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効率的な FPGA 実装を指向した 

ニューラルネットワークのアーキテクチャ 

 

林 圳  董 宜平  渡邊孝博 

 

本稿では、多層ニューラルネットワーク（NN）を FPGA で実装する一般

的なアーキテクチャを提案する。提案アーキテクチャは、リソースの使

用効率を高めて、ネット遅延を削減するように工夫しており、NN のサ

イズが大規模になっても市販の FPGA チップ上に実現することができ

る。最も大きな特徴は層間マルチプレクシングと部分的なパイプライン

方法を利用してマッピング方法を改善したことである。このアーキテク

チャは、層の数と各層のニューロンの数が与えられる任意の NN に対し

て、適用することができる。実験の結果、従来の方法と比べて、提案し

た構造が非常にコンパクトで、高速度と低コストであることが分かった。 

 

A General Neural Network Architecture for 

Efficient FPGA-based Implementation  

 

Zhen Lin Yi-ping Dong Takahiro Watanabe   

 

This paper presents a general architecture for a multilayer neural network (NN) 

to be implemented on FPGA. The proposed architecture is aimed at enhancing 

the efficiency of resource usage and reducing the net delay, so that a larger NN 

can be realized on a commercially available FPGA chip. A key feature is the 

mapping method, which has been exploited by using layer-multiplexing and 

partly pipeline manner. This architecture can be applied to any multilayer 

neural network composed of a given number of layers and a given number of 

neurons in each layer. Experimental results show that the proposed architecture 

can produce a very compact circuit and behaves the characteristics of higher 

speed and lower cost comparing with conventional methods.  

1. Introduction 

Artificial neural networks (ANNs) are characterized as an adaptive, robust, parallel 

computing model, which has the capability to learn from examples, approximate any given 

functions and classify nonlinear systems. It has been widely applied to the researches of signal 

processing, speech synthesis and analysis, pattern recognition, etc. [1]. Most of these 

applications require high-speed computation. But because of the inherent massive 

multiplication operation, the traditional software methods which are executed by serial 

computer cannot meet the requirements when the network size is large. So there is a necessary 

to develop such a hardware implementation that can exploit the inherent parallelism of neural 

network models. 

There are many researchers trying to map NN into FPGA, because of the parallel 

implementation and reconfigurable ability supplied by FPGA [2, 3, 4]. However, there are still 

some challenges to implement NN in FPGA, such as the massive requirement for multiplier in 

synapses, the nonlinear calculation of active function and so on. The amount of hardware 

resource for them is so high that it’s difficult to perform a complete NN in a single FPGA chip. 

One of the solutions for the problem is to use “time-multiplexing”, that is, separate parts of 

the same system is implemented by time-multiplexing a single FPGA chip through run-time 

reconfiguration [5]. This method is not feasible when the application calls for high speed. 

Another typical solution called “layer-multiplexing” [6] can reduce the resource cost greatly 

at a higher level. This solution enables perform an 8-5-5-3 NN in the “XCV400hq240” FPGA 

board just with the total resource utilization rate of 62%. But this solution seems to be not so 

efficient when the net size is small because the resource utilization rate is not so high. On the 

other hand, when the number of layers grows up, the global forward speed measured by the 

interval starting from one input pattern imported to the obtainment of the output for this input 

pattern at the output layer comes down. 

This paper presents an advantage in two basic respects with regard to previously reported 

neural implementations on FPGAs. The first is the mapping method which maps not one layer 

in layer multiplexing method but several layers. Among non-multiplexed layers, 

layer-pipeline manner is integrated. It can improve the resource utilization rate and enhance 

the global forward speed compared with the conventional layer multiplexing method. The 

second point we contribute is the flexibility which can adaptively construct the hardware 

structure according to the neural network parameter such as the neural topology, data structure 

and so on. We just need to modify these parameters during the compilation time but no other 

changes in modules, it can synthesis the architecture corresponding to the application 

automatically. We also develop a procedure to determine how many and which layers should 
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be mapped together at a time, according to the adopted FPGA chip and neural network 

topology. The upper limit of neurons count implemented in a single chip should be taken into 

consideration, and when the total number of neurons in the neural network to be implemented 

is smaller than this value, the physical neural architecture in FPGA chip maybe organized as 

whole pipeline manner to get the highest implementation speed, and on the other hand, the 

working manner specified as partly pipeline based on layer multiplexing that try to get the 

optimal tradeoff between the speed and cost.  

  The rest of this paper is organized as follows: Section II describes the circuit design of the 

single neuron and Section III presents the detail of the proposed architecture. Section IV 

validates the advantages of proposed method by the experiment. Finally, Section V concludes 

the paper.  

2. NEURON DESIGN 

2.1 Mathematical Model 

A multilayer neural network is composed of one input layer which stores the input data, 

several hidden layers for computation and one output layer. Each layer consists of a set of 

processing elements called neuron and the main task of each neuron in neural networks is 

processing the following function: 

𝑦 = 𝑓 𝑥 = 𝑓( 𝜔𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 )                            (1) 

where xi stand for the ith input, and 𝜔𝑖 is the weight in the ith connection and b is the bias. 

The function f(x) is the nonlinear active function used in the neuron. Here we select the 

log-sigmoid as the active function due to its popularity, and it is described by the following:  

𝑓 𝑥 =
1

1+𝑒−𝑥
                                  (2) 

Because the weights are stored in RAM that can be easily modified, we did not develop the 

online learning in our proposed architecture. 

2.2 Neuron Circuit Design 

As mentioned above, the computational resources required by a single neuron are 

multiplication block, accumulation block and active function block. 
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Fig.1. mathematical model of a neuron  Fig.2. Neuron circuit block diagram 

Figure 2 show the block diagram of the neuron circuit, where En is an enable signal that 

controls the neuron’s state, working or not. The selection of word length/bit precision has an 

important impact on the output resolution, where longer bits means higher resolution but also 

larger resource cost. And in actually ANNs design, these parameters are set according to the 

application in order to achieve the efficient hardware implementation. In this paper, we 

perform the parameters as a variable, which can be modified by users in compilation time.  

Assume that the input x normalized in the range of 0 to 1 and is Ni bits, 1 bit for sign and (Ni-1) 

bits for data. The weights are also represented in Nw bits: 1 bit for sign, Nww bits for integer 

part and Nwf bits for fraction part, where Nw= Nww + Nwf +1. After multiplied and accumulated, 

the result becomes to Nr bits length: 1 bit for sign, Nww + Nrw bits for integer part and Nwf bits 

for fraction part, where Nr= Nww + Nrw + Nwf +1. The result of the active function is obtained 

as a signed Ni bits number, which is the same as the input.  

The active function is realized by using LUT(look up table)[7] according to the fact that the 

modern FPGA chip has large number of built-in RAMs. As the active function is highly 

nonlinear, a general procedure to obtain an LUT of minimum size for a given resolution is as 

follows. 

1) As mentioned before, the bit length of output from active function (formula 2) is Ni. 

2) The actual output of active function is between 2-Ni and 1- 2-Ni when using the bit length 

Ni. Let x1 and x2 be the upper and lower limits of the input range, that is: 

1

1+𝑒−𝑥1
= 2−𝑁𝑖 ,

1

1+𝑒−𝑥2
= 1 − 2−𝑁𝑖                      (3) 

By solving (3) as x is variable, we can get: 

𝑥1 = − ln 2𝑁𝑖 − 1 , 𝑥2 = +𝑙𝑛 2𝑁𝑖 − 1                   (4) 

3) Consider the fact that the step change in the output (△y) is equal to 2-Ni, and the 

corresponding minimum change in input is at the point of maximum slope, x = 0 in this case. 

So the minimal change value of input for the output change of 2-Ni can be obtained from 

∆𝑥 = ln⁡(
0.5+2−𝑁𝑖

0.5−2−𝑁𝑖
)                               (5) 

4) The minimal number of LUT values is given by 

(𝐿𝑈𝑇)𝑚𝑖𝑛 =
𝑥1−𝑥2

∆𝑥
                               (6) 

3. Network Design 

The function of network is to connect all the neurons and all the layers together, so the data 

can be forward through the connections from former layer to the latter layer. Fig.4 gives an 

example of multilayer neural network.  
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Fig.3. The experimental result between original     Fig.4. Multilayer neural network 

            and LUT 

Assume the symbols 𝑥𝑘
𝑖𝑗  and 𝑦𝑘

𝑖 , stand for the input and output of neurons, 

respectively, where k is the layer number, i is the neuron number in this layer and j is 

the jth input of this neuron. Suppose the ID for input layer is 0, then the forward 

process can be described as follows. 

𝑦1
𝑖 =  𝑤𝑗𝑖

01

𝑁0

𝑗 =1

∙ 𝑥𝑗 , 𝑖 ∈  1, 𝑁1 , 𝑗 ∈  1, 𝑁0   

𝑥𝑘
𝑖𝑗 =  𝑦𝑘−1

𝑗 , 𝑦𝑘
𝑖 =  𝑤𝑗𝑖

(𝑘−1)𝑘𝑁𝑘−1

𝑗=1 ∙ 𝑥𝑖𝑗                     (7)   

                   k ∈  2, NK  , i ∈  1, Nk , j ∈  1, Nk−1  

Where Nk is the total number of neurons in layer k, and 𝑤𝑗𝑖
(𝑘−1)𝑘

 stands for the weight 

between the jth neuron in layer (k-1) and the ith neuron in the layer k. Especially, the symbol 

Nk in Fig.4 means the total number of layers in this network and N0 is the input number.  

There are two concept of our proposed network architecture, including pipeline design and 

layer multiplexing design. 

3.1 Pipeline Design 

As mentioned above, the multilayer neural network has a characteristic that the neuron in 

the next layer depends on the neuron in the previous layer and there is no communication 

among neurons in the same layer. As shown in figure 5 (a, b, c), for an input pattern m, the 

traditional forward phase work as: firstly, the neuron in the first layer performs the neural 

computing for the input pattern m and neurons in the next layer are idle because they are 

waiting for the input coming from neurons in the previous layer. Secondly, when the neural 

computing has been completed, they send their result as input for the neuron in the next layer. 

So the neurons in the second layer become to work and the neurons in first layer are waiting 

for the end of this forwarding for input pattern m. At the last, when the signal arriving at the 

output layer, the other two would be in the idle or waiting state. Only the neurons in the 

output layer have accomplished they calculation and get the final result, the forwarding for the 

input pattern m could be over and there would be the next forwarding for another input 

pattern.  

waiting
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Fig.5. Non-pipeline vs pipeline         Fig.6. The process of layer multiplexing 

In the conventional non-pipeline forward phase, there is only one layer working 

busily while the other layers just waiting. In order to save the cost, we integrate the 

pipeline manner in the layer architecture when forwarding. The fundamental pipeline 

algorithm is described as follows, where the symbol t is the time factor given by 

clock cycle. 
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As shown in figure 5 (d) and formula (8), when the first layer is under computing for the 

input pattern t, the second layer is busy calculating the result for pattern t-1 which is 

transmitted by the first layer in the last cycle.  

It doesn’t need to wait for the end of some input pattern forwarding, but all the neurons in 

different layers are working simultaneously with different input pattern. By using the pipeline, 

the global forwarding speed would be much higher than the non-pipeline method. And 

comparing with non-pipeline method, there would not be much incidental cost or changes in 

the architecture by using proposed pipeline method, but just some modifications based on the 

old one, such as:  

1) Enhance the clock rate for input memory module according to the pipeline depth. 

2) Allocate a dependant memory for each neuron to store the weights. 

3) Add a register to store the output of each neuron.  

Unfortunately, due to the limited resource on FPGA, it is impossible to perform a whole 

neural network as pipeline manner in a single FPGA chip whose price is reasonable for 

commercial or industrial application. To solve this problem, we introduce the layer 

multiplexing into our pipeline method. 

3.2 Layer Multiplexing with Partly Pipeline 

Layer multiplexing was first proposed by S.Himavathi in 2007 [6], which aimed at reducing 

the resource requirement by multilayer neural network. Instead of realizing a complete 

network, only the single largest layer with each neuron having maximum number of input is 

implemented. The same layer behaves as different layers with the help of a control block. For 

example, consider a 3-5-4-2 network. The largest layer has five neurons and the maximum 

number of input is five, so in actually execution, there are only five neuron modules with each 

neuron having five inputs. A simple process of layer multiplexing for the given network is 

shown in figure 6. For the execution of the first layer, the whole five neurons would be 

enabled with disabling the other input synapses because the neuron in the first layer only need 

three input synapses. The working of the second and the third layer is almost the same as the 

first layer, identified as Step2 and Step3 in figure 6, respectively. The control block ensures 

proper functioning by assigning the enable signal, appropriate inputs and weights for each 

neuron.  

This method presents an advantage that it can largely save the resource so that a larger 

network could be performed in a single FPGA chip so far as the largest single layer can be 

realized on this chip. But this success is achieved at the expense of losing the global 

forwarding speed, because there is only one layer being working and it has to reconfigure the 

network before performing neural computing in the next layer. When the network has more 

layers this problem becomes worse which may cause the timing violation in some 

speed-sensitive application. 

From the synthesis report of [6], when implementing an 8-5-5-3 network by layer 

multiplexing, the utilization rate of slice is only 62%, that is, we still have  enough slice 

resource to do some improvement to make the global forwarding speed higher.  The main 

idea in this paper is adding the partly pipeline manner to the layer multiplexing method.  

In our proposed method, we first calculate the maximum number of neuron modules to fit 

an adopted FPGA chip. And then taking this value and the neural network topology into 

consideration, we can get an optimal solution by assigning the appropriate mapping method, 

pipeline depth and layer multiplexing. Figure 7 gives an example of our method. 

 
Fig.7. The schematic of our             Fig.8. The network circuit  

        mapping method 

In this example, we suppose the network topology intends to be realized is 3-4-2-3-1, the 

maximum number of neuron modules the FPGA supported by is six. Numbers in the nodes in 

figure 7 mean the layer numbers. It performs the neural computing of two layers at a time 

with the pipeline manner between these two layers. In Step1, the first two layers are under 
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working, where the layer 1 is computing for the input pattern am+1 and the layer 2 is serving 

for input pattern am, respectively. And in Step2, the 2nd and 3rd layers are configured by the 

layer multiplexing mechanism, where the 2nd layer is busy with input pattern am+1 from the 

layer 1 in the previous step while the 3rd layer is computing for input pattern am from layer 2 

by layer multiplexing. And the total number of neurons in the 2nd and 3rd layers is five, so 

there are disabled neuron modules to save the power. The next steps are almost the same as 

the first two steps, including enable the proper number of neuron modules, get the 

corresponding input from previous step, perform neural computing for the incoming data and 

then send the result to the next step by layer multiplexing. And if the computation in Step4 is 

completed, it would turn to the Step1, forming a loop. In this example, there are always two 

layers mapping the neuron modules in pipeline, which means the pipeline depth is two. By 

assigning different FPGA chip and neural network topology, the pipeline depth may be 

different. 

3.3 The Network Circuit Design 

The operation of layer multiplexing and the partly pipeline is guaranteed by a control block, 

which is realized by the finite state machine (FSM). Figure 8 shows the whole circuit of 

neural network using our proposed method. The details of the block named NEURON is 

already presented in section II, so we will introduce the control block design here.  

 
Fig.9. Pseudo code for the control block    Fig.10. Procedure of topology generation 

 

The main task of the control block is assigning proper signals for the input and weight 

RAMs, the multiplexer and demultiplexer, and performing the logical data transmission. The  

pseudo code of the FSM is given in figure 9.We also developed a MATLAB program to 

determine the optimal architecture for a given neural network and a selected FPGA chip. 

Firstly, it estimates the number of slices would be utilized by a neuron module when the data 

structure of the neuron is given. Secondly, the maximum amount of neuron modules allowed 

in the selected FPGA chip can be figured out due to we have integrated the information of 

several popular FPGA chip into the procedure. Then a searching function will be invoked to 

determine the optimal pipeline depth for the neural network. This procedure also provides the 

function that configures the parameters in the FSM. The pseudo code of the procedure is 

shown in figure 10. 

4. Experiments 

FPGA design flow is as follows: 1) design entry, 2) synthesis, 3) simulation and 4) devices 

programming. We choose the Verilog HDL as the coding language for design entry and Xilinx 

ISE 9.1i to do the synthesis and devices programming while the simulation is performed by 

Modelsim XE II 7.3a. The FPGA chip we selected here is Virtex XCV400hq240, which is 

widely used in commercial or industrial application as their lower price. The basic block of 

the Virtex is the Logic Cell (LC)[8], which is composed of  a four inputs LUT, carry logic 

and a Flip-Flop. And two LCs form the slice, which is used to measure the resource cost. 

Table I gives the synthesis report for a single neuron module by varying the data path in 

weights, because in most cases the input is always fixed at 9 bits with different weight bit 

lengths.  From the table we can see that with respect to the increase of data precision, the 

maximum frequency comes down but at an acceptable level. 

Table II is the synthesis report for the example neural network mentioned in Section III B. 

The value of pipe depth means the number of layers under execution at a time. From the table 

we can obtain that our proposed architecture is compact due to the simple module architecture 

and the effective control block, and also provides a flexible solution for a neural network to be 

implemented because the pipeline depth is adaptive to the selected FPGA chip and the 

network topology. 

Table III shows a comparison between the traditional layer multiplexing method (LM) and 

our proposed method. We have integrated the partly pipeline manner into the layer 

multiplexing, there are several layers mapping the neuron modules by pipeline manner while 

LM only maps one layer at a time.  As a result, the global forward speed of our method is 

much higher than LM with respect to the pipeline depth.  The CPS (connection per second) 

is used to evaluate the throughput of neural network. Due to the pipeline manner, our method 

has much more neurons under working than the conventional LM, so it also shows an 
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advantage in CPS when compared with LM. 

TABLE I 

RESOURCE AND PERFORMANCE OF A NEURON WITH DIFFERENT WEIGHT PRECISIONS 

No. of bits 10 11 12 13 14 15 16 

Slices 73 78 82 86 90 93 98 

Max clk (MHz) 105.3 104.2 103.6 103.0 102.5 102.1 101.7 

 

TABLE II 

SYNTHESIS REPORT FOR AN NN OF 3-4-2-3-1 

Pipe 

Depth 

Device Selected XCV400hq 240 

FEATURES Present Utilized % 

2 

Slices 4800 691 14.4 

Flip Flops 9600 537 5.6 

LUTs with 4 input 9600 1282 13.3 

3 

Slices 4800 1021 21.3 

Flip Flops 9600 805 8.4 

LUTs with 4 input 9600 2102 21.9 

 

TABLE III 

COMPARISON BETWEEN LM AND OUR METHOD WITH VRIOUS NN TOPOLOGY 

Network 

topology 

Implement 

method 
Slices 

Utilization 

rate 

Global 

forward 

speed 

CPS 

3-4-2-3-1 
LM 478 9.96 0.197 406.8 

ours 1021 21.3 0.099 915.3 

8-5-5-3 
LM 532 11.1 0.162 508.5 

ours 1047 21.8 0.078 1017 

4-8-3 
LM 895 18.6 0.113 813.6 

ours 1231 25.6 0.532 1118.7 

 

5. Conclusion  

A general architecture for the implementation of multilayer neural network was proposed in 

this paper. The circuit for each new application can easily be generated by setting the 

parameter values to match the particular network size and running the synthesis. Similarly to a 

particular network, the best solution of the architecture design of pipeline and layer 

multiplexing is calculated by a MATLAB procedure, by returning the optimal pipeline depth 

and the control signal value in each state of the control block (FSM). We exploited the 

capability of a given FPGA chip by assigning the proper pipeline depth, so that a higher 

resource utilization rate and global forward speed were achieved.   

It is easy to design a FPGA implementation for a given neural network at a short time by 

varying the data path. It also provides the feasibility to perform a larger neural network in a 

lower-performance FPGA chip at a relatively higher speed by using the partly pipeline method. 

So it is possible to develop a neural device for commercial or industrial application by our 

method.     
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