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Computational identification of discriminating 
features of pathogenic and symbiotic type III 

secreted effector proteins 
 

Koji Yahara† Ying Jiang† Takashi Yanagawa†† 
 
Type III secr etion sy stems (T3SS) de liver bac terial p roteins, o r "e ffectors", into 
eukaryotic host cells , inducing ph ysiological respo nses in the hosts.  E ffector proteins 
have been considered virulence factors of pathogenic bacteria, but T3SSs have now been 
found in sy mbiotic bacteria as well.  Whether an y phy sicochemical dif ference exists 
between th e two  ty pes of ef fectors remains unkn own.  In th is work, we combined 
computational statis tical and machine-learning methods to  find  th e ph ysicochemical 
differences.  The most dis criminating set of  fe atures in a  d ataset of ph ysicochemical 
features was de termined us ing g eneralized B ayesian infor mation c riteria and k ernel 
logistic reg ression.  Classification per formance was ex amined u sing a suppo rt vecto r 
machine.  Int erdependence among the most discriminating featu res was explored b y 
graphical modeling, and th e most dis criminating region was inv estigated by s liding 
window analysis.   

 

病原細菌と共生細菌の III 型分泌装置の 
エフェクタータンパク質を区別する特徴は何か？ 

 

矢原耕史† 姜英†   柳川堯††   
 
近年、細菌がホスト細胞に送り込むエフェクタータンパク質が、病原細菌と共生
細菌の双方に存在することが注目されているが、その差異は未だ明らかでない。
本研究では、両者の差異を司る物理化学的特徴セットをカーネルロジスティック
回帰の情報量基準によって抽出し、その判別性能を SVM によって評価し、さらに
その相互依存関係及び最も特徴的な領域を、グラフィカルモデリングと sliding 
window 解析によって明らかにした。 

 
 
 
 
 

 

1. Introduction 

 Type III secr etion sy stems ( T3SS) are co mplex secretion machine s that deliver  
bacterial protei ns called ef fectors i nto euka ryotic ho st cells t hrough an injec tisome du ring 
infection ( 1, 2) .  T3SS-secreted ef fector prot eins in duce ph ysiological resp onses in t heir 
hosts, suc h as cy toskeletal rearrange ment to  promote bacteri al attachment and invasi on, 
interference wit h cellular traf ficking proce sses, cy totoxicity (2), induction o f apopto sis o f 
macrophages ( 3), di sruption of tight  juncti ons (4), and m icrotubule de stabilization (5 ).  
These ef fector protein functi ons are consi dered causes of vi rulence in pathogenic bacteria 
such a s Yersinia s pecies (s pp.), Chlamydia s pp., Salmonella s pp., Shigella s pp., and 
enteropathogenic Escherchia coli.  However, T3SSs are also found in sy mbiotic bacteria (6, 
7), and a genome analy sis of a Chlamydia-related symbiont of free-living amoebae sugge sts 
that the origins of T3SSs may be unrelated to virulence (8). 

Common features of T3SS effector proteins in pathogenic and symbiotic bacteria can be 
identified by  computational methods (9, 10 ).  While T3SS effector proteins were originally 
not tho ught to  share any  comm on feature s (11), recent studies u sing machine-learning 
approaches have identified comm onalities in the N-terminus of ef fectors, mainly in am ino 
acid composition.  One st udy (9) analy zed bot h pathogenic and sy mbiotic T3SS ef fector 
proteins, and  f ound a  si gnature in the N-terminus that i s taxono mically univer sal an d 
conserved. 

The sy mbiotic T3SS ef fector proteins, ho wever, have different functio ns t han th e 
pathogenic ef fectors.  Sy mbiotic ef fectors o f rhizobia, for example, modulate host-plant  
reactions, that lead to the formation of functional nodules (12, 13).  Putative effector proteins 
of the tset se fl y endosy mbiont, Sodalis glo ssinidius, specifically facilitate  the host cell 
cytoskeletal rearrange ments necessary  for ba cterial entr y, although the number of gene s 
encoding effector proteins is smaller in the s ymbiotic regions than in the homol ogous islands 
in pathogenic bacteria (14).  Ho mologs of the sy mbiotic region s are also fo und i n 
endosymbionts of grain weevil s, Sitophilus oryzae and S. zeamais, in which T3SS genes are  
suggested to fu nction durin g a specific stage  of weevil developme nt (14).   Even if the 
signature amin o acid sequence in the N-te rminus is con served amo ng p athogenic and  
symbiotic T3SS ef fector p roteins, the se fu nctional dif ferences exist. We were interested in 
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finding t he phy sicochemical di fferences betwe en pathogenic and sy mbiotic T3SS ef fector 
proteins that might be responsible for these functional differences.  

In this work, we com bined computational st atistical and mac hine-learning approache s 
to address this issue.  From a dataset of physicochemical features prepared from pathogenic 
and symbiotic T3SS effector proteins, the most discriminating set of feature s was determined 
using generalized Baysian information criteria and kernel logi stic regression.  Classification 
performance using the i dentified di scriminating features was examined using support vector 
machine (SVM ).  The res ults clearly s howed differences in am ino acid compos ition.  The 
most discriminating set of seven features were identified and successfully used to classify the 
effectors, with a sensitivity and specificity of over 80%.  In addition, interdependence among 
the most discri minating seven  features wa s re vealed by  graphical modeli ng.  The most 
discriminating r egion for the most di scriminating seven featur es was deter mined by  sliding  
window analysis. 

 

2. Materials and Methods 

 
2.1 Dataset 

We collected the 57 currentl y available am ino acid s equences of s ymbiotic T3S S 
effector proteins from the literature (9, 15), and the same number of amino acid sequences for 
pathogenic T3SS effector proteins (9).   

For each e ffector protei n am ino acid s equence, we calculated the phy sicochemical 
features, 41 in  total, of cha rge, isoetectric p oint, num ber of proteolytic enzy me or reagent 
cleavage s ites, mole percenta ge of each a mino acid and a mino acid groups defined i n 
EMBOSS (16), and signal peptide probability.  The list of 41 physicochemical features used 
in this study is in Table 1. Signal peptide pr obability was calculated b y SignalP 3.0 (17), a nd 
others feature s were calculated by  EM BOSS (16).  These were used  as att ributes in o ur 
classification analysis.   
 

2.2 Feature selection 
We first used t he Lepage test for the lo cation-dispersion di fference between the two 

groups (18).  The top 10 discriminating features were chosen by the order of their p-values in 
the test statistics.  The p-values of all of these candidate features were less than 0.001. 

For t hese candidate features , we exa mined a ll combinations, 2 10-1, a s explanatory  
variables in the kernel logistic regression (KLR), which is one of the kernel-learning methods 
suitable for binary-pattern recognition problems (19, 20).  Let yi be a binary observed  

 
Table 1. Biochemical features used as attributes of effector proteins 

No. Descri ption 

1 Number of potentially antigenic regions of a protein sequence1 
2 Number of proteolytic enzyme or reagent cleavage sites1 
3 Number of secondary structure1 
4 Hy drophobic moment1 
5 Average residue weight1 
6 Char ge1 
7 Isoelectric point1 
8 Molar extinction coefficient1 
9 Extinction coefficient at 1 mg/ml1 
10 Probability of protein expression in E. coli inclusion bodies1 
11-30 Mole percentage of each amino acid1  

11:Ala, 12:Cy s, 13:Asp, 14:Glu, 15:Phe, 16: Gly, 17:His, 18:Ile, 
19:Lys, 20:Leu, 21:Met, 22: Asn, 23:Pro, 24:Gln, 25:Arg, 26:Ser, 
27:Thr, 28:Val, 29:Trp, 30:Tyr 

31 Mole percentage of tiny amino acids1 (A+C+G+S+T) 
32 Mole percentage of  

small amino acids1 (A+B+C+D+G+N+P+S+T+V) 
33 Mole percentage of aliphatic amino acids1 (A+I+L+V) 
34 Mole percentage of aromatic amino acids1 (F+H+W+Y) 
35 Mole percentage of  

non-polar amino acids1 (A+C+F+G+I+L+M+P+V+W+Y) 
36 Mole percentage of  

polar amino acids1 (D+E+H+K+N+Q+R+S+T+Z) 
37 Mole percentage of charged amino acids1 (B+D+E+H+K+R+Z) 
38 Mole percentage of basic amino acids1 (H+K+R) 
39 Mole percentage of acidic amino acids1 (B+D+E+Z) 
40 Number of clea vage sites be tween s ignal s equence and m ature 

exported protein1 
41 Signal peptide probability2 

1 calculated by EMBOSS (16).  2 calculated by SignalP (17).  
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variable and p(xi) be its co nditional dist ribution given xi , the n the likelihood function 
was given by 
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and σ is the kernel param eter.  The soluti on of the para meter vector α̂  was calculated 

using the following penalized log-likelihood function 
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by Fisher’s scoring methods.  
To s elect the b est combination of the 10 candidate features ,  we us ed a generalized 

Bayesian infor mation crite rion (GB IC) ( 21).  Using the likelihood f unction ( )L α in 

equation (1) and the multivari ate norm al prior density ( | )π λα for th e parameter ve ctor 

α defined by 

/2 /2 1/2( ) | | exp( | ) 2 ) ( )(
2
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GBIC was defined as  

 2 log ( ) ( | )dGBIC L π λ= − ∫ α α α                   (7) 

and R was the same as that of equation (5), r was the rank of R, and | |R + was the product of 

r nonzer o eigenvalues of R.  O nce α̂  was o btained, GBI C was calculated  through th e 

Laplace approximation  
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GBIC was  computed for each com bination of  10 features , and the com bination with the  
minimum GBI C wa s deter mined as ex planatory variable of KLR.  During the feature  

selection, values of kernel parameter σ  and hyper parameter λ  were given in the range of 

1E-3 to 1E+3 (σ ) or to 1E+4 (λ ) for each set of explanatory features.   
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2.3 Classification performance 
Classification performance u sing di scriminating feature s ide ntified by  GBI C of KRL 

was analyzed using SVM based on the approx imate relationship between KRL  and the SVM 
(19).  To determ ine t he adva ntage of t he most di scriminating feature s, a misclassification 
rate was evaluated by  leave-one-out cross-validation for each combi nation of k-features that 

attained the minimum GBIC in 10 kC combinations (k=1,…,10).  The results are summarized 

Figure 2, which illustrates the  misclassification rates, with the num ber of features on the  
horizontal axis.   We u sed sv m functio n of e1071 package (E. Dimitriad ou, K. Hornik, F . 
Leisch, D. Meyer, and A. Weingessel) in R. 
 

2.4 Graphical modeling 
To explore interdependence among the mo st discriminating features identified by GBIC 

of KLR, we u sed graphical modeling develo ped b y Imoto et  al. (22, 23) which combine s 
non-linear n onparametric regr ession with ra dial basis and  Bay esian networ k, and was  
originally developed for esti mating genetic ne tworks and fu nctional relatio nships bet ween 
genes.   Non-l inear nonparametric regression enabled u s to  capture directed  dependencie s 
among the features without advance knowledge about their rela tionships.  Bayesian network 
is a powe rful, graph-theoretic approach f or expressing i nterdependence amon g variables a s 
networks.   

Calculations were conducted by  MATLAB R2008b (The Mathwork s Inc. ) based on  
NETLAB (24),  the Ba yes net toolbox (BNT) for Matlab (25), and BNT  structure learning 
package (26). 

 
2.5 Sliding window analysis 

N-terminal re gions from  the 1 st to 97 th re sidue were analy zed, with the window size 
varying from  8-50, and the s tarting pos ition varying from  1 to 50.  For each window , a 
dataset of the most discriminating features was created, and clas sification was conducted by  
SVM. 
 
 

3. Results 

3.1 Identification of discriminating features 
A plot of mini mum GBIC for  10Ck combination of  features used in  KLR was given in 

Figure 1 taking the numbe r of features, k, on the horizontal axis .  The figure s hows that the 

minimum GBIC tends to decrease as the numbe r of features inc rease, take the sm allest value 
when the number of features is seven, and increase at greater than seven features.  The seven 
features that att ained the sm allest minimum GBIC we re as fol lows: average res idual weight, 
mole percentage of Ala, Asp, Ile, tiny amino acids, small amino acids, and acidic amino acids. 
 

 

 

 
Figure 1. Plot of minimum GBIC against number of features used in kernel  

logistic regression.   
 

 
 

3.2 Classification performance using the most discriminating features 
Misclassification rates using the discriminating features identified by GBIC of KLR are  

plotted in Fi gure 2, taking the nu mber of featu res on h orizontal axis.  The plot of mi nimum 
GBICs (Figure 1) and misclassification rat es showed parallel tendencies.  The be st 
classification perfor mance (84. 2%) wa s obtain ed using a combination of the seven feature s 
that gave the sm allest m inimum GBIC (Figure 2A).  T he best per formance with se ven 
features was ne arly identical t o the res ults obtained when all  41 features  were us ed.  The 
seven di scriminating features had a specificity  of 85.5% an d a sensiti vity of 83.1% ( Figure 
2B). 
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Figure 2.  Classification performance using the discriminating features identified by 
GBIC of KLR.  Misclassification rate for each com bination of k-features that attained the  
minimum GBIC in 10Ck combinations (k=1,…,10).  Classification using all 41 feature s was 
also conducted, and the misclassification ra te is at “All  (41)” of the  x-axis.  (A) 
Misclassification rate.  (B) Specificity and sensitivity. 

3.3 Interdependence among the most discriminating features as a graph structure 
The interdependence among the seven most discriminating features was represented in a 

directed-graph structure ( Figure 3), in whic h the mole percentage of isol eucine, and a 
combination of alanine and average res idue weight were po sitioned at the bottom end.   The 
three feature s a re repre sentative of the directed-graph structure and ha ve be en selected by 
KLR at one or two features. Figure 2 shows that classification accuracy was about 70% for the 
mole percentag e of isoleucine, and nearly  80% for a com bination of alanine and average  
residue weight 
 
 

 
Figure 3.  Graph structure showing interdependence among the most-discriminating 
features.  Directed dependencies detected b y nonparametric regressi on are depicted b y 
arrows whos e heads indicate res ponse variable s and tails indicate explanatory  variables.  
Colours are t he discri minating features ide ntified by  GBIC, when the nu mber of feature s i s 
one or two. 
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3.4 Identification of the most discriminating region 
 

Sliding window analysis with variable window sizes and starting points is i n Table 2.  
The region that gave the highest discrimination among the seven most-discriminating features 
was 48-95 res idues from  the N-term inus (N48 -95), which gave a clas sification accurac y of 
83.3% ( Figure 4).  Al most all of the s econd and thi rd mo st-discriminating regio ns 
overlapped thi s region, supp orting the h ypothesis that the disc riminating signature between 
pathogenic and symbiotic T3SS effector proteins was in this region. 
 
 

Table 2. Results of sliding window analysis 
Region Misclassification rate Starting point Window size

N48-95 0.167 48 48
N49-95 0.175 49 47
N48-93 0.184 48 46
N48-96 0.184 48 49
N49-89 0.184 49 41
N49-90 0.184 49 42
N49-96 0.184 49 48
N9-36 0.184 9 28
N40-89 0.193 40 50
N47-93 0.193 47 47
N47-96 0.193 47 50
N48-92 0.193 48 45
N48-94 0.193 48 47
N49-93 0.193 49 45
N50-96 0.193 50 47
N65-97 0.193 65 33

 
 
 
 
 
 
 

 

 
Figure 4.  Plot of misclassification rate by sliding window analysis with window size 48.  
As shown in Table 2, misclassification rate is lowest when the analysis start position is 48 (i.e. 
for regio n N48 -95), and when  the windo w si ze is 48, whic h gives the best classificatio n 
performance. 
 
 

3.5 Directions of differences of the discriminating features 
The dif ferences of the seven most di scriminating feature s between path ogenic an d 

symbiotic T3SS ef fector prot eins are in T able 3, with "+ " meani ng " more common i n 
symbiotic prote ins".   Results are given fo r all regions, an d for the most discri minating 
region, N48-95.  The patterns of differences were almost equivalent between all regions and 
the most-discriminating region, supporting the hypothesis that N48-95 was the representative 
region that dist inguished bet ween pathogenic  and sy mbiotic T3SS ef fector proteins.  By 
mole percentage of amino acid s, isoleucine decreased in sy mbiotic proteins, while the other  
amino acid s (al anine, aspartic acid, acidic amino acids , tiny  a mino aci d, sma ll amino acid)  
increased in symbiotic proteins.  The tendency was found both in all regions, and in the most 
discriminating N48-95 region. 
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Table 3. Directions of the differences of the most discriminating features 

 Pa thogen 
(all regions) 

symbiont  
(all regions) 

direction* 

Feature M ean SD mean SD Mean SD

Ile (Molar %) 5.74  2.25  3.98 1.52 - -
Average  
residue weight 

109.30  4.12  108.98 2.80 - -

Ala (Molar %) 8.28  3.07  10.99 2.80 + -
Asp (Molar %) 4.49  1.91  16.01 1.60 + -
Acidic 
(Molar %) 

10.79  3.91  11.70 2.21 + -

Tiny (Molar %) 31.58  6.98  32.94 3.90 + -
Small 
(Molar %) 

51.97  6.95  54.53 4.41 + -

 pathogen   
(N48-95) 

symbiont  
(N48-95) 

direction* 

Feature M ean SD mean SD Mean Regi
on

Ile (Molar %) 5.30  4.09  3.84 2.81 - -
Average  
residue weight 

109.26  6.41  109.79 4.34 + -

Ala (Molar %) 9.06  4.55  10.78 5.25 + +
Asp (Molar %) 3.07  2.27  5.88 3.46 + +
Acidic 
(Molar %) 

8.92  5.69  11.15 4.91 + -

Tiny (Molar %) 32.35  10.64  33.08 8.05 + -
Small 
(Molar %) 

51.68  10.95  53.91 6.69 + -

              * from pathogenic to symbiotic (“+” means “more in symbiotic proteins”) 
 

 
 
 

 

4. Discussion 

In this wor k, we identified the seven most -discriminating features between pat hogenic 
and symbiotic T3SS effector proteins, using a large combination of physicochemical features, 
analyzed b y GBIC of KLR. The identified features were successfully us ed to class ify the 
proteins by SVM, with sensitivities and specificities of over 80%.   

The seven mo st-discriminating features were  those related to a mino acid compositi on.  
No ot her hi gher-order inf ormation wa s f ound to  be as di scriminating by  GBIC o f KL R.  
Interestingly, recently  reported common features  of T3SS ef fectors we re als o found to be  
amino acid com position or shared s equence m otif. E mbedded features  i n the am ino aci d 
sequence or composition may be a characteristic of T3SS effector proteins. 

The most discriminating region between pathogenic and symbiotic effector proteins was 
48-95 resi dues fro m the N-ter minus.  The classic signal peptide secretion signal is 15-40 
residues f rom t he N-ter minus (27).  Common feature s of  T3SS ef fectors protein s were 
recently found to be embedded in 30 (10) or up to 50 resi dues (9) at the N-ter minus.  These 
findings are co mplementary with our s becau se the dif ferences between p athogenic an d 
symbiotic ef fector protein s are  thought to ha ve arisen after  the co mmon f eatures in the 
N-terminus.  Although co mmon feature s ar e conserve d, dif ferences in amin o aci d 
composition occur, presumably because of di fferent environments of pathogens, or sy mbiotic 
relationships with their hosts.   

The identified discriminating features were used for cla ssification, and f or elucidating 
their interdepe ndence usin g graphical mode ling that comb ined non-linear  nonpara metric 
regression and Bayesian network.  Although these techniques are usually used for estimating 
gene network s from microarray expression data, the combination of them, with featur e 
selection, wa s a powerf ul metho d for a deeper under standing o f the  meaning of t he 
discriminating features.    

This is the fir st study  to ex plore discri minating features between pathog enic and 
symbiotic T3SS ef fector prot eins, usin g a combination of computational stati stical and  
machine-learning approaches.  The most-discriminating features, their interde pendence, and 
the most-discriminating region were determined by these methods.  This study will provide a 
methodological basis for futu re research, and provides important insight about t he functional 
differences between pathogenic and symbiotic T3SS effectors. 
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