
Regular Paper

Experiments in Monte-Carlo Amazons

Julien Kloetzer†1

Amazons is a new abstract board game for two players which has recently
attracted attention due to its high branching factor. Recent Monte-Carlo Tree-
Search methods have been applied with great success to build strong programs.
We show in this paper how such an implementation benefits from a good eval-
uation function as well as from a good optimization between a high quantity
of low quality information and a low quantity of high quality information. We
also show that an MCTS implementation for Amazons greatly benefits from
processing power, especially given a good evaluation.

1. Introduction

Amazons is a two-player deterministic game with perfect information with very

simple rules. Although it possess elements both from the territory games world

and from the piece moving games world, it has its own set of strategies and

features which make it an interesting game to study. The main challenge when

programming an Amazons computer program is the branching factor of the game

of several hundreds4), way superior to those of games such as Chess(35), Shogi(80)

or even Go(250)3). The limit of 92 moves per game, however, makes it a game

simpler than Go on a game-tree complexity basis.

Due to the fact that it is not that difficult to design a good evaluation func-

tion8), several strong minimax-based programs emerged. Recent focus however

has shifted towards Monte-Carlo Tree-Search based algorithms6),9) which gave

birth to some new strong programs able to compete with traditional minimax

programs10). The best-first aspect of Monte-Carlo Tree-Search (MCTS) which

allows programs to bye-pass the problem of the high branching factor of the game

is obviously a factor for this success, although surely not the only one.

†1 Research Unit for Computers and Games, Japan Advanced Institute of Science and Tech-
nology; j.kloetzer@jaist.ac.jp

In this paper, we will present several experiments about MCTS Amazons. In

Section 2 we present the main basis of our work on MCTS Amazons. In Sections 3

and 4 we present the result of our experiments concerning the evaluation function

and the processing power. The conclusion follows in Section 5.

2. Past works

2.1 Monte-Carlo Tree-Search

Monte-Carlo for game programming has been proposed by Abramson in 19902).

His main idea was to replace the traditional evaluation function used in conjunc-

tion with minimax in game-playing programs with a much simpler heuristic: the

winning rate. This is achieved by playing random games (also called simulations)

and averaging their results. The technique however was not much used for deter-

ministic games even though it is as much applicable as for indeterministic games

and/or games with hidden information. The latter, given the stochastic aspect

of the Monte-Carlo evaluation, were a more natural target for this technique.

The recent addition of Tree-Search to simple Monte-Carlo programs however

has given birth to a complete new framework for game-programming called

Monte-Carlo Tree-Search (MCTS)5),7). MCTS is much more than just a classical

search using a Monte-Carlo evaluation: the search in an MCTS program launches

simulations the same way as a simple Monte-Carlo program but also uses infor-

mations from past simulations to drive the search using techniques borrowed from

the stochastic problems world, especially the n-armed bandit problem. A simple

pseudo-code of MCTS is given in Figure 1.

This algorithm grows a tree in an asymmetric manner as it explores the game

state space. The policy used in the selection part can vary, although the UCB

heuristic (Upper Confidence Bound) is often used, leading to an algorithm called

UCT (UCB for Trees)7). As for traditional Monte-Carlo the evaluation is tradi-

tionally the result of en ending position - win or lose - although, as we will see

in Section 2.2, it could be otherwise.

2.2 The program Campya

Campya is the author’s Amazons program. It is based on an MCTS core as

described in Section 2.1. It uses the UCB heuristic as its selection policy, making

it effectively a UCT program. At any position P during the search the next

情報処理学会研究報告 
IPSJ SIG Technical Report

1 ⓒ 2010 Information Processing Society of Japan

Vol.2010-GI-24 No.6
2010/6/25



1 function getBestMove ( Pos i t ion , Endingcondit ion )
2 while ( Endingcondit ion not s a t i s f i e d )
3 endingnode = t r e e . root
4 Pos = copy ( Pos i t i on )
5 while ( endingnode i s in the t r e e ) \\ s e l e c t i o n
6 endingnode = chooseChi ldOf ( endingnode )
7 play (Pos , move l ead ing to endingnode )
8 end while

9 t r e e . add ( endingnode ) \\ expansion
10 while ( Pos i s not ended po s i t i o n )
11 play (Pos , random move p layab l e from Pos )
12 end while

13 V = eva lua t i on (Pos ) \\ eva lua t i on
14 while ( endingnode =/= t r e e . root ) \\ back−propagat ion
15 update ( endingnode , V)
16 endingnode = endingnode . fa thernode
17 end while

18 end while

19 return (move m with h ighe s t va lue )
20 end function

Fig. 1 Pseudocode for a basic Monte-Carlo Tree-Search playing engine

move is selected according to the UCB policy: if at least one move leads to a

position which has not been explored yet by the algorithm, one of these moves

is chosen at random; otherwise, the move M maximizing V alue(P,M) + C ∗
√

ln(
∑

P children c
V (P,c))

V (P,M) is chosen, where V alue(P,M) is the computed value for

the position reached from P by playing M , and V (p,m) is the number of times

that move m was chosen from position p at this time of the computation. In the

random games, the moves are chosen completely randomly.

Apart from that, two main features distinguish it from other MCTS program.

First, since Amazons move are made of two steps, the game-tree is double-level.

Second, the evaluation is different, which will be presented in Section 3.

3. The MCTS Amazons evaluation

As it has already been shown by Kloetzer et. al6) and Lorentz9), the traditional

Monte-Carlo evaluation does not work for the game of the Amazons. Instead of

playing complete random games and evaluate them by their end-state, MCTS

Amazons programs play short random games which ending position is evaluated

using an evaluation function. In the next two sections, we will present our ex-

periments to study the effect of the evaluation function as well as of the length

of the random games.

3.1 Parameters of the evaluation

Lieberum describes in8) three important components for an Amazons evaluation

function:

• The Queen Distance (QD) which gives an estimation of the territory

• The King Distance (KD) which rewards a good distribution of the Amazons

on the board

• The Mobility (Mob) which punishes Amazons enclosed in narrow spaces

Since these three components do not bear the same importance at any moment

of the game (QD is more important near the end of the game, while KD and

Mob are more important at the beginning), he also suggests a way to measure

the progress in the game.

We will study in this section the effect of three evaluation functions:

• A simple evaluation based on QD alone (simple)

• A more complex combination of the three features described above (complex)

• The result of the complex evaluation to which is applied a step function,

giving a result of 0 to negative evaluations and of 1 to positive ones; this

evaluation should be the closest to the traditional Monte-Carlo evaluation

(ratio)

We will also study the effect of the length of the random games according to

three implementations:

• All random games played stop at the same depth from the root

• All random games have the same length

• All random games have the same length except if they end up at an odd

depth, in which case one more move is played to end them at an even depth

The Amazons evaluation function has a very strong odd-even effect, so the third

implementation should lower this effect compared to the second one.

3.2 Experiments

All experiments were run on Athlon 2.20Ghz or similar machines with at least

1Gb of memory, allowing Campya to play around 10000 simulations per second

情報処理学会研究報告 
IPSJ SIG Technical Report

2 ⓒ 2010 Information Processing Society of Japan

Vol.2010-GI-24 No.6
2010/6/25



for the simple evaluation, and around 6000 for the complex and ratio evaluations.

Each version of Campya tested played several hundreds of games against other

versions of the program using various settings or against alpha-beta programs,

after what Bayeselo was used to compute ELO ratings. Each version of the

program was evaluated using either 40000 simulations per move or 5 minutes

per game and with an optimized version of the C constant in the UCB formula

(presented in Section 2.2).

We first measured the performance of the various evaluations, which are sum-

marized in Table 1. For completeness sake, we also included the performance of

the classical Monte-Carlo evaluation, that is the percentage of win. It appears

quite clearly that the change of the evaluation is necessary, but also that, de-

spite it requiring more computation time, the use of a more complex evaluation

(complex or ratio) gives a great boost to the performance of the program. It

also appears that the ratio evaluation is slightly superior to the complex one,

although not by much.

Setting Endgame Classic Complex Ratio

evaluation evaluation evaluation evaluation

40.000 samples 780 1500 1741 1779

5 minutes 686 1541 1809 1835
Table 1 ELO rating for each of the three evaluations as well as for the full random game

evaluation

We provide next in Figures 2, 3 and 4 the ratings obtained by varying the

length and implementation of the random games as presented in Section 3.1.

The first thing we notice is that for any of the implementation as well as for any

of the evaluation there exists an optimum value for the random games (sometimes

two), which is surprisingly very low (3, 5 or 8 depending on the implementation).

This means that, although the random games are very short in the evaluation of

an MCTS Amazons program, the information they provide is necessary, but at

the same time they should not be too long. To sum up, there exist an optimum

between lots of information of lower quality (long random games) and few infor-

mation of higher quality (short random games) and the exploration provided by

the random games is necessary. This last points is confirmed by the bad perfor-

mance obtained by our program if we evaluate nodes directly, that is if we cut

completely the random games (experiments not included here).

Fig. 2 ELO ratings for various depth of cut and evaluations for the random games

Fig. 3 ELO ratings for various random games length and evaluations

It is also quite clear that the implementation consisting in giving the same

length to all the random games is superior to the one consisting in evaluating all

the nodes at the same depth, and that for every evaluation. However, it is not

clear whether modifying this implementation so that every random game ends at

an even depth really helps, since the performance of the best versions for each

evaluation are pretty similar with or without this correction.

情報処理学会研究報告 
IPSJ SIG Technical Report

3 ⓒ 2010 Information Processing Society of Japan

Vol.2010-GI-24 No.6
2010/6/25



Fig. 4 ELO ratings for various random games length and evaluations, the games always
ending at an even depth

4. Effect of the processing power

We present in this section our experiments concerning the effect of the pro-

cessing power to the performance of our MCTS program. The experiments are

performed in a similar way as presented in Section 3.2 and the results are sum-

marized in Table 2.

Beside a horizon effect for a few number of simulations per move, the results

for the game of the Amazons follow those presented for the game of Go in the

Computer-Go mailing-list1), that is that each doubling of power gives a stable

gain in ELO, between 100 and 150 in the present case. It seems however that

the performance of the simple evaluation quickly reach a plateau, while the ra-

tio evaluation benefits more from a higher processing power than the complex

evaluation.

Simulations/move 2500 5000 10000 20000 40000 80000 160000

simple evaluation 1139 986 1137 1365 1500 1641 1698

complex evaluation 1404 1219 1443 1568 1737 1873 1959

ratio evaluation 1351 1136 1365 1624 1745 1937 2035
Table 2 ELO ratings for each of the three evaluations for various numbers of random games

5. Conclusion

We presented in this article results of experiments geared towards the cre-

ation of a strong MCTS Amazons playing program. We showed how the use of

an evaluation function based on several features combined gives much greater

performance than a simple one based on the score. It is not clear however if an

implementation based on a ratio of good positions close to the traditional Monte-

Carlo evaluation is much better, although we showed that it benefits more from

more computation time. Finally, we also showed that the optimal length of the

random games in an MCTS Amazons program exists and is very short, whatever

the implementation and the evaluation used. On the future of this topic and to

broader the experiments, we would like to verify if such a drastic change in the

evaluation of an MCTS program could give birth to strong programs for other

kind of games for which it is possible to design an evaluation function.

References

1) Computer go mailing list. http://computer-go.org/pipermail/computer-go/.
2) B.Abramson. Expected-outcome: a general model of static evaluation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193, 1990.
3) L.V. Allis and U.R. Limburg. Searching for solutions in games and artificial

intelligence. PhD thesis, Maastricht: Rrijksuniversiteit Limburg, 1995.
4) H.Avetisyan and R.J. Lorentz. Selective Search in an Amazons Program. Lecture

Notes in Computer Science, pages 123–141, 2003.
5) R.Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.

Lecture Notes in Computer Science, 4630:72–83, 2007.
6) J.Kloetzer, H.Iida, and B.Bouzy. The Monte-Carlo Approach in Amazons. In

Computer Games Workshop, Amsterdam, The Netherlands, pages 113–124, 2007.
7) L.Kocsis and C.Szepesvari. Bandit Based Monte-Carlo Planning. Lecture Notes

in Computer Science, 4212:282–293, 2006.
8) J.Lieberum. An evaluation function for the game of amazons. Theoretical Com-

puter Science, 349(2):230–244, 2005.
9) R.Lorentz. Amazons discover Monte-Carlo. In Computers and Games, Beijing,

China, September/October 2008, pages 13–24, 2008.
10) R.Lorentz. Invader wins Amazons Event. ICGA Journal, 2009. to be published.

情報処理学会研究報告 
IPSJ SIG Technical Report

4 ⓒ 2010 Information Processing Society of Japan

Vol.2010-GI-24 No.6
2010/6/25


