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A Quadsection Algorithm for Grammar-Based

Image Compression
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For the purpose of text compression, grammar-based compression, which is
to find a small grammar that generates a given data, has been well-studied. In
this technical report, we apply this methodology to compression of rectangular
image data. We first define a context-free rectangular image grammar (CFRIG)
by extending the context-free grammar. Then we propose a quadsection type
algorithm by extending a bisection type algorithm for grammar-based com-
pression of text data. We show that our proposed algorithm approximates in
polynomial time the smallest CFRIG within a factor of O(n4/3), where an input
image data is of size O(n) × O(n). We also present results on computational
experiments on the proposed algorithm.

1. Introduction

In the field of data compression and image processing, image compression is
one of well-studied problems. Extensive studies have been done on image com-
pression, and several methods and/or formats such as JPEG, GIF, PNG have
been widely used.

Various techniques are employed in these widely used methods. JPEG was
named after Joint Photographic Experts Group, and is usually lossy compres-
sion for photographic still images. Each block of size 8× 8 pixels is transformed
using two-dimensional DCT (Discrete Cosine Transform). The higher frequency
components are more coarsely reduced by quantization. Finally, the image is com-
pressed using Huffman coding4). GIF stands for Graphics Interchange Format,
and is lossless compression for images with less than or equal to 256 distinct col-
ors, based on the Lempel-Ziv algorithm9), which is a dictionary coder that reads
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a sequence, constructs a dictionary dynamically, and replaces the sequence with
words of the dictionary. PNG stands for Portable Network Graphics, and has
been developed to replace GIF. PNG uses filtering and Deflate algorithm that
is the combination of the Lempel-Ziv algorithm9) based method and Huffman
coding4). The compression rate of PNG is often higher than that of GIF.

Though compression ratios of these methods are very high for most image data,
there are cases where some of these methods fail to achieve high compression
ratios. Furthermore, in many existing methods, compressed data are difficult
to interpret. That is, it is difficult to extract some patterns, which exist in the
original image, from compressed data.

On the other hand, in text compression, extensive studies have been done on
grammar-based compression2),6),7), which is to find a small grammar generating
a given string. It is useful not only for data compression but also for extraction
of repetitive patterns. Therefore, it is reasonable to try to study grammar-based
compression for image data. Various grammars have been proposed for producing
image data3),8). However, to our knowledge, there was no grammar-based image
compression algorithm with a guaranteed approximation ratio. Therefore, in this
article, we extend grammar-based compression for text data to image data com-
pression. In particular, we present QUADSECTION algorithm that is obtained
by extending BISECTION algorithm for text data compression2),6). Furthermore,
we show that QUADSECTION computes in polynomial time a grammar of size
O(g∗n4/3) for a given image of size O(n)×O(n), where g∗ is the size of a minimum
grammar generating the given image.

2. Context-Free Rectangular Image Grammar

Here, we define CFRIG (Context-Free Rectangular Image Grammar). A
CFRIG is defined by a 4-tuple (Σ, Γ, S, ∆) where Σ, Γ, S ∈ Γ and ∆ are a
set of terminal symbols, a set of nonterminal symbols, the start symbol and a set
of production rules, respectively. Each terminal symbol corresponds to a label
of a pixel, and is denoted by a lower-case letter. Each nonterminal symbol cor-
responds to a rectangular region, and is denoted by an upper-case letter. Since
each nonterminal symbol is associated with a rectangular region, each nontermi-
nal symbol is represented as An,m, which means that this symbol generates an
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Fig. 1 Production rules for CFRIG.

image with n × m pixels (i.e., an image composed of n rows and m columns).
Then, we consider the following two types of production rules
(R1) A1,1 → a,
(R2) An,m → [Bn1,m1 , Cn1,m2 ; Dn2,m1 , En2,m2 ], where n1 + n2 = n and m1 +

m2 = m.
The meanings of these rules are clear from Fig. 1. For a rule of type (R2),

we allow subcase (R2’) of n2 = 0 (i.e., Dn2,m1 and En2,m2 are empty) and
subcase (R2”) of m2 = 0 (i.e., Cn1,m2 and En2,m2 are empty). We write An,m →
[Bn,m1 , Cn,m2 ] and An,m → [Bn1,m; Dn2,m] for the former case and latter case,
respectively (see also Fig. 1 (R2’) and (R2”)).

The size of a grammar is defined as the total number of symbols appearing in
the right hand sides (RHSs) of production rules. From the definition of CFRIG,
it is seen that only acyclic grammars are allowed in CFRIG. Furthermore, when
we discuss compression algorithms, as in 2), we only consider non-ambiguous

An,m
c
eCn2,m2

Bn1,m1

Dn2,m3

a
b a
c

Fig. 2 This kind of rules can be transformed into CFRIG with a constant factor increase of
the size.

CFRIGs, that is, each nonterminal symbol appears in the left hand side (LHS)
of exactly one rule.

Though we restricted the form of rules to (R1) and (R2), more general rules can
be represented by using multiple rules of type (R1) and (R2), as shown in Fig. 2.
We can show that such a transformation increases the size of the grammar only
by a constant factor though we omit the proof here.

Based on the above definitions, we define the smallest grammar problem for
image data is to find a smallest CFRIG which uniquely generates a given image
of size n×m. We can show that the smallest grammar problem for image data
is NP-hard in a similar way as in 2). We omit the proof here.

Theorem 1 Finding the smallest CFRIG for a given image data is NP-hard.

3. Compression Algorithm

Our compression algorithm for image data is based on BISECTION2),6) and is
denoted by QUADSECTION here. BISECTION takes a string, and recursively
decomposes the string into two smaller substrings. QUADSECTION recursively
decomposes a given rectangular image In,m into smaller rectangular images until
each image consists of one pixel, where the same nonterminal symbol is assigned
to identical rectangular images. Let h(i) be 2j for the largest integer j such that
2j < i, where we let h(1) = 1. For example, h(2i) = 2i−1, h(2i + 1) = 2i. For
a rectangular image In,m of size n×m, I[i1:i2],[j1:j2] denotes the sub-rectangular
image composed of i1th - i2th rows and j1th - j2th columns. The following is a
pseudocode of QUADSECTION, where it is invoked with the input image In,m and
an empty grammar G. QUADSECTION returns the start symbol that generates
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In,m.
Procedure QUADSECTION(In,m)
if the same image I ′n,m as In,m has already appeared
then return A′

n,m; (A′
n,m is the nonterminal assigned to I ′n,m)

if n = 1 and m = 1 then
Add A1,1 → a to G where In,m = a and A1,1 does not appear in G;
return A1,1;

h← max{h(n), h(m)};
n1 ← min{n, h}; m1 ← min{m,h}; n2 ← n− n1; m2 ← m−m1;
if n1 = n then

Bn,m1 ← QUADSECTION(I[1:n],[1:m1]);
Cn,m2 ← QUADSECTION(I[1:n],[m1+1:m]);
Add An,m → [Bn,m1 , Cn,m2 ] to G where An,m does not appear in G;

else if m1 = m then
Bn1,m ← QUADSECTION(I[1:n1],[1:m]);
Dn2,m ← QUADSECTION(I[n1+1:n],[1:m]);
Add An,m → [Bn1,m;Dn2,m] to G where An,m does not appear in G;

else
Bn1,m1 ← QUADSECTION(I[1:n1],[1:m1]);
Cn1,m2 ← QUADSECTION(I[1:n1],[m1+1:m]);
Dn2,m1 ← QUADSECTION(I[n1+1:n],[1:m1]);
En2,m2 ← QUADSECTION(I[n1+1:n],[m1+1:m]);
Add An,m → [Bn1,m1 , Cn1,m2 ; Dn2,m1 , En2,m2 ] to G

where An,m does not appear in G;
return An,m;
It is straight-forward to see that QUADSECTION works in polynomial time.

4. Analysis

In the following, we assume without loss of generality (w.l.o.g.) that n ≥ m. If
we consider images with n× 1 pixels, CFRIG corresponds to CFG and thus the
lower bounds on the approximation ratio on compression in 2) holds for CFRIG.
In the same way, the lower bound for BISECTION (Theorem 5 in 2)) holds also
for QUADSECTION.

An,m

Cn1,m2

Dn2,m1 En2,m2

Hk,h

h

k
Bn1,m1

Fig. 3 Proof of Lemma 1.

Proposition 1 The approximation ratio of QUADSECTION is Ω(
√

n/ log n).
Similarly, we obtain the following proposition.
Proposition 2 The smallest CFRIG that generates an image of size n ×m

has size Ω(log n).
In order to analyze the upper bound of QUADSECTION, we first establish mk

Lemma2) for CFRIG, where we use g instead of m to denote the size of a grammar
here.

Lemma 1 If the input image data In,m is generated by an CFRIG of size g,
In,m contains at most 2ngk distinct sub-images of size k × h, where we assume
w.l.o.g. that k ≥ h.
Proof. Let Hk,h be a sub-image of size k×h of In,m. If k = h = 1, H1,1 is repre-
sented by RHS of a rule of type (R1). Otherwise, since CFRIG is an acyclic gram-
mar, there exists a rule of type (R2), An′,m′ → [Bn1,m1 , Cn1,m2 ; Dn2,m1 , En2,m2 ],
that IAn′,m′ contains Hk,h and none of IBn1,m1

, ICn1,m2
, IDn2,m1

and IEn2,m2

contains Hk,h, where IA for a nonterminal A denotes the expansion image of A.
(See Fig. 3.) We assume w.l.o.g that a part of Hk,h is included in IBn1,m1

. Hk,h

is one of at most km1 +hn1 ≤ 2nk sub-images. Therefore, In,m contains at most
2ngk distinct sub-images of size k × h. 2

Theorem 2 QUADSECTION computes in polynomial time an CFRIG of size
O(g∗n4/3) for a given image In,m of size n×m (n ≥ m), where g∗ is the size of
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the smallest CFRIG generating In,m.
Proof. We prove the theorem only for the case that n = m = 2l holds for some
integer l. Modification of the proof for the other cases is straight-forward.

The number of sub-images that are generated by recursive calls of depth at most
k is bounded by 1 + 4 + 42 + · · ·+ 4k. On the other hand, the number of distinct
sub-images that are generated by recursive calls of depth at least k+1 is bounded
by 2

∑h
i=0 g∗n2i from Lemma 1, where h = log n− k. Therefore, the number of

production rules generated by QUADSECTION is O(4k + g∗n2log n−k). By letting
4k = n2log n−k, we have k = 2

3 log n. Therefore, the number of production rules
generated by QUADSECTION is O(n4/3 + g∗n4/3) = O(g∗n4/3). 2

It is to be noted that the grammar may have size O(n2) in the worst case and
thus the above approximation ratio is meaningful.

Furthermore, by extending CFRIG and QUADSECTION to d-dimension, call
d-CFRVG and HYPERSECTION, respectively, we have

Corollary 1 HYPERSECTION computes in polynomial time a d-CFRVG of
size O(g∗nd2/(d+1)) for a given volume Vn(1),···,n(d) of size n(1) × · · · × n(d), where
g∗ is the size of the smallest d-CFRVG generating Vn(1),···,n(d) .

5. Computational Experiments

We implemented QUADSECTION and applied it to several images. In our
implementation, input raw images are given in PGM (Portable GrayMap) format
or PPM (Portable PixMap) format. An image in PGM and PPM format consists
of the format type, width, height, maximum pixel value, and pixel values in raster
scan order. Each pixel value is represented either by ascii codes or by binary
values according to the format type. Since the file size in ascii format depends
on the pixel values, we used only binary format. A pixel value in PGM format
is stored in 8 bits, and that in PPM format is stored in 24 bits, where each color
of red, green and blue is represented in 8 bits.

The implemented version of QUADSECTION generates CFRIG (Σ, Γ, S, ∆)
from a given image in PGM or PPM format, and the grammar is stored in newly
introduced QSN format as follows (see Table 1). The set of rules ∆ is divided into
four sets of rules, ∆(R2), ∆(R2’), ∆(R2”) and ∆(R1), corresponding to the types

Table 1 QSN format for CFRIG (Σ, Γ, S, ∆).

# bits contents
8 maximum pixel value
1 0 if PGM, 1 if PPM
8 |∆|
2 rule type including the start symbol

dlog |∆|e |∆(R2)|
dlog |∆|e |∆(R2’)|
dlog |∆|e |∆(R2”)|

4dlog |∆|e /rule RHS(∆
(R2)
i ) (i = 1, · · · , |∆(R2)|)

2dlog |∆|e /rule RHS(∆
(R2’)
i ) (i = 1, · · · , |∆(R2’)|)

2dlog |∆|e /rule RHS(∆
(R2”)
i ) (i = 1, · · · , |∆(R2”)|)

8 (or 24) /rule RHS(∆
(R1)
i ) (i = 1, · · · , |∆(R1)|)

of rules, (R2), (R2’), (R2”) and (R1) respectively. Let ∆i denote the i-th rule of

∆. Then, ∆1 = ∆(R2)
1 , ∆

|∆(R2)|+1
= ∆(R2’)

1 and ∆|∆| = ∆(R1)
|∆(R1)|

. In particu-

lar, we suppose that LHS of either ∆(R2)
1 , ∆(R2’)

1 , ∆(R2”)
1 or ∆(R1)

1 is the start
symbol S. The nonterminal symbol of LHS of ∆i is replaced with the number
i− 1. Thus, each nonterminal symbol is represented with dlog |∆|e bits number.
Each terminal symbol, that is a pixel value, is represented with 8 bits for PGM
format and 24 bits for PPM format. In Table 1, RHS(∆i) denotes the nontermi-
nal and terminal symbols appeared in RHS of ∆i. In QSN format, the numbers
corresponding to symbols contained in RHS(∆i) are stored sequentially in order.
In the case of the black-color image of size 512 × 512, QUADSECTION gener-
ates the following 10 rules: S = A512,512 → [A256,256, A256,256;A256,256, A256,256],
· · ·, A2,2 → [A1,1, A1,1; A1,1, A1,1], A1,1 → 0. Since dlog |∆|e = dlog 10e = 4,
|∆(R2)| = 9 and |∆(R1)| = 1, the compressed file size in QSN format is
8 + 1 + 8 + 2 + dlog 10e · (3 + 4 · 9) + 8 · 1 = 183 bits. It should be noted that
the actual file size is d183/8e = 23 bytes because files are created in a storage in
terms of bytes.

In order to evaluate the compression ability of QUADSECTION, we compared
the following image file formats, PNG (Portable Network Graphics), GIF (Graph-
ics Interchange Format) and JPEG (Joint Photographic Experts Group). Both
of GIF and PNG use lossless compression algorithms as well as QUADSECTION.
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It should be noted that GIF is not able to deal with more than 256 distinct
colors. If an image has more than 256 distinct colors, GIF ignores less frequently
used colors. In order to enhance compression rates, PNG firstly employs filter-
ing, which replaces the color of each pixel with the difference of colors between
adjacent pixels. It makes use of the characteristics that colors of adjacent pixels
are often very close in images.

Fig. 4 Image of cross with size 512 × 512 and
3 distinct colors.

Fig. 5 Image of cross2 with size 234 × 345.
cross2 is the left-top part of cross.

Fig. 6 Binary image of hilbert with size
512 × 512.

Fig. 7 Gray-scale image of lena with size
512 × 512.

Fig. 8 Binary image of lena2 with size
512 × 512.

We examined the following images, ‘black’, ‘cross’ (Fig. 4), ‘cross2’ (Fig. 5),
‘hilbert’ (Fig. 6), ‘lena’ (Fig. 7), and ‘lena2’ (Fig. 8). The image of black is con-
sidered before, consists of black color pixels, and the size is 512×512. The image

of cross consists of 3 distinct colors, and the size is 512×512. The image of cross2
is the left-top part of that of cross, and the size is 234×345. The image of hilbert
is a 6-th order Hilbert curve. The Hilbert curve is known as one of fractal dia-
grams, can be formed using the following rules. S → A, A→ LBFRAFARFBL,
B → RAFLBFBLFAR, where S is the start symbol, L means ‘turn left at a
right angle’, R means ‘turn right at a right angle’, and F means ‘draw forward’3).
The image of lena was transformed from the full color image file ‘4.2.04.tiff’ pro-
vided on the USC-SIPI Image Database (http://sipi.usc.edu/database/) to PGM
format using a tool of ImageMagick (http://www.imagemagick.org/), ‘convert’,
and the size is the same as the original one, 512× 512. The image of lena2 was
transformed from ‘4.2.04.tiff’ to the binary image in PGM format using ‘-colors 2’
option of the tool ‘convert’. We also used the tool ‘convert’ in order to transform
the above images from PGM format to PNG, GIF or JPEG format.

Table 2 Results on the compression sizes (byte) in QSN, PNG, GIF and JPEG formats for
several images.

image PGM QSN PNG GIF JPEG
black 262159 23 265 828 1185
cross 262159 57 1688 8645 2392
cross2 80745 146 1031 2797 885
hilbert 262159 181 1196 11083 99172
lena 262159 697387 223614 264340 65338
lena2 262159 33524 17859 15501 22888

Table 2 shows the sizes of the raw images in PGM format and the results
on the compression sizes (byte) in QSN, PNG, GIF and JPEG formats for the
images. For the images having symmetric and geometric patterns, that is black,
cross, and hilbert, QUADSECTION was able to compress them better than other
image compression methods. However, for the image of cross2, the compression
size in QSN format was larger than that of cross although the image size of
cross2 is smaller than cross, and the compression sizes of cross2 in other formats
were smaller than those of cross. It is considered that the image size of cross2,
234× 345, is not a power of two, some sub-images corresponding to nonterminal
symbols had various sizes, and it increased the number of rules. For the image
of lena, which is a gray-scale photographic image, the compression size in QSN
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format was larger than the size of the raw image and the compression sizes in
other image formats. It is considered that QUADSECTION could not compress it
well because the image is not symmetric and has many colors. The compression
size of lena2 in QSN format was smaller than that of lena and the size of lena2
in PGM format. The rate of the compression size in QSN format to that in PNG
or GIF format decreased from about 3 for lena to about 2 for lena2. This result
suggests that QUADSECTION is still useful for compression of non-symmetric
binary image data.

6. Conclusion

We have proposed a grammar-based image compression algorithm, QUADSEC-

TION, by extending the BISECTION algorithm for text data compression. For
that purpose, we defined CFRIG, which is an extension of the context-free gram-
mar for strings. Since QUADSECTION is quite simple, there may exist the same
or similar methods. However, the most important contribution of this article is
that it gives a guaranteed approximation ratio to the smallest grammar, which
might stimulate further studies of improvements and extensions of grammar-
based image compression.

Our proposed method has some similarity with fractal image compression1),5).
Fractal image compression is based on a fact that parts of an image are often
similar to other parts of the same image, and makes extensive use of these similar-
ities. However, fractal image compression is usually computationally expensive.
Furthermore, fractal image compression is usually lossy (i.e., it discards some in-
formation in the original image data). Different from fractal image compression,
our proposed method is lossless and efficient, and has a guaranteed approximation
ratio.

In this article, we proposed a direct approach for grammar-based compression
of image data. However, we can consider an indirect approach to compress image
data in which a given image is first transformed into a string by means of raster
scan and then is compressed using grammar-based compression algorithms for
text data. Though it is difficult to extract patterns by such an approach, it
might lead to better compression performances or better approximation ratios.
Therefore, such an approach should be studied.

As shown in Section 6, for some types of binary or ternary image data, QUAD-

SECTION had better performances than other standard image compression meth-
ods. However, in general, it is not better than those methods. In particular,
QUADSECTION is not very useful for compression of gray-scale images or color
images because QUADSECTION makes use of exactly repetitive patterns. There-
fore, development of grammar-based compression methods for gray-scale images
and color images is left as future work.
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