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Effectiveness of Genetic Multi-Step Search on Unsupervised Design
of Morphological Filters for Noise Removal

YOSHIKO HANADA ,†1 M ITSUJI MUNEYASU †1

and AKIRA ASANO†2

This paper shows the effectiveness of deterministic Multi-step Crossover Fusion (dM-
SXF) on an unsupervised design problem of suitable structuring elements (SEs) of a mor-
phological filter. In our previous work, it was shown that dMSXF worked very well for
solving combinatorial optimization problems, especially on problems for which the land-
scape is an AR(1) landscape observed in the NK model. In addition, the effectiveness on
reproduction mechanisms of offspring of dMSXF was shown to be kept through increases
in the level of epistasis. In this paper, we show that a characteristic of the AR(1) landscape
is observed in an objective function for the unsupervised design of SEs, and the superior
search performance of dMSXF to a conventional crossover is shown. The processing re-
sults of the obtained SEs are also compared to that of a conventional filter for impulse noise
removal.

1. Introduction

Mathematical morphology is a fundamental framework for image manipulation, and a
wide range of nonlinear image processing filters can be unified within this framework1).
Openingandclosing, which is the dual of opening, are typical morphological operations
and fundamental morphological filters that have idempotence. They are used for various
methods of noise reduction, object extraction, etc. Mathematical morphological opera-
tions manipulate an image with a small object called astructuring element(SE), which
is equivalent to the window of image processing filters. The opening operator composes
the resultant image object by arranging the SE inside a target object and removes resid-
ual regions that are too small to locate the SE inside. The significance of opening is its
quantitativeness with respect to the sizes of image objects. The impulse noise removal
by opening achieves a quantitative operation in the sense that the noise objects smaller
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than the SE are precisely removed. Since this operator composes an image by repeti-
tively locating an SE, its shape and gray scale distribution appear directly in the resultant
image. In the case that the SE is inappropriate to the image, it causes the appearance of
undesired microstructures which are not related to the original image. These problems
can be avoided by the use of an appropriate gray scale SE that resembles the objects
in the target image. Thus determination of the shape and gray scale distribution of the
SEs is an important problem. Here, we use the opening operator for noise removal in
textures corrupted by impulse noise. For practical use, we design suitable SEs for the
textures, which remove the noise and reconstruct the image with high accuracy, directly
from the corrupted image only. A genetic algorithm (GA) is adopted as the optimization
algorithm for the unsupervised design.

When we apply a GA to a particular problem, especially for combinatorial problems,
it is important to design a crossover method with emphasis on the heredity of favorable
characteristics of parents. Deterministic Multi-step Crossover Fusion (dMSXF)2), which
is a kind of genetic multi-step search based on neighborhood search mechanisms, is a
promising crossover operator for combinatorial problems. DMSXF can be constructed
by introducing both a problem-specific neighborhood structure and a distance measure.
By the mechanism of multi-step search, dMSXF can generate a wide variety of offspring
between parents and it performs especially well on problems for which the landscape is
anAR(1) landscape2),3). In addition, we have shown that the high search performance of
dMSXF was achieved by setting the neighborhood size to the near value to the correla-
tion length which reflects the level of epistasis4).

In this paper, dMSXF is adopted as the crossover method to optimize SEs of mor-
phological filters for the texture image. First we introduce our proposed unsupervised
design. The landscape of objective function for the design of SEs is experimentally
shown to be similar to AR(1) landscape observed in an NK model5). In numerical ex-
periments, we apply dMSXF to typical textures, and show the effectiveness of dMSXF
as a main search operator of GA. The processing results of obtained SEs are compared
to that of a conventional filter for impulse noise removal.

2. Deterministic Multi-step Crossover Fusion

Genetic algorithms (GAs) are among the most effective approximation algorithms for
optimization problems. GAs are applicable to a wide range of problems and have been
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applied to numerous combinatorial problems, such as Traveling Salesman Problem and
various scheduling problems. To apply GAs to these problems, it is important to design
a crossover method to consider problem-specific structures and characteristics. Various
crossovers focusing on the inheritance of parents’ characteristics have been discussed.
Among them, deterministic Multi-step Crossover Fusion (dMSXF)2), which is a type
of genetic multi-step searches based on neighborhood search mechanisms, has been
proposed, since the incorporation of neighborhood searches into GAs is essential in
order to adjust the structural details of solutions in combinatorial problems.

DMSXF advances the neighborhood search from a parentp1 in the direction approach-
ing the other parentp2. The procedure of dMSXF is as follows. A set of offspring
generated by parentsp1, p2 is indicated byC(p1, p2).

Procedure of dMSXF
0. Letp1, p2 be parents and set their offspringC(p1, p2) = ϕ.
1. k=1. Set the initial search pointx1 = p1 and addx1 intoC(p1, p2).
2. /Stepk/ PrepareN(xk) composed ofµ neighbors generated from the current solu-

tion xk. ∀yi ∈ N(xk) must satisfyd(yi, p2) < d(xk, p2).
3. Select the best solutiony fromN(xk). Let the next search pointxk+1 bey and add

xk+1 intoC(p1, p2).
4. Setk = k + 1 and go to 2. untilk = kmax or xk equalsp2.

At step 2 of the procedure of dMSXF, every neighborhood candidateyi (1 ≤ i ≤ µ)
generated fromxk must be closer top2 thanxk. In addition, dMSXF necessarily moves
its transition towardp2 even if all solutions inN(xk) are inferior to the current solution
xk. Table 1 shows an example of application of dMSFX to a 1-max problem. In this
problem, the Hamming distance is adopted as the distance measure. The bits copied
from p2 to xk are chosen randomly at each step.

3. Unsupervised Design of Structuring Elements for Noise Removal

3.1 Mathematical Morphology and Opening
In the context of mathematical morphology, an image object is defined by a set. In the

case of binary images, this set contains the pixel positions included in the object, i.e.,
those of white pixels. In the case of gray scale images, an image object is defined by an

Table 1 Application of dMSXF to the 1-max Problem:Lbit = 10, kmax = 3, µ = 3

p1 step1 step2 p2
(base solutionxk) 0̄1̄1̄1̄110̄0̄0̄0 (5) 0̄1̄1̄1̄110̄110 (7) 11̄0̄1111110 (8)

010̂0̂111̂000 (4) 1̂10̂1111̂110 (8)→
0111110000 (5) 010̂111001̂0 (5) 00̂10̂110110 (5) 1000111110 (6)

01111101̂1̂0 (7)→ 1̂10̂0̂110110 (6)
∗̄ of xk means the difference betweenxk andp2, and∗̂ is introduced fromp2.
d(p1, p2)/kmax( = 7/3 = 2 or 3) bits are introduced fromp2 at each transition.

umbraset. If the pixel value distribution of an image object is denoted asf(x), where
x ∈ R2 is a pixel position, its umbraU [f(x)] is defined as follows:

U [f(x)] = {(x, t) ∈ R3|f(x) ≥ t > −∞} (1)
Consequently, when we assume a solid whose support is the same as a gray scale

image object and whose height at each pixel position is the same as the pixel value at
this position, the umbra is equivalent to this solid and the whole volume below this solid
within the support.

Another object, called astructuring element(SE), is defined in the same manner as
above. The SE is equivalent to the window of image processing filters, and is considered
to be much smaller than the image object.Openingandclosingare typical morpholog-
ical operations, and fundamental morphological filters that have idempotence. They are
used for various methods of noise reduction, object extraction, etc. In the case of a
binary image and an SE, the opening of an image objectX with respect to an SEB,
denotedXB, has the following properties:

XB = {Bz|Bz ⊂ X, z ∈ R2} (2)
whereBz indicates the translation ofB by z.

Here, we concentrate on the opening, since the operations on closing are regarded as
the dual of the opening. In the case of the gray scale image and an SE, the opening
is similarly defined by replacing the setsX andB with their umbrae, respectively, and
supposing thatz ∈ R3. This property indicates that opening is the regeneration of an
image produced by arranging the SE, and removes smaller white regions in the binary
case or smaller regions composed of brighter pixels than its neighborhood in the gray
scale case than the SE. The fact that the opening operator eliminates smaller structures
and smaller bright peaks than the SE indicates that it works as a filter to distinguish
object structures by their sizes. In this paper, we adopt the opening with SEs as an
impulse noise removal filter in texture images.

c⃝ 2010 Information Processing Society of Japan2

Vol.2010-MPS-78 No.15
2010/5/21



IPSJ SIG Technical Report

3.2 Unsupervised Design of SEs
For textures corrupted by the impulse noise, we design suitable SEs which can remove

the noise and reconstruct the image with accuracy. In our approach, for practical use,
optimal SEs are designed directly from the corrupted image and no training images are
required. In this section, we identify the problem and design the objective function.

3.2.1 Noise Model
Images are often corrupted by impulse noises due to a noisy circuit or channel trans-

mission errors. Here, we consider gray scale texture images whose gray level is 256.
There are several impulse noise models for images. We adopt the model below. In
this model,xo(i, j) indicates the pixel values of the original image, andl represents a
non-negative integer with uniform distribution.x(i, j) is rounded to 255 ifxo(i, j) + l

exceeds 255.

x(i, j) =

{
xo(i, j) + l prob.p

xo(i, j) prob.1− p
(3)

3.2.2 Design of Objective Function
The opening of imageX with respect to an SEB means that the residue ofX is

obtained by removing smaller structures thanB. Let rB be a result ofr-times of homo-
thetic magnification ofB, which is defined as (r-1)-times ofMinkowski set additions
betweenB and another small element. We perform the opening ofX with respect to
the homothetic SEsrB and obtain the image sequence{X, XB , X2B , · · · , XrB , · · · }.
In this sequence,XrB is obtained by removing the regions smaller thanrB. In the case
of gray scale images, at eachr, we calculate a ratio of value at each pixel position of
XrB to that of the originalX, and then calculate a sum of the ratio. The function from
sizer to the corresponding ratio decreases monotonically, and becomes unity when the
size is 0. This function is called thesize distribution function6). The size distribution
function of sizer, F (r), indicates the area ratio of the regions whose sizes are greater
thanr or equal tor. Here, the integral ofF (r) is used as the objective function and SEs
are obtained by minimizing it.

3.2.3 Application of GA to the Design of SEs
For simplicity, we fix the shape of each SE to a full square 3x3 pixels and only op-

timize the pixel values for each element of this square. Each SE is an individual, a

candidate solution, of GA and each element of the SE takes a value of the range [0，

255] for gray scale textures. At the initial population, a random value of this range is
assigned to each element. During the search using the GA, these values are coded to a
binary string of length 8; consequently, each individual of GA is expressed as a binary
string of length 72. This design problem is a binary problem and dMSXF is implemented
as the bitwise operator shown in Table 1.

The generation alternation model we used for dMSXF in this paper is outlined be-
low. This model focuses on a local search performance and it showed effectiveness in
combinatorial optimization problems2),3).

Generation Alternation Model
0. Generate the initial population composed ofNpop random solutions, individuals,

{x1, x2, · · · , xNpop}.
1. Reset indexes{1, 2,· · · , Npop} to each individual randomly.
2. SelectNpop pairs of parents (xi, xi+1) (1 ≤ i ≤ Npop) wherexNpop+1 = x1.
3. Apply dMSXF for each pair (xi, xi+1).
4. For each pair (xi, xi+1), select the best individualc from offspringC(xi, xi+1)

generated by parents (xi, xi+1) and replace the parentxi with c.
5. Go to 1 until some terminal criterion is satisfied, e.g., generations and/or the number

of evaluations.

4. Problem Difficulties Analysis

4.1 Properties of Fitness Landscape
It is essential to investigate problem difficulties before applying a GA to an individual

problem. There are several measurements for comprehending complexity in the fitness
landscapes of objective function. Epistatic interactions among design variables affect
the features of local landscapes. An intensity of fitness correlation among neighborhood
solutions, which appears as a local ruggedness in a fitness landscape, reflects the level
of epistasis. Thecorrelation lengthℓc is an indicator of the level of epistasis7), and it is
derived from therandom walk correlation functionr(s) as equation (4), where a time
series{f(xt)} defines the correlation of two pointss steps away along a random walk
of lengthm through the fitness landscape.f̄ andσ2

f respectively denote the average and
the variance of the fitness values.
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r(s) = lim
m→∞

1

σ2
f (m− s)

m−s∑
t=1

(f(xt)− f̄)(f(xt+s)− f̄)

ℓc = −1/ln(|r(1)|) (4)

If a timeseries{f(xt)} is isotropic, Gaussian, and Markovian, then the functionr(s)
is of the formr(s) = r(1)s = e−s/ℓc . In this case, the landscape is called anAR(1)
landscape. AR(1) landscapes have been found in various combinatorial optimization
problems and can be created by the NK model. This landscape feature is also observed
in the objective function for optimizing structuring elements, which is demonstrated later
in the section 4.2. In an AR(1) landscape, the lower the value forℓc, the more rugged
the landscape. The fitness landscape of the NK model shows the AR(1) function and the
value ofℓc has been proved to beN /(K+1)8). The indicatorℓc has an intensified impact
on the performance of any neighborhood search method, and we can obtain beneficial
information from the current solution to generate neighborhood solutions if the scope of
the neighborhood is smaller thanℓc.

4.2 Fitness Landscape Feature of the Objective Function of SEs
Here, we show that the objective function to design SEs for noise removal, the inte-

gral of the size distribution, has a feature of an AR(1) landscape. Random walk corre-
lation functions of this design problem were examined to analyze aspects of the fitness
landscape and problem difficulties. At each step of the random walk, a neighborhood
solution was generated by the bit flip operator. Two kinds of images, D57 and D74
of Brodatz textures9), were used for the examination. These instances are described in
detail in section 5. The probability of the impulse noise was set to 0.25 or 0.5 for both.

The computed correlation functions are plotted in Fig. 1. These functions have been
estimated experimentally by performing random walks of length 1x105. Random walk
correlation functions of instances of the NK model are also plotted in the figure for
comparison. All functions here are 72 bit problems, which is the same bit size used to
represent the individuals for designing SEs.

From the figure, we can see that the random walk correlation functions for the design
problem of SEs have an exponentially decaying form as expected for the landscape of
the NK model. The aspect of local ruggedness of objective functions of these textures
in the optimization of SEs is supposed to be extremely similar to the NK model. It is
observed that the ruggedness of function is different among textures. In these instances,
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Fig. 1 RandomWalk Correlation Functions for Texture Images

D74 is more rugged than D57. In addition, the level of epistasis of the objective function
decreases against increasing in the noise rate.

It has been shown that dMSXF performs very well on an AR(1) landscape4). There-
fore, it is expected that dMSXF will work well for optimizing SEs for noise removal.
In addition, we can preliminarily examine the appropriate setting parameters of dMSXF
with NK models, before applying it to design SEs.

5. Numerical Experiments

We next discuss the suitability of dMSXF for application to the design problem of SEs.
To show their effectiveness, we compare it with the conventional crossover operator, the
uniform crossover (UX) that generates mostly intermediate offspring between parents in
any rugged landscape. The processing performance of designed SEs for impulse noise
removal is also examined by comparing it to another typical filter. Eight kinds of images,
D3, D20, D57, D74, D87, D98, D101 and D112 of Brodatz textures9) which have wide
variety in shape characteristics and the brightness, were used for the examination. The
size of each image is 128x128 and the gray level of each image is 256. These textures
are illustrated in Fig. 2.
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D3 D20 D57 D74

D87 D98 D101 D112

Fig. 2 BrodatzTextures

Before applying dMSXF to the design problem, the search performance on NK models
is examined to determine the parameter settings where it works effectively.

5.1 Performance of dMSXF against the Level of Epistasis
We confirm appropriate setting of parameters of dMSXF using instances of the NK

model ofN=72. In the experiments, the population size was set to 10. The generation
alternation model based on elitist recombination model (ER)10) was adopted for UX.

Each trial was terminated after 25 generations in dMSXF, and 50 generations in UX in
all instances of the NK Model. The total number of evaluations was the same between
dMSXF and UX. For dMSXF,kmax was set to 2, 4, 8 and 16. The number of offspring
generated by each pair of parents,NC , was set to 32 for both methods.µ is calculated
by NC /kmax.

Table 2 Search Performance of dMSXF and UX (N=72)

Instance kmax=2 kmax=4 kmax=8 kmax=16 UX=32
K ℓc avg. std. avg. std. avg. std. avg. std. avg. std.
3 18.0 0.908 0.028 0.909 0.032 0.905 0.030 0.888 0.032 0.884 0.035
6 10.3 0.903 0.036 0.908 0.038 0.895 0.037 0.869 0.041 0.879 0.035
9 7.2 0.736 0.022 0.738 0.023 0.739 0.026 0.723 0.024 0.728 0.025
12 5.5 0.694 0.022 0.702 0.016 0.700 0.018 0.687 0.017 0.690 0.019

Table 2shows search performances on NK models ofN=72 tuningK in the range of
3 to 12. These results show the average and the standard deviation of fitness out of 100

trials. Bigger values are considered better. At each trial, the same initial population was
used among GAs.

From Table 2, dMSXF shows a completely superior performance to UX at all levels
of epistasis. Among the settings of dMSXF,kmax=4 performs satisfactorily in these
instances.

5.2 Effectiveness of dMSXF in the Design of SEs
Here we apply dMSXF to optimization of SEs which work effectively on impulse

noise removal for textures. Eight kinds of images were used for the examination, and
the probability of impulse noise was set to 0.25 and 0.5 at each image. The parameters
of GAs were the same as in the previous section. In dMSXF,kmax was set to 4 which is
considered the most productive.

Table 3 shows the best value of MSE between the processing results and the original
image, the worst MSE (wst.) the averaged MSE (avg.) and the standard deviation of
MSE (std.) out of 20 trials. Smaller values are considered better. The correlation length
ℓc at each image in the table was estimated experimentally by performing random walks
of length 1x105. The processing performance of designed SEs was also compared to
the processing results of PSWA11) which is a promising filter for impulse noise removal.
A full 3x3 square window was adopted in this filter. The examples of estimation result
with the best solutions of dMSXF are shown in Fig. 3.

From the comparison between GAs and PSWA, it is shown that our unsupervised
approach can design effective SEs which remove the noise and reconstruct the image
with high accuracy. Especially in the results of noise rate 0.5, even the worst MSE
of GAs is smaller than that of PSWA in most textures. DMSXF performs better than
the conventional crossover and obtains good solutions. The remarkable improvement in
processing performance is found in the worst MSE, which indicates that dMSXF can
design suitable SEs stably.

6. Conclusions

Deterministic Multi-step Crossover Fusion (dMSXF) is a superior genetic multi-step
operator for inheritance of characteristics and works especially well on problems as-
sociated with AR(1) landscapes. In this paper, dMSXF was adopted as the crossover
method to optimize structuring elements (SEs) of morphological filters for texture im-
ages. A feature of an AR(1) landscape was observed in the objective function for the
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Table 3 Processingresults (MSE): dMSXF, UX and PSWA

Noise Rate = 25%
Instance GA (dMSXF) GA (UX) PSWA

# MSE ℓc best wst. avg. std. best wst. avg. std. best
D3 1506.4 11.2 260.6 356.6 292.0 21.2 266.7 438.0 294.8 35.7 490.0
D20 3052.3 9.7 105.9 245.0 121.5 30.1 106.4 239.6 133.9 37.3 245.2
D57 3996.3 10.2 274.5 362.8 287.9 24.1 275.4 439.6 312.1 53.8 299.1
D74 2102.7 9.4 110.3 132.8 118.0 6.4 111.9 136.2 121.3 6.5 210.0
D87 3298.5 10.6 280.7 311.1 291.0 6.5 287.0 336.9 299.4 12.5 402.8
D98 3712.0 9.1 27.7 36.7 30.4 2.4 27.7 52.1 32.9 6.8 43.2
D101 1819.3 9.3 261.3 580.6 354.9 95.6 282.9 688.3 397.9 114.3 344.7
D112 1682.6 9.6 87.7 105.7 93.2 5.2 88.5 130.9 99.4 10.6 145.2

Noise Rate = 50%
Instance GA (dMSXF) GA (UX) PSWA

# MSE ℓc best wst. avg. std. best wst. avg. std. best
D3 2918.7 11.6 441.3 505.3 462.7 18.9 443.1 543.2 471.5 31.3 773.7
D20 6331.9 11.4 265.3 319.4 273.1 13.2 266.4 331.7 277.2 14.5 562.2
D57 7979.4 11.7 383.7 442.4 392.3 12.7 384.9 463.7 404.9 23.7 537.0
D74 4076.7 10.9 226.2 286.2 237.5 13.4 226.4 289.3 252.4 22.0 382.5
D87 6580.7 11.6 472.4 516.4 486.3 12.2 473.0 529.8 491.3 15.0 701.8
D98 7409.7 9.6 69.5 76.3 71.7 1.8 70.1 123.6 84.7 13.6 87.9
D101 3667.0 11.1 438.9 513.8 462.4 20.1 440.2 533.7 470.8 24.8 458.2
D112 3427.6 10.9 180.7 230.3 188.6 10.5 181.9 256.4 200.9 20.7 257.4

MSE 3667.0 MSE 438.9

Processing
Result

Degraded
Image

SE (best)

MSE 1819.3 MSE 261.3

Processing
Result

Degraded
Image

SE (best)

D101  Noise Rate=25%

D101  Noise Rate=50%
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MSE 3712.0 MSE 27.7

Processing
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SE (best)

D98  Noise Rate=25%
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Fig. 3 The processing results obtained bydMSXF

design of SEs, and it was shown that dMSXF can estimate more suitable SEs stably.
SEs obtained by dMSXF also outperformed a promising conventional filter. Here, we
applied this unsupervised design method to the case of non-negative integer impulse
noises; however, it is extendable to the combination of opening and closing to suppress
more practical salt-and-pepper noise. This goal is left for future works.
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