

(1
0,

)

(5 ,)

q11:w2

q12:w2

(-10 , 0]

(-
10

 ,
0

]

(
0

, 5
]

(0 , 5]

(, 20]

(, 20]

(20,)

(20,)

)
10

1
,

10

3
(1 =w)

5

1
,

5

2
(2

−=w

Fig. 1 LSA M1.

For any p, q ∈ Q, there exists α, β ∈ (Rd)∗ such that δ(q0, α) = p and δ(q0, β) = q. We

define the equivalence relation ∼ over Q as follows:

p ∼ q
def⇔ α ≈S β .

The states p and q are said to be indistinguishable iff p ∼ q. The states p and q are

said to be distinguishable iff p ̸∼ q.

For any p ∈ Q, by r(p) we denote a representative element of [p]∼ . We define an

LSA

M/ ∼= (d,Q′, q′0, F
′, w′, h′, s′, δ′) ,

where

Q′ = Q/ ∼ , q′0 = [q0]∼ , F ′ = {[q]∼ | q ∈ F} ,

δ′([q]∼, x) = [δ(r(q), x)]∼ , w′([q]∼) = w(r(q)) , h′([q]∼) = h(r(q)) .

Theorem 1 (Characterization of Minimum State LSA). Let M be an LSA. The LSA

M/ ∼ is a minimum state LSA for M such that L(M/ ∼) = L(M).

3.2 Basic State Minimization Algorithm

Let M = (d,Q, q0, F, w, h, s, δ) be an LSA. For a state q1, q2 ∈ Q, we write q1 ∼w q2 if

w(q1) = w(q2). A state q1 is preceding to a state q2 with respect to a state q, denoted by

q1 ≺q q2, if there exists an integer i such that s(q)i = q1 and s(q)i+1 = q2. For q ∈ Q,

we define

∆(q) = { p | p ∈ s(q) } .

For a subset X of Q, we define

∆(X) = { p | q ∈ X, p ∈ ∆(q) } .

For a partition π of Q and q1, q2 ∈ Q, we write q1 ∼(π) q2 if there exists B ∈ π such

that q1, q2 ∈ B. For a subset X of Q, we define

W (X) = {w(q) | q ∈ X } .

For a subset X of Q and ω ∈ W (Q), we define

Xω = { q ∈ X | w(q) = ω } .

For any ω ∈ W (Q), we also define

H(ω) = {h(q)i | q ∈ Qω, 1 ≤ i ≤ iq, s(q)i ̸= s(q)i+1 } ∪ {∞} .

For ω ∈ W (Q) and v ∈ H(ω) , we define the function δω,v from Qω to Q as follows:

δω,v(q) = δ(q, x) for some x ∈ Rd with ω ⊗ x = v .

We define the set of functions ∆ as follows:

∆ = { δω,v | ω ∈ W (Q), v ∈ H(ω) } .

In the sequel, for simple description of the algorithm, we often use graph representa-

tion of mappings f ∈ ∆ and ∆ : Q → 2Q, i.e., f is represented as a graph containing

edges between q1 and q2 such that q2 = f(q1), written q1fq2; and ∆ is represented as a

graph containing edges between q1 and q2 such that q2 ∈ ∆(q1), written q1∆q2.

Theorem 2 (Characterization of Partition Q/ ∼). Let M = (d,Q, q0, F, w, h, s, δ) be

an LSA. The partition Q/ ∼ is a coarsest refinement π of π0 = {F,Q − F} which

satisfies the following conditions:

(C1) ∀B ∈ π ∀f ∈ ∆ ∃B′ ∈ π such that f(B) ⊆ B′ ,

(C2) ∀B ∈ π (|W (B)| > 1 ⇒ ∃B′ ∈ π such that ∆(B) ⊆ B′) .

Now, let us describe the basic state minimization algorithm of a given LSA. It uses

two primitive refinement operations split1 and split2; the former is for the condition

(C1), and the latter is for (C2).

3 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

q1, q3: w1

(, 0]
(0, 10]

(10,
)

(, 5]

(5 ,)

(, -10]

(-10 , 0]

(0, 5
]

q11:w2

q12:w2

(, 20]

(
 , 20]

(20,)

(20,)

q5, q6, q7, q8: w1

q2, q4: w1

q9, q10: w1

(, 10]

(10,)

(5 ,
)

)
10

1
,

10

3
(1 =w)

5

1
,

5

2
(2

−=w

Fig. 2 Minimum state LSA of M1.

For a set S ⊆ Q, f ∈ ∆, and a partition π of Q, the operation split1(S, f, π) is defined

as follows:

find all blocks B ∈ π such that f(B)∩S ̸= ∅ and f(B) ̸⊆ S. Define B1 = B ∩ f−1(S)

and B2 = B − B1. Then, split B ∈ π into the blocks B1 and B2, which results in the

refinement of π.

For a set S ⊆ Q and a partition π of Q, the operation split2(S, π) is defined as follows:

find all blocks B ∈ π such that ∆(B)∩S ̸= ∅, ∆(B) ̸⊆ S and |W (B)| > 1, and split B

into some smaller blocks defined in the following way; Define B′ = { q ∈ B | ∆(q)∩S ̸=
∅ and ∆(q) ̸⊆ S }, B1 = {q ∈ B − B′ | ∆(q) ⊆ S}, and B2 = (B − B′)−B1. For each

ω ∈ W (B′), consider B′
ω. Then, split B ∈ π into B1, B2 and B′

ω’s for all ω ∈ W (B′),

which results in the refinement of π.

Algorithm 1 is below.

Algorithm 1 Basic State Minimization Algorithm for LSA

Input: An LSA M = (d,Q, q0, F, w, h, s, δ)

Output: π

1: let π = {F,Q− F};
2: loop

3: if ∃B ∈ π such that split2(B, π) ̸= π then

4: replace π with split2(B, π);

5: else if ∃B ∈ π, ∃ f ∈ ∆ such that split1(B, f, π) ̸= π then

6: replace π with split1(B, f, π);

7: else

8: output π and halt;

9: end if

10: end loop

Example 2. The output of Algorithm 1 for the input LSA M1 in Fig. 1 is in Fig. 2.

3.3 Correctness of Algorithm 1

We give some basic properties of the split operations:

Lemma 1. A partition π satisfies (C1) if and only if split1(B, f, π) = π for every

block B ∈ π and f ∈ ∆. A partition π satisfies (C2) if and only if split2(B, π) = π for

every block B ∈ π.

Lemma 2. If π2 is a refinement of π1 and split1(S, f, π1) = π1 holds, then

split1(S, f, π2) = π2 holds. If π2 is a refinement of π1 and split2(S, π1) = π1 holds,

then split2(S, π2) = π2 holds.

Lemma 3. The equalities split1(S1, f, π) = π and split1(S2, f, π) = π imply

split1(S1 ∪ S2, f, π) = π. The equalities split2(S1, π) = π and split2(S2, π) = π im-

ply split2(S1 ∪ S2, π) = π.

Lemma 4. If π1 is a refinement of π2 and split2(S, π2) = π2 holds, then split1(S, f, π1)

is a refinement of split1(S, f, π2).

Lemma 5. Let π1 be a partition satisfying (C1) and S be a union of some blocks in

4 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

π1. If π1 is a refinement of π2, then split2(S, π1) is a refinement of split2(S, π2).

Lemma 6. Algorithm 1 maintains the invariant that any coarsest refinement of the ini-

tial partition {F,Q− F} satisfying (C1) and (C2) is also a refinement of the current

partition π.

Finally, we have the following theorem.

Theorem 3 (Correctness of Algorithm 1). Let M = (d,Q, q0, F, w, h, s, δ) be an LSA,

and n = |Q|. Algorithm 1 for the input M is correct and terminates after at most n− 1

refinement steps, having computed the coarsest refinement of {F,Q−F} satisfying (C1)

and (C2).

Proof. Since the number of blocks of a partition of Q is less than or equal to n, and

since the number of blocks increases at each refinement step, the algorithm terminates

at most n − 1 refinement steps. Lemma 1 implies that the final partition πf satisfies

(C1) and (C2). Moreover, Lemma 6 implies that πf should be the coarsest refinement

of {F,Q− F} satisfying (C1) and (C2).

Let us discuss the time complexity of Algorithm 1. We define

K = max{ |H(ω)| | ω ∈ W (Q) }
and

k = max{ |∆(q)| | q ∈ Q } .

The following theorem holds.

Theorem 4 (Time Complexity of Algorithm 1). Let M = (d,Q, q0, F, w, h, s, δ) be

an LSA, and n = |Q|. The time complexity of Algorithm 1 for the input M is

O((K + k)n2).

Proof. Let m = (K + k)n, i.e., m is the upper bound of the total number of edges

contained in the graphs f ∈ ∆ and in the graph ∆. It is straightforward to see that

finding a block B satisfying the if-conditions (at lines 3 and 5) and refining π afterwards

can be done in time O(m).

Moreover, the upper bound of the number of refining π is n− 1.

Hence the time complexity of Algorithm 1 is O(mn) = O((K + k)n2).

4. Efficient State Minimization Algorithm

In this section, we will show a faster algorithm than Algorithm 1, called Algorithm

2, which works in time O(m logn) = O(Kn logn). This is based on the “process the

smaller half” idea used by Hopcroft1),2) and Paige8).

In Algorithm 2, we keep two partitions π and π′ such that π is a refinement of π′

and split1(B, f, π) = π and split2(B, π) = π hold for every block B ∈ π′ and f ∈ ∆. A

block B ∈ π′ is said to be compound if it contains more than one blocks of π.

Algorithm 2 Efficient State Minimization Algorithm for LSA

Input: An LSA M = (d,Q, q0, F, w, h, s, δ)

Output: π

1: let π = {F,Q− F};
2: let π′ = {Q};
3: while π ̸= π′ do

4: select a compound block B ∈ π′;

5: let B1, B2 be the first two blocks of π contained in B, and let B1 be the smaller;

6: let π′ := (π′ − {B}) ∪ {B1, B −B1};
7: if split2(B1, π) ̸= π then

8: replace π with split2(B1, π);

9: end if

10: for all f ∈ ∆ such that split1(B1, f, π) ̸= π do

11: replace π with split1(B1, f, π);

12: end for

13: end while

14: output π;

Note that at lines 8 and 11 of Algorithm 2, π might be refined by split operations,

and that at line 6 π′ might be refined by decomposing a compound block. Therefore,

at every while loop, π is a refinement of π′, and there exists a compound block in π′

unless π = π′.

5 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

The correctness of Algorithm 2 can be proved almost in a similar manner as in the

case of Algorithm 1. An important difference is that in Algorithm 2, we apply only

split1 and split2 operations based only on B1, and do not apply those operations based

on B − B1. However, we can show that the latter operations are not necessary for the

construction of the coarsest refinement.

Lemma 7. Let S be any subset of Q, π be a partition of Q, B be a block in π with

B ⊆ S, and f be a function in ∆.

(1) If split1(S, f, π) = π holds, split1(B, f, π) = split1(S −B, f, split1(B, f, π)) holds.

(2) If split2(S, π) = π holds, split2(B, π) = split2(S −B, split2(B, π)) holds.

Proof. We will show the proof of (1). Let π′ = split1(B, f, π). Let D be any block in

π′. We will prove that either f(D) ⊆ S −B or f(D) ∩ (S −B) = ∅ holds.

Note that π′ = split1(B, f, π′) holds. Therefore, for any D ∈ π′, f(D) ⊆ B or

f(D) ∩B = ∅ holds.

In the case of f(D) ⊆ B, we have f(D) ∩ (S − B) = ∅. Let us consider the case

of f(D) ∩ B = ∅. By split1(S, f, π) = π and Lemma 2, split1(S, f, π
′) = π′ holds.

Therefore, f(D) ⊆ S or f(D) ∩ S = ∅ holds. In the case of f(D) ∩ S = ∅, we have

f(D) ∩ (S − B) = ∅. In the case of f(D) ⊆ S, by combining with f(D) ∩ B = ∅, we
obtain f(D) ⊆ S −B.

In conclusion, for any D ∈ π′, we have either f(D) ⊆ S − B or f(D) ∩ (S − B) = ∅.
Therefore, split1(B, f, π) = split1(S−B, f, π′) holds. The proof of (2) can be obtained

in a similar way.

Theorem 5 (Correctness of Algorithm 2). Let M = (d,Q, q0, F, w, h, s, δ) be an LSA,

and n = |Q|. Algorithm 2 for the input M is correct and terminates after at most n− 1

refinement steps, having computed the coarsest refinement of {F,Q−F} satisfying (C1)

and (C2).

Proof. We can show by induction and with Lemma 7 that, at each iteration of the while

loop, split1(B, f, π) = π and split2(B, π) = π hold for any B ∈ π′ and f ∈ ∆, and that

size1
w1 q1 q2 q3w2 q4 q5 q6w3 q7 q8size1 w1 q9 q10w3 q11size1 w1 q12

B1

B2

B3
size
size
S1

S2

sizesizesize
sizesize
size CL

size2

size2

size2

size1
w1 q1 q2 q3w2 q4 q5 q6w3 q7 q8size1 w1 q9 q10w3 q11size1 w1 q12

B1

B2

B3
size
size
S1

S2

sizesizesize
sizesize
size CL

size2

size2

size2

Fig. 3 Data Structure.

at each step, the current partition π is a refinement of the coarsest one. Then, we can

show that Algorithm 2 outputs the coarsest refinement after at most n− 1 refinement

steps.

In the case of Algorithm 2, each state always moves to a block which is smaller than

half of the current one, therefore, each state can move from a block to a block at most

O(logn) times. Furthermore, using the data structure in Fig. 3, we can implement

the inner blocks of the while loop in O(m + |B1|) time. If we notice that each edge is

processed at most O(log n) times, the total time complexity is bounded by O(m logn)

time.

We will describe several data structures necessary for the implementation of Algo-

rithm 2. We will describe each element x by a record, which we shall not distinguish

6 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

from the element itself. We represent each pair x, y such that x f y or x∆ y by a record,

which is called an edge. Each edge x f y and x∆ y points to element x. Each element

y points to a list of the edges x f y and a list of edges x∆ y. This allows the scanning

of the set f−1({y}) or ∆−1({y}) in time proportional to its size.

Concerning partitions π and π′, we need data structures described in Fig. 3. A block

B of π is represented as a record containing its sizes |B| and |W (B)| (indicated by size1

and size2, respectively, in Fig. 3), and a doubly linked list containing pointers to records

of Bω’s for all ω ∈ W (B). Each Bω is represented as a record containing its weight ω,

its size |Bω|, a pointer to the record B and a doubly linked list of states contained in

it. Each member (state) in the list also points to the record Bω. For a block S of π′,

we define Blk(S) = {B ∈ π | B ⊆ S}. A block S of π′ has a record containing its size

|Blk(S)| and a doubly linked list of pointers to records of blocks in Blk(S), where the

records of blocks in Blk(S) also points to the corresponding elements of this list. Each

element (pointer) of the list also points to the record S. We also maintain a doubly

linked list CL of pointers of compound blocks of π′.

We can implement Algorithm 2 in the following way.

(1) Remove a compound block S from CL. If there exists no compound blocks, out-

put π and halt. Otherwise, examine the first two blocks in S and let B1 be the

smaller.

(2) Remove B1 from S and create a new block S′ of π′ containing only B1. If S is

still compound, put S back into CL.

(3) For all D ∈ π such that ∆(D) ∩B1 ̸= ∅, ∆(D) ̸⊆ B1 and |W (D)| > 1, apply the

splitting operations defined in split2(B1, π). Do this by scanning all the edges

x∆y such that y ∈ B1. For this purpose, we prepare a counter cnt(x) for each

x ∈ Q, i.e., each state x has a counter cnt(x) in its record, which is not described

in Fig. 3 for its simplicity. To process an edge x∆y with y ∈ B1, the counter cnt(x)

is incremented by one. After scanning all the edges, we split D into D1, D2, and

D′
ω ’s, but, in the case of |W (D)| = 1, we do not split D. We can classify a state

x into D′
ω if 0 < cnt(x) < deg(x) and w(x) = ω, into D1 if cnt(x) = deg(x), into

D2 if cnt(x) = 0, respectively, in the split2 operations, where size information is

also updated appropriately. The updated counters should be linked together for

later resetting. If S′′ ∈ π′ containing D becomes compound, then add S′′ to CL.

(4) For all f ∈ ∆, do the following procedure. For eachD ∈ π such that f(D)∩B1 ̸= ∅
and f(D) ̸⊆ B1, split D into D1 = D ∩ f−1(B1) and D2 = D −D1. Do this by

scanning edges x f y such that y ∈ B1. To process an edge x f y with y ∈ B1,

determine D ∈ π and ω ∈ W (D) such that Dω contains x, create a temporary

block D′
ω for Dω and move x from Dω to D′

ω. After scanning, a new block con-

taining only D′
ω is added to π if Dω is not empty, Dω is just replaced by D′

ω

otherwise (i.e., no change on Dω), where size information is also updated appro-

priately. Temporary blocks D′
ω are linked together and have pointers to their

original blocks Dω for later process on them. If S′′ ∈ π′ containing D becomes

compound, then add S′′ to CL.

The correctness of the implementation follows in a straightforward way from our

discussion above.

Theorem 6 (Time Complexity of Algorithm 2). Let M = (d,Q, q0, F, w, h, s, δ) be an

LSA, and n = |Q|. The time complexity of Algorithm 2 for the input M is O(Kn logn).

Proof. The preprocess for data structure at the initialization stage requires only

O(m+n) time. The time spent in a refinement step is O(1) per edge scanned plus O(1)

per vertex of B1, which results in the total time complexity O(m logn) = O(Kn logn),

since any element in Q can exist in at most O(log n) blocks in π.

5. Further Improvement

In this section, we describe an implementation technique for improving the time com-

plexity from O(Kn logn) to O(kn logn).

The idea comes from the observation that most of the edges are common to many

graphs in ∆. Let us enumerate graphs in ∆ in the order δω,v1 , ..., δω,vk for each

ω ∈ W (Q), where H(ω) = {v1, ..., vk} and vi < vi+1 for every i = 1, ..., k − 1. Most

edges might be common between adjacent graphs in this order. Let δω,v0 be an empty

graph for convenience. For each i = 1, 2, ..., k, define E+
ω,i as a set of edges in the graph

δω,vi −δω,vi−1 , and E−
ω,i as a set of edges in the graph δω,vi−1 −δω,vi . Then, consider the

7 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

following procedure: (1) let fω,0 be an empty graph, (2) for each i = 1, ..., k, delete edges

in E−
ω,i from fω,i−1 and add edges in E+

ω,i to fω,i−1, and construct a new graph fω,i.

This procedure generates a sequence of graphs fω,1, fω,2, ..., fω,k such that fω,i = δω,vi .

Thus, it is not necessary to process all edges of fω,i = δω,vi for each i = 1, ..., k.

We need to process edges in E−
ω,i and E+

ω,i at each step i = 1, ..., k, where the process

for edges in E−
ω,i’s is the reversal computation of that for E+

ω,i’s. Then, the sum of

the number of edges in E−
ω,i’s and E+

ω,i’s for all ω ∈ W (Q) is bounded by 2 times the

number of edges in ∆, since every edge in ∆ exists in at most one of the E−
ω,i’s and in at

most one of the E+
ω,i’s. In other words, each edge in ∆ is processed twice when adding

and deleting it. Therefore, the time complexity can be improved to O(kn logn).

In order to implement the above idea, we need to keep temporary blocks B′
ω’s dur-

ing the process of the sequence δω,v1 , ..., δω,vk of graphs. More precisely speaking,

for representing each subblock Bω of a block B, we prepare two records Bω,org and

Bω,tmp such that Bω,org and Bω,tmp are disjoint, the union of Bω,org and Bω,tmp cor-

responds to Bω and Bω,tmp keeps the states q ∈ Bω satisfying q ∈ f−1(B1), where

B1 is the selected block in the split1 operation. In this way, we can always keep the

information of f−1(B1) ∩ Bω for each Bω during the process of a sequence of graphs

δω,v1 , δω,v2 , ..., δω,vk . The computation of such information is the most essential part

in the process of split1(B1, f, π) operation. Then, the update when adding an edge

x f y in E+
ω,i is moving its initial vertex x in the case of y ∈ B1 from Bω,org to Bω,tmp

as described in step (4) in the previous section. On the other hand, the update when

deleting an edge x f y in E−
ω,i is just moving its initial vertex x in the case of y ∈ B1

from Bω,tmp to Bω,org, which corresponds to the reversal of the procedure described in

step 4. For each i = 1, ..., k, after finishing the process for E−
ω,i and E+

ω,i, we should

check the emptiness of Bω,org’s and Bω,tmp’s. If both of Bω,org and Bω,tmp are not

empty, we delete Bω,tmp from Bω and create a new block B′ containing only the ele-

ments of Bω,tmp. But, this new block B′ should be represented by a pair of B′
ω,org and

B′
ω,tmp such that B′

ω,org is empty and B′
ω,tmp = Bω,tmp. In this way, we can keep the

information of f−1(B1) ∩B′
ω for this new block B′. Furthermore, we should note that

in order to efficiently execute the update processes, at each iteration of i, we need to

maintain updated temporary blocks linked together for these splitting processes.

6. Example Run of Algorithm 2

We will show a brief sketch of an example run of Algorithm 2 for the input LSA M1

in Fig. 1. When representing a block of a partition of Q, we classify its states into

subblocks based on their weight values, where each subblock is surrounded by a square

bracket with its weight being a label.

Initially, two partitions π and π′ are given as π = {B(0)
1 , B

(0)
2 } and π′ = {Q}, where

B
(0)
1 = {w1 : [q2, q4]}, B

(0)
2 = {w1 : [q1, q3, q5, q7, q10], w2 : [q6, q8, q9, q11, q12]}.

A compound block Q contains B
(0)
1 and B

(0)
2 , and therefore, the smaller block B

(0)
1 is

selected. We first process the graph ∆. After scanning edges x∆y with y ∈ B
(0)
1 , the

counters are given as follows.

cnt(q1) = 0, cnt(q2) = 1, cnt(q3) = 0,

cnt(q4) = 1, cnt(q5) = 2, cnt(q6) = 2,

cnt(q7) = 2, cnt(q8) = 2, cnt(q9) = 0,

cnt(q10) = 0, cnt(q11) = 0, cnt(q12) = 0.

Then, the partition π is obtained as π = {B(1)
1 , B

(1)
2 , B

(1)
3 }, where

B
(1)
1 = {w1 : [q2, q4]}, B

(1)
2 = {w1 : [q5, q7], w2 : [q6, q8]},

B
(1)
3 = {w1 : [q1, q3, q10], w2 : [q9, q11, q12]}.

The partition π′ is updated as π′ = {B(0)
1 , B

(0)
2 }. The partition π is not changed during

the process for the graphs in ∆.

Next, we choose a compound block B
(0)
2 in π′, which contains B

(1)
2 and B

(1)
3 . The

smaller block B
(1)
2 is selected.

We first process the graph ∆. After scanning edges x∆y with y ∈ B
(1)
2 , the counters

are given as follows.

8 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

情報処理学会研究報告
IPSJ SIG Technical Report

cnt(q1) = 2, cnt(q2) = 0, cnt(q3) = 2,

cnt(q4) = 0, cnt(q5) = 0, cnt(q6) = 0,

cnt(q7) = 0, cnt(q8) = 0, cnt(q9) = 0,

cnt(q10) = 0, cnt(q11) = 0, cnt(q12) = 0.

Then, the partition π is obtained as π = {B(2)
1 , B

(2)
2 , B

(2)
3 , B

(2)
4 }, where

B
(2)
1 = {w1 : [q2, q4]}, B

(2)
2 = {w1 : [q5, q7], w2 : [q6, q8]},

B
(2)
3 = {w1 : [q1, q3]}, B

(2)
4 = {w1 : [q10], w2 : [q9, q11, q12]}.

The partition π′ is updated as π′ = {B(1)
1 , B

(1)
2 , B

(1)
3 }. The partition π is not changed

during the process for the graphs in ∆.

Next, we choose a compound block B
(1)
3 in π′, which contains B

(2)
3 and B

(2)
4 . The

smaller block B
(2)
3 is selected.

We first process the graph ∆. After scanning edges x∆y with y ∈ B
(2)
3 , the counters

are given as follows.

cnt(q1) = 1, cnt(q2) = 0, cnt(q3) = 1,

cnt(q4) = 0, cnt(q5) = 0, cnt(q6) = 0,

cnt(q7) = 0, cnt(q8) = 0, cnt(q9) = 2,

cnt(q10) = 2, cnt(q11) = 1, cnt(q12) = 1.

Then, the partition π is obtained as π = {B(3)
1 , B

(3)
2 , B

(3)
3 , B

(3)
4 , B

(3)
5 }, where

B
(3)
1 = {w1 : [q2, q4]}, B

(3)
2 = {w1 : [q5, q7], w2 : [q6, q8]},

B
(3)
3 = {w1 : [q1, q3]}, B

(3)
4 = {w1 : [q10], w2 : [q9]},

B
(3)
5 = {w2 : [q11, q12]}.

The partition π′ is updated as π′ = {B(2)
1 , B

(2)
2 , B

(2)
3 , B

(2)
4 }. The partition π is changed

only during the process for the graph ∆w2,20 as follows.

B
(4)
1 = {w1 : [q2, q4]}, B

(4)
2 = {w1 : [q5, q7], w2 : [q6, q8]},

B
(4)
3 = {w1 : [q1, q3]}, B

(4)
4 = {w1 : [q10], w2 : [q9]},

B
(4)
5 = {w2 : [q11]}, B

(4)
6 = {w2 : [q12]}.

No change on π occurs after this step, and thus, this is the final partition. Then, a

minimum state LSA of M1 is given in Fig. 2.

7. Conclusions

In this paper, we proposed an efficient algorithm which minimizes the number of

states of a given LSA. The time complexity of the proposed algorithm is O(kn logn),

where k is the maximum number of edges going out from a state of a given LSA, and

n is the number of its states.

Future works include the application of LSAs to some classification problems con-

taining real-valued time series data, and the development of theory and algorithms for

learning LSAs from given sample data.

References

1) Aho, A.V., Hopcroft, J.E. and Ullman, J.D.: Design and Analysis of Computer

Algorithms, Addison-Wesley (1974).

2) Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton,

Theory of Machines and Computations, pp.189–196 (1971).

3) Matsunaga, T. and Oshita, M.: Recognition of Walking Motion Using Support

Vector Machine, ISICE2007, pp.337–342 (2007).

4) Matsunaga, T. and Oshita, M.: Automatic estimation of motion state for motion

recognition using SVM, IPSJ SIG Technical Report, Vol.2008-CG-133, pp.31–36

(2008).

5) Mohri, T. and Tanaka, H.: Weather Prediction by Memory-Based Reasoning, Jour-

nal of Japanese Society for Artificial Intelligence, Vol.10, No.5, pp.798–805 (1995).

6) Numai, Y., Udagawa, Y. and Kobayashi, S.: Minimization Algorithm of Linear Sep-

aration Automata, IPSJ SIG Technical Report, Vol.2010-MPS-77, pp.1–8 (2010).

7) Numai, Y., Udagawa, Y. and Kobayashi, S.: Theory of Minimizing Linear Separa-

tion Automata, IPSJ Transactions on Mathematical Modeling and Its Applications,

Vol.3, No.2, pp.83–91 (2010).

8) R.Paige, R.E.T.: Three Partition Refinement Algorithms, SIAM Journal on Com-

puting, Vol.16, No.6, pp.973–989 (1987).

9) Yamato, J., Ohya, J. and Ishii, K.: Recognizing human action in time-sequential

images using hidden Markov model, Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pp.379–385 (1992).

9 c⃝ 2010 Information Processing Society of Japan

Vol.2010-MPS-79 No.3
2010/7/12

