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Protecting Privacy of GPS Traces against Inference Attacks

Kazuhiro Minami †1 and Nikita Borisov†2

Recently, many location tracking services for GPS-enabled mobile phones
are available. However, when users share their GPS traces with other users,
there is significant concern on user privacy since the locations of users imply
their private activities, such as having a secret meeting. In this paper, we
argue that traditional access-control schemes that only protect exact private
locations of users are not satisfactory since an unauthorized user can predict
users’ future movements from their previous ones. Our preliminary results
with a GPS location predictor based on the Markov model show that such an
unauthorized user can infer the target user’s visiting a private place with high
accuracy.

1. Introduction

Nowadays, most mobile phones are equipped with a GPS capability, and many
location-based services (LBSs) has become available on various platforms for mo-
bile phones, such as Symbian, iPhone, and Android. Initially, LBSs start with
applications that provide a user with a turn-by-turn navigation on a map or
support location-based queries to find the nearest business or service, such as
an ATM or restaurant. In those early systems, location information of users is
mostly maintained in their mobile phones and is never shared with other users of
the systems. However, more recent LBSs4),5),9),11) for locating people or objects
(e.g., Google latitude5)) allow a user to track other users on a map. Therefore, the
location of the user could be released to other users continously. The same situ-
ation holds with increasingly popular location-based social networking services,
such as BrightKite3) and Twitter, which announced its support for location shar-
ing15) recently; Those services associate each message of the user with his GPS
location when it is posted.
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LBSs that supports location sharing raise significant concern on location pri-
vacy1) since users’ locations often imply their private activities. For example,
visitng a hospital indicates that the user has some medical problem. Or, a co-
location of multiple users from different organizations implies a secret business
meeting. Therefore, many LBSs for location sharing allow users to define simple
access control policies to limit access to their location information. For example,
Google Latitude allows a user to hide his location from another user requesting
for his location information. Google Latitude also allows a user to manually
specify his location, which is different from the actual location. Glympse4) allows
a user to specify a time period during which the system can release her location
to other users. Such simple release policies supported by the current LBSs are
too coarse to protect users’ location privacy. For example, the current LBSs can-
not handle the following situation adequately. Suppose that Alice is willing to
disclose her location to Bob, her colleague, when she is in her office, but she is
reluctant to do so when she is in a hospital. In this case, a LBS should be able to
allow Alice to hide her location in selected private places including the hospital.

This issue has been actually studied the field of pervasive computing, and
several researchers7),8),10),12),13) proposed more fine-grained access control schemes
to allow users to define privacy policies considering their situations such as their
current location, the time of day, and so on. In those schemes, users define
access-control policies as a set of logical rules where their contextual information
is encoded as logical facts, and a system evaluating those policies makes access-
control decisions about which locations of the user can be released to another
user. We could define access-control policies saying that Bob is granted to access
to Alice’s location only if she is in her office. Such a policy satisfies Alice’s privacy
requirements in the above example.

However, the previous approaches to location privacy still fail to protect users’
privacy if an unauthorized user has external knowledge about the mobility pat-
terns of a target user. The unauthorized user can obtain such knowledge easily
by physically observing the movements of the target user or by inferring from the
common behaviors of people in a group. For example, every group member of the
same project gets together every week for a group meeting. Such an adversary
(i.e., an unauthorized user) can predict that a target user is going to visit a pri-
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vate location if he learns that user’s previous movements before visiting the exact
private location. Therefore, we need extra mechanisms for preventing inference
attacks using previous mobility patters of a user; we should protect not only the
exact set of the user’s private locations, but also some prior locations on the
user’s paths directing towards those private locations. Figure 1 shows the actual
path of a user visiting a hospital, which the user considers as private. If there
is an alternate possible path from the intersection in the middle to the library,
which is considered as public, we can safely disclose the user’s movements until
the point at the intersection. An unauthorized user cannot determine which of
the two locations the user will visit. However, if we disclose any further point on
the actual path, an adversary (i.e., an unauthorized user) can figure out that the
user is surely visiting the hospital.

We, therefore, propose to develop a new access-control scheme that prevents
such inference attacks. Our basic approach is to model an adversary as a loca-
tion predictor that predicts future movements of a target user from his previous
movements with certain probabilities. Intuitively, our access control scheme dis-
closes a user’s location information only if an unauthorized user cannot predict
that the user moves to some private location with a sufficiently high probabil-
ity. Our approach is the most conservative in the sense that we assume that an
adversary knows all the previous movements of the target user. In this paper,
we focus on studying an adversary model based on the Markov model, which is
the most successful model for predicting people’s location movements14). The
Morkov model captures the probability distributions of location movements from
current locations to next ones in a state transition matrix. Our preliminary re-
sults with actual GPS traces of a single user show that we can predict the user’s
next movement with the accuracy of 60% using a first-order Markov model, and
we can improve the accuracy by 10% by considering multiple previous movements
with a higher-order Markov model.

The rest of the paper is organized as follows. Section 2 introduces our system
model of a LBS considered in this paper, and Section 3 describes a location
predictor based on the Markov model. We present our preliminary results of
experiments in Section 4. We cover related work in Section 5 and finally states
our concluding remarks and future plans in Section 6.
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Fig. 1 Example safe disclosure of location information. The solid line represents an actual

path of a user visiting a hospital. We assume that the hospital is a private place and
the library is a public place. A safe LBS would disclose location points denoted by
black nodes. We assume that the user has 50% chance of visiting of the library when
he is at the intersection in the middle.
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2. System model

Figure 2 shows our system model for LBSs. We assume that user pj is interested
in receiving a target user pi’s location movements. User pi carrying a GPS-
enabled mobile device periodically sends LBS a series of location-timestamp pairs
(lock, tk) for k ∈ N ; LBS receives a set of all pairs

L = {(lock, tk) | k ∈ N}.
User pi also defines its access-control policies in LBS so that LBS can protect
pi’s location movements properly. We represent pi’s access-control policies with
the function

acl : P ×W → 2P

where P is a set of all users and W is a finite set of all locations. The function
acl takes a user identity pi and a location name lk as inputs and outputs a set
of users who are authorized to learn that “pi is at location lk.” In other words,
LBS releases pi’s location movement (lk, tk) to principal pj only if pj belongs to
set acl(pi, lk), and thus user pj receives a subset of events L′ ⊆ L

L′ = {(lock, tk) | pj ∈ acl(pi, lk)}.
Notice that we only consider the case that pi’s access-control policies depend on
pi’s location lk to simplify our discussion in this paper, but we can easily support
the general case where access-control policies also considers a timestamp tk.

We next define which locations are private to user pi formally.
Definition 1 (Private location.) We consider that a user pi’s location l is

private with respect to another user pj if:

l ∈ {l′ | pj /∈ acl(pi, l
′)}.

We consider that a LBS preserves a user pi’s privacy if pj cannot infer that pi

was at some private location l from the information pj receives from LBS. We
formalize this concept below.

Definition 2 (Preservation of location privacy.) We say that a LBS
preserves a user pi’s location privacy against another user pj if pj cannot infer pi’s
movement (l, t) where l is pi’s private location from a set of location-timestamp
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L = {(lock, tk) | k = 1, 2, . . .}

L′ = {(lock, tk) | pj ∈ acl(pi, lk)}

Ask if pj ∈ acl(pi, lk)

pi
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Fig. 2 System model.

pairs L′.
In next section, we describe how an unauthorized user pj performs inference

with a location predictor based on the Markov model.

3. Location predictor based on the Markov model

We consider a Markov chain with a sequence of random variables

X1, X2, X3, . . .

where each Xi has a value drawn from the finite set of locations W. We here
assume that location lk is published periodically, and we thus omit timestamp
tk in tuple (lk, tk). We also assume that the Markov chain is time-homogeneous.
So, if we consider a Markov chain of order 1,

Pr(Xn+1 = li|Xn = lj) = Pr(Xn = li|Xn−1 = lj).
We maintain the probability of moving from location li to lj in (i, j)th element
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of a state transition matrix Mi,j as follows:

Pr(Xn+1 = li|Xn = lj) = Mi,j .

for every pair of li and lj in set W. The probability of moving from location li
to lj in n time steps can be computable by multiplying the transition matrix M

n times as follows:

Pr(Xn = li|X0 = lj) = M
(n)
i,j .

Since it is likely that we can improve the accuracy of location predictions by
considering multiple previous movements, we also consider a location predictor
based on a Markov model of a higher order. If we use a Markov model of 2 order,
a state transition matrix M must maintain the probability Pr(Xn+1 = li|Xn =
lj , Xn−1 = lk) in ((j, k), i)th element of M ; that is,

Pr(Xn+1 = li|Xn = lj , Xn−1 = lk) = M(j,k),i.

We make the most conservative assumption that an adversary can observe all
the previous movements of a target user and compute a state transition matrix
M of an arbitrary order n before predicting the target user’s next movement. We
now define the preservation of location privacy against an adversary with a state
transition matrix M of the 1-order Markov model as follows:

Definition 3 (Preservation of (M, t)-location privacy.) Suppose that a
user pi’ current location is li and that t is a probability threshold where 0 ≤ t ≤ 1.
We say that a LBS preserves a user pi’s (M,p)-location privacy against another
user pj if, for every private location lk ∈ W with respect to pj , the following
condition holds

M
(n)
i,k ≤ t for n = 1, 2, . . . .

Intuitively speaking, the above definition requires that an unauthorized user pj

cannot predict that the target user pi is at some private location lk in some future
time with probability p, which is greater than the threshold value t. Although
the above definition only covers the case with the 1-order Markov model, we can
easily generalize the definition to consider a Markov model of order n.

4. Experimental results

We conducted experiments with actual GPS traces to study how accurately
we can predict future location movements using location predictors based on the
Markov model. One of the authors collected GPS traces by carrying a GPS
device for fifty days. We consider GPS data whose coordinates resides within
a rectangular region, which covers the campus of University of Illinois and its
surrounding off-campus areas. The dimension of the region is 4.8 kilometers
times 4.0 kilometers. We divide each coordinate into 40 units and define 1,600
different locations, each of which has about the size of a building in town.

We used half of the data to construct a state transition matrix M and used the
other half to compute the accuracy of the predictions with matrix M . Figure 3
shows our experimental results. The X-axis shows how many steps we predict
ahead, and the Y-axis shows the accuracy of our predictions. We computed the
accuracy of predicting every next location and took its average. When we predict
a next location in a single time step with a 1-order Markov model, our predictions
are about 60% accurate. However, as we try to predict a location reachable in
greater number of steps, the prediction accuracy decreases. We compare the
results of Markov models of three different orders. As we can see, when we
predict locations reachable in a fewer number of time steps, we can improve the
accuracy by 10% by using a higher-order Markov model, which considers multiple
previous movements. However, when we predict a location multiple steps ahead,
using a higher-order model is not useful. We speculate that the accuracy degrades
because earlier movements are not relevant to final destinations. However, we
need further investigation regarding this issue.

We believe that the accuracy of predictions could be improved significantly if
we predict the eventual final destinations because we can identify a small number
of stationary locations in the GPS traces. Since we currently try to predict a
location in n steps, the accuracy of the predictions was not as good as we initially
expected.

5. Related work

Several researchers7),8),10),12),13) propose rule-based access-control schemes for
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Fig. 3 Accuracy of location predictions.

protecting user location in pervasive environments. Hengartner7) supports access-
control policies considering the granularity of location information and time in-
tervals. Myles12) provides a XML-based authorization language for defining pri-
vacy policies that protect users location information. Users must trust a set
of validators that collect context information and make authorization decisions.
Those schemes allows a user to define fine-grained access-control policies. Apu10)

provides users with an intuitive way of defining access control policies, which rep-
resent physical boundaries surrounding the users. However, no previous scheme
considers the issue of inference based on the mobility patterns of users.

Location privacy has been studied heavily in the context of location data
anonymization2),6). The focus of research in this sequence is to ensure that no
anonymized data is associated with an individual. For example, Gruteser6) pro-
poses a scheme that changes the granularity of location information to ensure that
each location contains at least k users (i.e., k-anonymity). However, the problem
addressed in this paper is different since we consider inference on location data

associated with a known individual.

6. Conclusion and future work

In this paper, we address a new issue of inference attacks on GPS traces of
mobile users and show the shortcomings of traditional access-control schemes
that only protect exact private locations of users. We formally define such an
adversary with a location predictor based on the Markov model, and introduce
new privacy requirements under the presence of such an adversary. Our pre-
liminary experimental results show that it is possible to predict a mobile user’s
location with high accuracy. However, we may need to extend our security model
to address an adversary who tries to predict eventual user destinations.

We plan to conduct more extensive experiments involving many mobile users.
We also consider more general location predictors that consider other parameters,
such as the time of day.
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