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Performance Analysis of Path Relinking

on Many-objective NK-Landscapes

Joseph M. Pasia,†1,†2 Hernán Aguirre†2

and Kiyoshi Tanaka†2

Path relinking is a population-based heuristic that explores the trajectories
in variable space between two elite solutions. It has been successfully used as a
key component of several multi-objective optimizers, especially for solving bi-
objective problems. In this paper, we focus on the behavior of pure path relink-
ing, propose several variants of the path relinking that vary on their strategies
of selecting solutions, and analyze its performance using several many-objective
NK-landscapes as instances.The study shows that the path relinking becomes
more effective in improving the convergence of the algorithm as we increase the
number of objectives. It is also shown that the selection strategy associated
to path relinking plays an important role to emphasize either convergence or
spread of the algorithm.

1. Introduction

Multi-objective optimization (MO) is the process of simultaneously finding so-
lutions to problems with two or more objectives. It is often called as many-
objective optimization (MaO) if there are at least four objectives. MaO has
attracted the interest of many researchers because of the poor performance of
multi-objective evolutionary algorithms (MOEAs) that are known to be efficient
in solving MO problems. Their poor performance is due to the large number of
solutions in every Pareto front levels when the number of objectives is high8),
making their Pareto dominance ranking coarser, thus weakening their conver-
gence property1),5).

Most of the recent approaches that improve MOEAs introduce modifications
that are focused mainly on the management of the objective space taking no
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or just slight consideration of the decision space. In this paper, we study the
behavior of path relinking (PR), a procedure that provides a unifying principle
for combining elite solutions to create new ones based on generalized path con-
structions in both objective and decision spaces4). Although the efficacy of path
relinking in solving MO problems has been demonstrated, it has not been used
as a stand-alone algorithm but only as key component of different optimizers.
Moreover, except for 2) where it considered four-objective knapsack problems, it
has not been applied to solve complex MaO problems. Thus, we propose several
approaches for implementing path relinking for complex combinatorial optimiza-
tion problems having many objectives. We also investigate how the different
selection strategies associated to PR can emphasize either convergence or spread
of the algorithm

To analyze the performance of PR on MO and MaO problems, we use the
MNK-landscape models1) as test instances. The MNK-landscape is an extension
of Kauffman’s NK-landscape models of epistatic interaction7) to multi-objective
combinatorial optimization problems. It is defined as a vector function mapping
binary strings of length N into M real numbers f : ZN → RM , where Z = {0, 1}.
K = {K1,K2, . . . , KM} is a set of integers where each Ki gives the number of
bits in the string that interact with each bit in the ith landscape. Each fi(·) is
expressed as

fi(x) =
1
N

N∑

j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , . . . , z

(i,j)
Ki

) (1)

where fi,j : ZKi+1 → R gives the fitness contribution of xj to fi(·), and
z
(i,j)
1 , z

(i,j)
2 , . . . , z

(i,j)
Ki

are the Ki bits interacting with xj in string x.
In this study, we consider landscapes with 2 ≤ M ≤ 10 objectives, N = 100

bits, and 0 ≤ Ki ≤ 50, i = 1, 2 . . . ,M epistatic interactions. It is important to
note that we do not aim to propose a pure PR as an alternative search procedure
to MaO problems. Rather, we study the performance of PR on MNK-landscapes
to provide useful insights for practitioners on how to exploit the desirable prop-
erties of PR to enhance existing MOEAs.
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2. Path Relinking for Many-Objective Optimization

Path relinking generates a sequence of solutions in the decision space by ex-
ploring the trajectories that connect elite solutions. Starting from an initiating
solution (is), it creates new solutions that form a path by performing moves in
the decision space that progressively incorporate the attributes (e.g edges, nodes)
of the guiding solution (gs)4).

Like any other implementation of PR in multi-objective case, we perform PR
between two solutions that belong to set P of potentially efficient solutions.
However, since we deal primarily with many-objective problems, we consider
several ways of defining the initiating and guiding solutions only from the set
of solutions P ′ ⊂ P that are considered best in each objective. Moreover, we
use several forms of scalarizing functions to select new solutions to form the
path. Whereas all applications perform local search procedures within PR to
intensify the search towards the optimal Pareto front, we do not implement any
such procedure in order to clearly reveal the behavior of the pure PR algorithm.
Figure 1 provides the algorithmic framework for the PR used in this study.

The procedure Generate creates a set of distinct random solutions and returns
the nondominated solutions. The procedure Define initializes the set (I,G) of
is–gs pairs in every iteration by first determining the set P ′. Then, it sets
the is–gs pairs via two proposed methods. The first method is called Cycle.
Initially, Cycle arranges the solutions of P ′ in random order. Then, the first and
second solutions are labeled as is and gs, respectively. For the succeeding pairs
of solutions, the initiating solution is the guiding solution of the previous pair
and the guiding solution is the next solution in P ′. The final is-gs pair are the
last and first solutions in P ′, respectively. The second method called Pair simply
forms a set of distinct pairs of different solutions from P ′ to serve as is and gs.

The actual generation of the sequence of solutions or path from solution x′

to gs consists of two procedures. The first procedure PathRelink returns at
each step the set F of 1-bit neighbor solutions of x′ that reduces the Hamming
distance γ from gs, i.e. F = {x′′ ∈ N (x′) : γ(x′′, gs) < γ(x′, gs)}. PathSelect

then immediately chooses a single solution from F having the best value of the

1: P ←Generate();
2: repeat {/*iteration loop*/}
3: (I,G)←Define(P);
4: S ← {};
5: repeat
6: choose (is, gs) ∈ (I,G);
7: x′ ← is;
8: repeat {Path Generation}
9: F ←PathRelink(x′, gs, N, γ);
10: x′′ ←PathSelect(F ,ω);
11: S ← S ∪ {x′′};
12: x′ ← x′′; F = { };
13: until γ(x′, gs) < d0

14: (I,G)← (I,G)/{(is, gs)};
15: until (I,G) is empty
16: P ← Nondominated(P ∪ S);
17: P ←Select(P, l);

18: until termination condition is satisfied
19: return nondominated set P

Fig. 1 Path relinking algorithm

real-valued function ω expressed as the weighted sum fitness function by
ω(x) = w · f(x) (2)

where w=[w1, w2, . . . , wM ] is a weight vector such that
∑M

i=1 wi = 1 and wi ≥
0 ∀i.

Initially, ω is defined as the objective function where the gs is best. This
strategy clearly prefers moves that are attractive relative to fi. Moreover, it limits
the search from the many objective standpoint to single objective optimization.
The solution selected by PathSelect then becomes an intermediate solution of
the path.

It is important to note that the two procedures have been expressed as a local
search that optimizes a lexicographic objective function Φ = (γ, ω)6). Clearly, Φ
constitutes two functions defined in the decision and objective spaces.
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Table 1 Four variants of the path relinking algorithm. The symbol is ↔ gs (is → gs)
indicates that there is (no) reversal of roles between initiating and guiding solutions

Cycle is → gs PRCycle1
is ↔ gs PRCycle2

Pair is → gs PRPair1
is ↔ gs PRPair2

In this study, we also consider re-initiating the process of path generation in
the opposite direction by interchanging the roles of is and gs, thus creating two
paths. Combining the two strategies for setting the sets of is–gs pairs, and
whether to interchange the roles of is and gs initially give us four variants of the
PR algorithm. Table 1 summarizes these variants.

Since the number of nondominated solutions in every Pareto front increases
dramatically with M1), the method Select performs the archiving by selecting
the M extreme solutions of P and randomly selecting solutions from the remain-
ing l −M solutions. The value of l is set to 100.

3. Experimental Results and Analysis

We evaluate the performance of PR algorithms using the hypervolume H and
coverage C9) metrics, the sum of maximum objectives Smax

5), and using the per-
formance of conventional NSGA-II3) as benchmark. The H metric uses several
reference points O defined by the parameter α. If α equals zero then O is the
origin O = {0, 0, . . . , 0}, and as the value of α nears 1, O approaches the point W

having the worst objective values as coordinates. If α = 0.5, then O is the mid-
point of the segment OW . Smax measures the convergence at the extremes and

around the M edges of the Pareto front. It is given by Smax(P) =
M∑

i=1

max
x∈P

fi(x) .

3.1 Performance varying the number of objectives
We first analyze the performance of PR when M equals 2 to 10 and Ki is 7.

The normalized H values or the ratio H(PR)/H(NSGA-II), shows that NSGA-II
outperforms the PR variants when 2 ≤ M ≤ 4, and there is a decrease in H
values when α increases to 0.99 and 2 ≤ M ≤ 3. For example, Fig. 2(a) shows
the normalize H metric for PRCycle2. Likewise, the C metric values in Fig. 2(b)

Table 2 Selection strategies for the path relinking algorithm using PRCycle2 variant.

Fitness Function Path relinking

ω(x) = fj(x) PRCycle2 w1.0
ω(x) = 0.5fi(x) + 0.5fj(x) PRCycle2 w0.5

ω(x) =
PM

i=1 wifi(x) PRCycle2 aggr

imply that NSGA-II weakly dominates all solutions of PR when M = 2 and it
covers more solutions when M = 3. The extreme solutions of NSGA-II are also
better compared to PR (see Fig. 2(c)). These results are expected since several
studies have shown the effectiveness of NSGA-II in solving MO problems.

As M increases from 4 to 10, the convergence of PR variants improves. For
example, when M ≥ 6, at least 75% of the runs of PRCycle2 show improvement
in H (i.e. normalized H > 1) for all values of α. Also, although they only
weakly dominate fewer solutions of NSGA-II, almost none of their solutions are
covered by NSGA-II. On the other hand, the big difference in the performance
in H between α = 0.5 and α = 0.99 can be attributed to the better convergence
in the central regions.

Among the different PR variants, it can be seen that interchanging the roles
of the is and gs is beneficial only in terms of improving the extreme solutions
for smaller number of objectives. It is shown that for M ≤ 5, the median of the
normalized Smax values of PRCycle2 and PRPair2 are significantly better than
that of PRCycle1 and PRPair1. Likewise, Cycle shows significant edge over Pair

only in the Smax metric and only between PRCycle1 and PRPair1.
3.2 Performance varying the selection
Since the weight vector w provides the direction for the search, we study three

other ways of defining w. First, we let w be a unit vector such that wj = 1 if and
only if is is best in fj . Another method is to set wi to 0.5 if and only if either the
is or gs is best in fi, and zero otherwise. The final method targets the central
region of the Pareto front by aggregating (aggr) all the objective functions. The
values of the weights are changed for every call of PathSelect. Table 2 shows
the new PR variants based on the corresponding function ω.

Results show that the normalized H for the different selection strategies im-
proves as M increases. Remarkably, PRCycle2 aggr posted the biggest improve-
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Fig. 2 (a) Normalized H metric for PRCycle2 (b) C metric and (c) normalized Smax metric
between PR variants and NSGA-II for different M values and K = 7
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Fig. 3 (a) Normalized H metric for PRCycle2 aggr (b) C metric and (c) normalized Smax metric
between PR variants and NSGA-II for different M values and K = 7
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ment (see Fig. 3(a)). The high H values translate to higher number of solutions
of NSGA-II being weakly dominated by PRCycle2 aggr. Roughly between 40%
to 60% of the solutions of NSGA-II are covered by PRCycle2 aggr when M ≥ 6,
while NSGA-II covers nothing of PRCycle2 aggr as shown in Fig. 3(b).

The good convergence of PRCycle2 aggr as shown by its performance in H
and C metrics expectedly sacrifices the quality of its extreme solutions and its
solutions around the edges since the normalized Smax metric in Fig. 3(c) shows
that PRCycle2 aggr is totally outperformed by NSGA-II. It is PRCycle2 and
PRCycle2 w1.0 that perform well in terms of Smax with the latter obtaining the
best extreme values. PRCycle w1.0 even outperforms NSGA-II when M ≥ 6.
All these results suggest that the manner of selecting the intermediate solutions
or creating the path is a valuable factor when implementing PR. The different
selection strategies exhibit a trade-off between convergence and spread.

3.3 Performance varying the levels of epistastic interactions
To study the effects of varying K, we analyze the performances of PRCycle2

and PRCycle2 aggr when K ranges from 0 to 50 and under different M values.
It can be observed in Fig. 4(a)–Fig. 4(b) that for all values of K, the H values
of PR are better than NSGA-II only when M is high. However, the edge of PR
over NSGA-II diminshes as K increases.

Figure 5(a) shows that NSGA-II covers almost all the solutions of PR for all
K and M = 2. But, PRCycle2 and PRCycle2 aggr weakly dominated more
solutions of NSGA-II than NSGA-II can cover them when M > 4. PRCy-
cle2 aggr also has higher coverage of NSGA-II compared to PRCycle2. How-
ever, the coverage of PRCycle2 and PRCycle2 aggr over NSGA-II decreases as
K increases. Figure 5(b) suggests that PRCycle2 obtains better extreme solu-
tions than PRCycle2 aggr but both don’t find extreme solutions that are good as
NSGA-II. However, as K increases, there is an improving trend for the normalized
Smax of PRCycle2 aggr.

4. Conclusions

In this paper, we study the performance of a pure path relinking algorithm
on MNK-landscape models having different number of objective functions and
levels of epistatic interactions that define the complexity of the models. We
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Fig. 4 Normalized H metric for (a) PRCycle2 (b) PRCycle2 aggr
under different values of M and K

design several variants of path relinking that differ on the way the initiating
and guiding solutions are defined, and on whether to interchange their roles or
not. In defining the initiating and guiding solutions, we propose two ways on
how to obtain them from the set of potentially efficient solutions. Moreover, we
study how the selection of the path of intermediate solutions using several fitness
functions affects the performance of path relinking. Experiments show that the
selection of pairs of initiating and guiding solutions and whether to interchange
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Fig. 5 (a) C metric and (b) normalized Smax metric between PR variants and NSGA-II
under different values of M and K

their roles or not have a minimal effect on the convergence around the extremes
of the Pareto front. On the other hand, the selection of path can guide the search
towards either the central region or the extremes of the Pareto front. However,
path relinking exhibits a much stronger convergence property around the central
region. In fact, it converges better than NSGA-II when M ≥ 4. This good
convergence can be seen in a broad range of level of epistatic interactions K,
with its peak improvement around 1 ≤ K ≤ 10.

In the future, we want to investigate adaptive strategies that simultaneously
improve both convergence and spread. Likewise, we want to study the ways on
how to enhance MOEAs using path relinking.
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