
情報処理学会研究報告 
IPSJ SIG Technical Report 

 1 
 

Online Incremental Vision-based SLAM in 
Dynamic Cluttered Environment 

 

Noppharit TONGPRASIT†a)  Aram KAWEWONG†b) 

Osamu HASEGAWA††c) 
 
This paper presents a novel use of feature sharing in an appearance-based simultaneous 
localization and mapping (SLAM) system for robots. Feature sharing was inspired by 
man-made settings such as offices and houses, in which many similar objects are repeatedly 
shown in the same environment. With this concept, we can expect better performance with 
lower memory consumption. Combining this concept with Position Invariant Robust 
Features (PIRFs) [1], we can improve both accuracy and processing time. Our system is 
fully online and incremental. Our experiments were done on two well-known datasets, the 
City Centre dataset [2] and Lip6Indoor dataset [4]. Moreover, we tested our system on 
crowded university canteen at lunch time for more dynamic environment. The results 
showed that our system has outstanding accuracy and less processing time compared to 
FAB-MAP and fast and incremental bag of words which are considered the state-of-the-art 
offline and online appearance-based SLAM system, respectively. 

 

変動要因が多い環境下でオンラインで稼働する

画像を用いた自己位置同定手法 
 

トンプラシット ノッパリット†a)  
カーウィーウォン アラム†b) 長谷川 修††c) 

 
本論文では、移動ロボットのための、完全にオンラインで稼働する、画像を用いた
自己位置同定手法(Visual-based SLAM)を提案する。提案手法は、以下のようにまと
められる。（１）移動するロボットから観測される画像中に頻繁に現れるSURF特徴
(PIRF特徴 : Position Invariant Robust Features)を適応的に検出しIDをつける、（２）
PIRF特徴とIDの対応関係についてまとめた辞書を作る、（３）各位置における入力画
像（環境）を辞書に記されたIDで記述する、（４）辞書の更新・環境の記述・自己位
置同定をオンラインで繰り返す。提案手法の有効性は、世界的に知られる"City 
Center"と"Lip6Indoor"データベースを用いて評価し、提案手法が従来手法より、認識
率と処理速度の双方で約２～３倍優れることを確認した。さらに本研究では、世界
で初めて、混雑する大学食堂の環境下で実験を行い、そうした極めて変動要因の多
い（多くの人が動く）環境下でも、提案手法が辞書の作成と更新、自己位置同定を
オンラインで確実に実行でき、高い自己位置同定精度が得られることを確認した。
本研究は、画像を用いた自己位置同定の研究分野の新たな地平を切り拓くものと考
える。 

1. Introduction  

Robots that can be used at home might soon step out of science fiction and into reality. 
Many researchers are attempting to create a complete humanoid robot. However, some 
functions are still inferior to those of even a newborn baby. One of these is the navigation 
system, which is essential in the next generation of home-use robots. Widely used navigation 
systems so far relied on laser scanners, which perform well in closed and unsophisticated 
environments but are not robust to noise, such as rough paths or crowded situations. The cost 
of these devices is high, making robots with such devices too expensive for ordinary people to 
be able to afford. On the other hand, camera technology is developing rapidly, and the cost is 
decreasing. For instance, a good cell phone with a built-in camera is currently priced as low as 
100 dollars. Moreover, for a higher-level intelligent robot such as a humanoid, a camera 
serves as eyes. Humans do not need sonar to locate themselves but depend only on their eyes. 
Similarly, robots should be able to locate themselves by camera. This is where 
appearance-based simultaneous localization and mapping (SLAM) was first introduced. 

In an online visual SLAM system, the size of the dictionary can be increased. Most online 
SLAM systems face a common problem: growth of the dictionary. The larger the environment 
is, the higher the memory required for storing word’s describing feature. We used the fact that 
most robots are designed to be used in houses or in the city but not in the jungle. We can see 
that objects around us look alike. For instance, we can expect most of the doors to rooms in an 
office to be the same and the fire extinguishers to look alike everywhere. Instead of 
remembering each room’s door, or in visual SLAM, every feature, the system can remember 
all look-alike features as one single feature, and thus slowing the growth of the dictionary and 
decreasing the computing time. 

In this paper, we design our visual SLAM based on Position-Invariant Robust Features [1] 
(PIRFs) and experimented on the well-known City Centre and Lip6Indoor datasets collected 
by Cummins and Newman [2] and Angeli et al. [4], respectively. Our method can outperform 
these state-of-the-art approaches [2] [4] in terms of both time and accuracy. On the City 
Centre dataset, our system could perform at a 80% recall rate at precision 1. On the 
Lip6Indoor dataset, our system could perform at an 77% recall rate at precision 1, twice  
faster than [4] does.  

Moreover, for the first time in this area of study, we took a further challenged on dynamic 
scene. We collected another dataset from crowded university canteen during lunch break 
where all scenes are full of moving object. This experiment was set up to test ability of system 
in environment that system was unable to train or test without any moving object in the scene. 
This kind of environment was also applied to public place such as hospital, train station or 
super market. The results showed that both state-of-the-arts [2] and [4] fail in localization; 
however, our system was still able to recover and correctly localize with more than 86% recall 
                                                                 
 †  東京工業大学大学院 総合理工研究科 知能システム科学専攻 
 ††  東京工業大学 像情報工学研究所 
a) E-mail: tongprasit.n.aa@m.titech.ac.jp 
b) E-mail: kawewong.a.aa@m.titech.ac.jp 
c) E-mail: hasegawa.o.aa@m.titech.ac.jp 
 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 2 
 

at precision 1.  
All the results showed that our proposed method can perform in real time even under 

MATLAB environment. Each image requires less than 1 second to search and correctly 
localize. We strongly believe that our method can perform faster in real implementation. 

2. Related Work 

As mentioned in the introduction, when SLAM was introduced, most systems relied on 
laser scanners. However, the difficulty of loop closure in metric SLAM [5] [6] seems to 
remain unresolved. In contrast, appearance-based SLAM recently became popular among 
robotics researchers because of the developments in technology of vision. Eade and 
Drummond [7] attempted to use the advantages of cameras with metric SLAM, but their 
method did not support large-scale environments, e.g., the City Centre dataset. 

A few years ago, several visual SLAM systems were introduced. Experiments showed that 
the recall rate was too low for real applications. SLAM is developing in two directions: offline 
and online SLAM. Offline and online refer to the system’s dictionary. Offline SLAM’s 
dictionary is fixed and cannot be increased, whereas online SLAM’s dictionary can be 
increased if necessary. Researchers must decide whether their system should go online or stay 
offline. An offline SLAM can handle calculations probabilistically (as shown by Cummins 
and Newman [2]) because the dictionary is closed. Thus, offline SLAM can perform quickly 
because the dictionary is fixed, but it must be very good. It is however difficult to judge which 
dictionary is the best because we cannot predict which environment the robot will be in. As a 
result, a robot will generally be more suited for a certain terrain and will require a different 
dictionary when placed in another environment. Later, in the following year, Cummins and 
Newman [3] introduced an improvement in model update for long run but they did not 
improve accuracy. 

 In contrast, online SLAM’s dictionary can be increased. Thus, if there is no matching word, 
the system will register a new word in the dictionary automatically. However, two factors 
hinder the performance of online SLAM. First, the dictionary’s size is incremental. The 
calculation seems to be more complicated, since the size of dictionary is not fixed. Angeli et 
al. [4] proposed fast and incremental bag of words(BOWs) with a four-step calculation. Their 
proposed method was not robust to dynamic scenes such as crowded or outdoor environments. 
The other factor is an increase in computational time. Fast and incremental BOWs [4] faced 
an immense computational time problem after processing because the system described in [4] 
was unable to decide which features were worth remembering. Some information is useless 
and this affected system performance. 

Kawewong et al. [1] suggested that features showing motion can be neglected. They first 
proposed the method Position-Invariant Robust Features (PIRFs) [1]. A PIRF is extracted by 
finding the average of well-known SIFT local features [8] projected from the previous image. 
Their experiments showed remarkably good localization in a dynamic environment. Later, 
Noppharit et al. [9] proposed incremental area localization by PIRFs, which improved a visual 
SLAM system's recall rate to 60%. Based on PIRF's remarkably good performance, we 
applied a few of its concepts in our method.  

Using local features alone, like in [4], the system might slow down and eventually stop if 
the user leaves it running long enough. The problem is the growth in dictionary size. In this 
paper, we also proposed a memory-sharing method to suppress this growth by dividing 
matching process into two parts. Instead of SIFT, we applied a speeded up robust feature 
(SURF) local feature with the PIRF concept to reduce computational expense. Our method 
showed remarkable recall rate, precision, and calculation time in localization. 

3. SURF-based PIRF 

In [1], Kawewong et al. suggested tracking local features, such as SIFTs, that appear 
continuously during a specified sliding window. The size of this sliding window varies 
inversely with the speed of the vehicle. If the sliding window is too large, the number of local 
features will be small. In contrast, if we designate a small sliding window, the number of local 
features will become too large, which negatively affects the matching process and 
computational time. To eliminate unpredictable factors, we proposed a new PIRF structure. 
We control only the number of local features for each incoming image and let the system 
adjust the size of the sliding window automatically. As Fig. 1 shows, the system needs to 
control the number of local features for each place. If there are too many features, the system 
will extend the sliding window automatically. Conversely, if an extended sliding window 
removes many features, the system will shrink back to the former sliding window 
automatically. The connection list stores only the connection from each location to the 
previous one, so the system does not need to calculate every match from the beginning again. 

Kawewong et al. chose SIFT as a descriptor in [1]. However, SURF [10], which was 
proposed by Herbert et al., is a good alternative. Depending on the dimensional size, SURF 
features might contain less descriptive power than SIFT; however, their computational cost is 
much lower than that of SIFT. In this study, we used SURF as the basic local feature. 
Moreover, we also neglected the average feature calculation of Kawewong et al. because it 
does not affect the matching process much. 

4. Matching Process 

Here, we divide matching into two parts: scoring matching and model-generating matching; 
these will be described in Section VI. First, we assume that the current location at time t, Lt, is 
a previously visited place. Dict-1 is a dictionary generated from previous location Lt-1. If the 
system found all features of Lt in Dict-1, Lt would match Lt-1, because neighboring locations 
usually resemble the current location most closely. To prevent this, the system searches from 
Dict-offset instead. Offset is a number of locations near Lt that should not appear in this 
matching process. We use Euclidean distance ratio to match each entries with words in 
Dict-offset. The search result will appear in the array Appeart, each member of Appeart that 
represents a feature matching one in Dict-offset. If a feature cannot be paired with any from 
Dict-offset, then that entry will be left as 0, as shown in Fig. 2. Appeart will be used for score 
calculation in the next section. 

5. Score Calculation 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 3 
 

 
Fig. 1.  Local feature extraction based on PIRFs. After image retrieval, the system 
matches the features of location Lt with those of other locations by tracking the number of 
connections in the list. In this figure, each letter represents a local feature. For the current 
state, feature B is the only one that locations Lt, Lt-1, and Lt-2 have in common. This 
feature is stable and worth remembering. The system extends the sliding window until the 
number of matching features (blue arrow) between Lt and the last location in the sliding 
window is below a threshold.  If the sliding window cannot find any matching features, 
the system shrinks the sliding window back to its former state. After matching, the system 
will update the list by pushing matching features (black arrow) into the list; it is then 
ready for a new image. 

 
Fig. 2.  Matching process diagram. In current location Lt, the system find matching 
features in Dict-offset and put the index numbers into Appeart. Features that cannot be 
matched with any in Dict-offset will remain 0. 

After obtaining Appeart, the system proceeds to the score calculation process. Angeli et al. 
[4] used modified term frequency-inverted document frequency (tf-idf) [11] for scoring. Tf-idf 
is a good method for weighing every feature with the number of occurrences. It can perform 
well with a large number of candidate features, like SIFT. In one image, SIFT can extract 
more than 2000–3000 features, whereas SURF can extract only 200–300. Moreover, the 
number of selected features from PIRF will gradually decrease to less than 100. Thus, tf-idf is 
not applicable for SURF-based PIRF. We did not use tf-idf; instead, we weighted the score 
according to the number of known features from Dict-offset, because the higher the number of 
matching features found, the more likely it is that the current image is a known place. 

The number of non-zero entries of Appeart is num_appear. That is, num_appear is the 
number of features of Lt matching Dict-offset. The similarity score can be calculated using (1). 
nm is the number of features that coappear in both visited locations at time m, Lm and current 
location Lt. Multiplying the number of coappearing features in num_appear provides more 
priority by the location Lt as a known place. Num_appear does not affect the score of 
individual locations, but rather the overall score.  

 appearnumns mm _∗=  (1) 

Due to the stability of PIRFs, features appearing in location Lm should also appear in 
neighboring locations such as Lm-2, Lm-1, Lm+1, and Lm+2. The score of nearby locations should 
be approximately less than or equal to sm. For example, sm has the highest score, but if sm-1 and 
sm+1 are 0, Lm should not be the same location as Lt. To filter out this kind of score, the system 
needs to consider nearby scores as well. In (2), bm represents a second-state score of location 
Lm after considering neighboring scores. A transition probability generated from the Gaussian 
distance between times m and i, pT(m,i), was applied in (2) to give more weight to a closer 
place. w represents the number of neighboring locations we considered in calculating the 
score. 

 
∑
+=

−=
⋅=

wmi

wmi
imTpismb )),((  (2) 

After the system obtains all second-state scores of Lm to Lt-offset, it can clearly decide 
whether to accept Lt as a known place or reject it as a new place. For better score evaluation, 
we normalize the second-state scores into a specific range. We decided to use a simple 
integration estimation of second-state scores, as shown in (3). The normalizer n is varied 
according to the vehicle’s velocity and the allowed maximum number of features during PIRF 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 4 
 

extraction. The neighboring score reappears in the normalization process because we would 
like to emphasize the significance of neighboring locations and smoothen the score curves.  

 
a

nw

b

normb

wmi

wmi
i

m ⋅
=
∑

+=

−=

2
_  (3) 

6. New Place or Known Place 

After the system normalizes the second state, it decides whether current location Lt is new 
or known using the maximum value of b_norm. If the maximum of b_norm is greater than an 
acceptance threshold, the system will decide that location Lt as a known place. 

6.1 New Place 
If the maximum of b_norm is less than the threshold, system will decide that location Lt is 

a new place. In the section regarding matching, we mentioned that matching is separated into 
two parts: scoring matching and model-generating matching. In scoring matching, the system 
matched incoming features of Lt with Dict-offset. Thus, Lt has not been matched with current 
dictionary Dict-1 yet. The system will match features that are unmatched with any feature in 
Dict-offset with the current dictionary Dict-1 and update Appeart. As in matching for scoring, 
unmatched features will remain 0. 

Currently, the system has a set of Appeart; however, unknown features must be registered 
in the dictionary. We separate the features of Lt into two groups, known_feat and 
unknown_feat. The system registers unknown_feat in the dictionary and returns Dict, as in (4). 

 
featunknownDicDic tt _1 ∪← −  (4) 

At this point, the system will create a model of Lt by using index numbers that are not 0 in 
Appeart and the recently registered index feature from Dict. 

6.2 Known Place 
When the maximum of b_norm is greater than the acceptance threshold, the system 

decides that location Lt is a known place. The system picks candidate locations based on the 
greatest b_norm value and decide which candidate location is the same as Lt by selecting the 
highest similarity score. Using the similarity score will limit the confidence of the system, 
because the system relies on the neighboring score during second-state score calculation. 
Otherwise, the system might select some other neighboring location not matching ground 

truth. 
Suppose that location Lt is the same place as a location at time k, Lk (k < t). The next step 

is to update the model. Instead of directly updating the model of Lk, the system generates a 
new model of Lt based on the model of Lk by updating the model of Lk with new features not 
originally included. 

7. The Dictionary’s Timeline Buffer 

In Section IV, we mentioned the dictionary at time t-offset, Dict-offset. In fact, the system 
does not store all dictionaries all the time because of memory limitations. We create another 
buffer called forbidden, which is a simple first-in-first-out offset-sized stack. Each stack 
remembers the list of indexes of newly registered features. When processing scoring matching, 
the system simply excludes all features’ indexes in Dict-1 from searching. On the other word, 
system excludes the words added during time t-offset+1 to t-1 from being matched in the 
scoring matching process. 

After updating the model, the system will pop out the first stack and push the newly added 
features’ indexes in at the last stack. By this method, we can convert the current dictionary 
Dict-1 into Dict-offset for score calculation.  

8. Experiment and Result 

We conducted the experiments using the well-known datasets, the City Centre and 
Lip6Indoor datasets collected by Cummins and Newman [2] and Angeli et al. [4]. These 
datasets are available on their web sites. We also collected more challenging data and tested 
our system on a dynamic scene. The maximum number of local features allowed was set to 75 
per location. Although the fast and incremental BOWs [4] code is unavailable, fortunately 
Angeli et al. kindly tested these datasets and provided us with the results. However, the results 
were simply the final answer, so we were unable to include fast and incremental BOWs' 
precision and recall curves in the graphs.  

8.1 Experiment I: City Centre Dataset 
This experiment was intended to demonstrate the performance of our system compared to 

those of [2] and [4] for an outdoor dataset. The City Centre dataset was collected by Cummins 
and Newman. The images were taken by stereo cameras at a frequency of one image every 1.5 
meters. A total of 1237 locations were photographed for a total of 2474 images (left and right 
for each location).  

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 5 
 

 
Fig. 3.  Result of City Centre dataset analysis. Yellow dots represent the vehicle’s trajectory. 
Red dots represent the location with loop-closure detection. Left figure shows the aerial result 
of our system. Right figure shows the aerial result of FAB-MAP [2]. 

 
Fig. 4.  Precision and recall curves for the City Centre dataset. 

 
Fig. 5.  Calculation time of City Centre Dataset. The system could finish the task  2 
times faster at 50% scale, whereas the precision and recall remained almost the same. 

Fig. 3 presents an aerial image of the loop-closure result for the City Centre dataset. Fig. 4 
shows the precision and recall curves compared with those of FAB-MAP. According to Fig. 4, 

even if we compressed the input images to 50% scale, the scale does not affect the result. 
However, the system can finish the task much faster. Fig. 5 shows the calculation times at 
100% scale and 50% scale. From Fig. 5, our system used less than 1.5 seconds at the last 
location. That is, our system can obviously run in real time (processing time is less than image 
retrieval time) even our method was run on MATLAB. Table I compares the results of our 
proposed system with those of other well-known methods. Our method could recall 79.68% of 
all locations at precision 1, which is almost twice as much as the state-of-the-art FAB-MAP 
could. 

8.2 Experiment II: Lip6Indoor dataset 
The purpose of this experiment was to evaluate the performance of our system with an 

indoor dataset. This dataset was collected from corridor in the building without any moving 
object by Angeli et al. [4]. Unlike the City Centre dataset, the input images were taken by a 

Table I. The result of City Centre dataset at full scale 

Method Recall Precision False Positive Total Time (sec) 

Proposed method 80.03 % 100 % 0 1086.4* 

FAB-MAP [2] 43.32 % 100 % 0 577 

Fast and incremental 
BOWs [4] 

23.89 % 97.76 % 2 7200+ 

* Run on MATLAB. 

 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 6 
 

 
Fig. 6.  False-positive localized location. Upper-right: query 

image; lower-left: image localized by the system.  

 
Fig. 7.  Upper image is an example of collected 

data. Lower image is the unwrapped image.  
conventional lens. This dataset was taken from the corridor of a building. A total of 318 
images were collected at 1 frame per sec. 

An indoor scene contains less information than an outdoor dataset. We decided to change 
the dictionary in FAB-MAP for greatest efficiency. Because FAB-MAP [2] is an offline 
loop-closure, we used the indoor vocabulary provided by Cummins and Newman in 
FAB-MAP. 

Table II shows the results for the Lip6Indoor dataset. In this dataset, our system detected 
one false-positive location during the experiment. Fig. 6 shows the false-positive pair; the 
query image is on the right, and the image the system localized is on the left. The locations of 
these two images are almost the same, but they failed to achieve ground truth. From Table II, 
our method (84.6 ms per image) can complete the task three times faster than [4] (255.2 ms 
per image) and six times faster than [2] (482.4 ms per image) because we decrease the 
allowed maximum feature number, which affected the system’s speed. 

8.3 Experiment III: Crowded university canteen data 
According to good results on 2 competing datasets, we decide to take another step of 

challenge in this area of study by focusing more on environment which contains more moving 
objects. We collected data from a university canteen during lunchtime. When we collected the 
data, to avoid robotic maneuvering problems in a crowded situation, we installed an 
omni-directional lens camera on the trolley and slowly recorded the data while moving around 
the crowded canteen. This dataset represents the environment where robot does not have a 

chance to train under ideal condition where no moving object in the scene e.g. public places, 
train stations, crowded street sidewalk or department stores. 

Fig. 7 shows an example of the collected data. The images were collected at two frames per 
second. The input image size is 270 × 480. We imaged 692 locations, for a total of 692 images. 
Figs. 8 and 9 show the vehicle’s trajectory and the precision-recall graph, respectively. Refer 
to the Appendix for examples of matching results. Table III illustrates the result for each 
method. In this dynamic environment, our system showed outstanding results compared to 
FAB-MAP and fast and incremental BOWs in both accuracy and performance.  

9. Discussion and Future Work 

In the Experiment section, the overall results have already proven our system's 
performance. Our method can correctly localize better than other baselines. Our results clearly 
show that FAB-MAP did poorly on experiments 2 and 3. One major reason might be related to 
the dictionary. Although we used a dictionary for indoor environments on indoor datasets, 
FAB-MAP cannot achieve a high recall rate. This might raise questions about the definition of 
a good dictionary. How can we know which dictionary to use? This seems to be an open 
question, because we cannot know the quality of a dictionary unless it is tried and tested, 
which seems impractical for real use. 

Table II. The result of Lip6Indoor dataset at full scale 

Method Recall Precision False Positive Total Time (sec) 

Proposed method 77.73 % 99.42 % 1 32.84* 

FAB-MAP [2] 23.64 % 100 % 0 187.16 

Fast and incremental 
BOWs [4] 

68 % 100 % 0 99 

* Run on MATLAB. 

 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 7 
 

 
Fig. 8.  Vehicle’s trajectory. Yellow dots 

represent the vehicle’s trajectory. Red dots 
    

 
Fig. 9.  Precision and recall curves for crowded university canteen. 

On the other hand, fast and incremental BOWs [4] performs well with the Lip6Indoor 
dataset, but it failed to localize in the City Centre and university canteen datasets. This is 
because fast and incremental BOWs [4] remembered all features that had appeared. Some 
features might focus on moving people or cars. From the results for the City Centre dataset, 
more than two hours of calculation for fast and incremental BOWs [4] is high compared to 
other methods, because fast and incremental BOWs did remember all the local features. The 
number of features in the dictionary directly affects the computational cost. The bigger the 
dictionary is, the slower the system becomes. 

Unlike [2] and [3], our system does not require a preliminarily generated dictionary, and 
because of the modified PIRF concept, we can control the number of features per location, 
and those features are stable and worth remembering and cause better result than [4]. Dividing 
the matching process into two parts, scoring matching and model-generating matching, can 

avoid unnecessary growth of the dictionary.  
In experiment 1, we also showed the precision and recall curves for the City Centre dataset 

at 50% scale. Although we compressed the images to 50%, the result did not show any 
significant effect on the accuracy. Moreover, the task can complete at two times faster rate 
than at full scale, because all selected features are perfect for the localization system.  

All experiments described in this paper were programmed and computed in MATLAB on 
an Intel Xeon 2.66 GHz CPU. We believe that our system can complete the tasks faster when 
implemented in the C language. Despite our good results, our scoring system is not standard 
and must be improved in the future. 

10. Conclusion 

This paper proposed an alternative method for appearance-based SLAM. Our method is 
fully incremental and online. With a memory-sharing technique and the PIRF concept, our 
system showed outstanding results in both accuracy and computational cost. The experimental 
results showed that our method can efficiently handle all processes in real time. We strongly 
believe that our work would make appearance-based SLAM more practical in real 
applications. 

Acknowledgement 
This work reported in this paper was funded by an Industrial Research Grant Program 

received in 2009 from the New Energy and Industrial Technology Development Organization 
(NEDO). The authors gratefully acknowledge Oxford Robotics Research Group and ENSTA 
Electronics and Computer Engineering Laboratory for their provided databases and 
experiment results. 

Table III. The Results for crowded university canteen dataset 

Method Recall Precision False Positive Total Time (sec) 

Proposed method 86.65 % 100 % 0 264.12* 

FAB-MAP [2] 17.80 % 100 % 0 577 

Fast and incremental 
BOWs [4] 

1.01 % 100 % 0 2807 

* Run on MATLAB. 

 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27



情報処理学会研究報告 
IPSJ SIG Technical Report 

 8 
 

References 

1) A. Kawewong, S. Tangruamsub, and O. Hasegawa, “Wide-Baseline Visible Features for Highly 
 Dynamic Scene Recognition,” in Proc. Int'l. Conf. Computer Analysis of Images and Patterns (CAIP), 
 2009, vol. 5702, pp. 723–731. 
2) M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization and Mapping in the space of 
 Appearance.” in Int'l. Jour. Robotics Research, 2008, 27(6), pp. 647–665. 
3) M. Cummins, and P. Newman, “Highly Scalable Appearance-Only SLAM - FAB-MAP 2.0,” Proc. 
 Robotics: Sciences and Systems (RSS), 2009. 
4) A. Angeli, D. Filliat, S. Doncieux, and J. A. Meyer, “Fast and Incremental Method for Loop-Closure 
 Detection Using Bags of Visual Words,” IEEE Trans. Robotics, 2008, 24(5), pp. 1027–1037. 
5) D. Filliat and J. -A. Meyer, “Map-based Navigation in Mobile Robots-I. A Review of Localisation 
 Strategies,” Cognitive Systems Research, vol.4, no. 4, 2003, pp. 243–282. 
6) J. -A. Meyer and D. Filliat, “Map-based Navigation in Mobile Robots-III. A Review of Map-learning 
 and Path-planning Strategies,” Cognitive Systems Research, vol. 4, no. 4, 2003, pp. 283–379.  
7) E. Eade and T. Drummond, “Unified Loop Closing and Recovery for Real Time Monocular SLAM,” 
 British Machine Vision Conference (BMVC), 2008. 
8) D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int'l. Jour. Computer Vision 
 (IJCV), 60(2), 2004, pp. 91–110. 
9) T. Noppharit, A. Kawewong, and O. Hasegawa, “Data Partitioning Technique for Online and 
 Incremental Visual SLAM,” in Proc. Int'l Conf. on Neural Information Processing (ICONIP), 2009, vol. 
 5863, pp. 769–777. 
10) H. Bay, A. Ess, T. Tuytelaars, and L. Gool, “SURF: Speeded Up Robust Features,” Computer Vision 
 and Image Understanding (CVIU), 110(3), 2009, pp. 346–359. 
11) J.Sivic and A. Zisserman, "Video google: A text retrieval approach to object matching in videos," 
 inProc. IEEE Int'l Conf. Comput. Vision (ICCV), 2003, vol. 2, pp. 1470–1477.M. Cummins and P. 
 Newman, “FAB-MAP: Probabilistic Localization and Mapping in the space of Appearance.” in Int'l. 
 Jour. Robotics Research, 2008, 27(6), pp. 647–665. 

Appendix 

Note: Some correct matching examples from the crowded university canteen. Query images 
are on the left, and images on the right are those recognized by our system. These images 
were taken by an omni-directional lens. For better understanding, we unwrapped these images 
into panorama view. The center of the images is the front of vehicle, and the left and right 
sides are the backside of the vehicle. Regardless of the direction of vehicle, the system can 
detect loop-closure without fail.  
 
 

 Query images Loop-closure images 

* 

 

 

 
 

 

* 

 

* 

 
 

 

* Some images might look different because the camera directions differ. 
 

ⓒ 2010 Information Processing Society of Japan

Vol.2010-CVIM-172 No.5
2010/5/27


