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GA を用いたディジタル回路設計の一手法 

 

王 芳芳† 鮑 治国†† 蘇 怡文††† 渡邊孝博†††† 

早稲田大学大学院 情報生産システム研究科 

 

こディジタル回路の設計では回路の良さの尺度として、構成の複雑さに

加えて信号遅延や消費電力などの複数の評価基準が必要となっており、

このことが回路設計を一層複雑にしている。そこで、遺伝的アルゴリズ

ム（GA：Genetic Algorithm）を用いて複数の評価基準を満たす回路を生

成する設計手法が提案されている （１）、 （２）。本論分では、遺伝

子の表現と交差や選択の処理に新たな工夫を導入する、小規模の回路を

用いて実験を行った結果、提案手法は従来のものに比べて、より尐ない

ゲート数の回路を生成することができた。 
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In this paper, we propose a new digital circuit design by GA, which has 

sophisticated chromosome representation, crossover and mutation operators on 

the performance of GAs. We propose a tree-based chromosome representation, 

in which initialization depends on a guided random initialization. Based on 

considering the characteristic of representation, two kinds of crossover 

operators and three kinds of mutation operators are adopted. Experimental 

results show that our proposed method provides better results compared to 

other methods. 

 
 

1. Introduction 

Digital circuit design is focused on determining the layout and routing of multiple logic 

gates in order to achieve some desired logic functions while fulfilling some pre-defined 

design constraints 

However, there are some special problem in digital circuit design, such as, location 

problem: It is very difficult to decide (1) the number of logic gates used in a circuit, and (2) 

the network structure of logic gates, allocation problem: It is very difficult to decide which 

logic gate type should be assigned on each location. 

In this study, we are focusing on a genetic algorithm design for digital circuits design. 

For solving the digital circuits design problems, we should decide: (1) the network structure 

of logic gates; and (2) the allocation of logic gate types. For this reason, we have to consider 

the logic gates’ location problem and the logic gate type allocation problem by using genetic 

algorithms (GAs). 

The rest of this paper is organized as follows. Section 2 describes network representation 

for circuit design. Section 3 introduces the details of our method by GA. Section 4 is 

experiments and discussion. The last section is conclusions. 

2. Network Representation for Circuit Design 

In this study, we give an idea by using network structure for presenting circuit layout. For 

example, the truth table and a correspondingly configured matrix for a full adder are shown in 

Table 1 and Fig. 1. In the table, I1, I2 and I3 are the inputs and the carry-in to the adder and the 

two outputs are indicated by Ô1 (sum) and Ô 2 (carry-out). 
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Table 1 Truth table for a full adder circuit       

        

                                      Fig. 1 Matrix for a full adder circuit 

 

We can give a network representation as shown in Fig. 2 for circuit layout in Fig. 1. 

     

(a)                              (b) 

Fig. 2 Network representation for circuit layout 

Based on the network representation, the circuit layout can be easily presented by 

following Edge List, Adjacency List or Adjacency Matrix. 

3. GA Approach for Circuit Design 

3.1 Genetic Representation 

How to encode a solution of network design problem into a chromosome is a key issue of GA. 

When a new encoding method is given, it is necessary to examine whether we can build an 

effective genetic search by this encoding. Several principles have been proposed to evaluate 

an encoding: Space, Time, Feasibility, Uniqueness, Heritability, Locality. 

In GAs literature, whereas the several kinds of encoding methods were used to obtain 

circuit layout problems, most of them cannot effectively encode or decode between 

chromosomes and corresponding network structure. 

3.1.1 Adjacency Matrix Representation 

Recently, the most of researches use the matrix representation as the chromosome design 

for solving the circuit design problems. Coello et al (2). used a matrix to represent a circuit as 

shown in Fig 3. Each matrix element is a gate. There are five types of gates: AND, NOT, OR, 

XOR, and WIRE that receives its two inputs from any gate at the previous column as shown 

in Fig 3. 

 

Fig. 3 Matrix used to represent a circuit 

 

The adjacency matrix representation is the intuitive representation for the network 

optimization problems (such as circuit layout design). However, as they need a lot of space in 

memory, generally, we use not so much arcs for presenting the result, so there are many “0” in 

the matrix representation. After genetic operations (crossover and mutation), the original 

chromosome is difficult to be changed, because of the most insignificant information (value 0) 

in the matrix shown in Fig. 4. Other case, after genetic operations, the offspring should lose 

some edges to ensure the network structure continuity. The disadvantages are losing 

uniqueness and heritability. 

 

Fig. 4 Crossover example 1 for adjacency matrix representation 
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 1 0 0 0 0
5 0 0 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 1 0 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0 1 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 1 0 0 0 0
5 0 0 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 1 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 1 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0

Chromosome V1 Chromosome V2
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3.1.2 Edge List Representation 

Edge list representation is an intuitive representation of a network structure. A general edge 

list representation requires space proportional to n-1 and the time complexities is O(m), where 

n is the number of nodes and m is the number of edges. The mapping from chromosomes to 

solutions (decoding) may be 1-to-1 mapping. In a complete graph, m=n(n-1)/2 and the size of 

the search space is 2n(n-1)/2. As the disadvantages of edge list representation, there is a large 

difference between different network structures presented by edge list representation. If we 

use the traditional genetic operators (crossover and mutation), the offspring loses some edges 

to ensure the network structure continuity (Same with the adjacency matrix representation) as 

shown follows. 

Chromosome V1 ={(1, 4), (1, 5), (2, 4), (2, 5), (3, 6), (4, 7), (4, 9), (5, 8), (6, 7), (6, 9),  

(7, 10), (8, 11), (9, 11), (10, 12), (11, 13)}. 

Chromosome V2 ={(1, 4), (1, 5), (2, 6), (3, 5), (4, 7), (4, 8), (5, 8), (5, 9), (6, 8), (6, 9),  

(7, 11), (8, 10), (9, 10), (10, 13), (11, 12)}. 

Chromosome V1’ ={(1, 4), (1, 5), (2, 4), (2, 5), (4, 7), (4, 8), (5, 8), (5, 9), (6, 8), (6, 9),  

(7, 11), (8, 10), (9, 10), (10, 13), (11, 12)}. 

After one-cut crossover, the chromosome V1’ loses the edges from node 3. The 

disadvantage is: lost the heritability. 

3.1.3 Adjacency Lists 

Generally, the adjacency lists are not useful for the chromosome design.  

3.1.4 Proposed Tree Representation 

There are three difficult issues to be solved in the GA design: 

Decision 1: the number of logic gates used for presenting a full adder circuit 

Decision 2: the network structure of logic gates 

Decision 3: which logic gate type should be assigned on each location 

We propose a type of tree representations for the chromosome design to solve these 

difficult issues. The assumptions are given as follows 

Assumption 1: We have the fixed logic gates for the experiments.  

Assumption 2: For each logic gate, we have two inputs and one output. For uniform the 

gene structure in the chromosome, we define the NOT logic has two inputs (A, X) and one 

output A, where X means any kind of inputs. 

Assumption 3: For each inputs or output is 1 or 0. 

Assumption 4: The cases in the truth table is 2n, where n is the number of inputs of circuit.  

Assumption 5: In this study, we only consider the n-inputs 1-output problems, such as the 

first example showed in Table 2. The multi-output can be formulated as the special case with 

combining multiple one-output problem.  

 

Table 2 Truth table for the circuit of the first example 

 

3.1.5 Tree Representation 

A logic gates layout can be represented as a slicing structure.  

Slicing structures comprising given n inputs can be represented by slicing tree or polish 

expressions over the alphabetical set Z = {1, 2, …, n, +, *,…}. 

An example of a slicing structure is shown as follows: 

1
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F

 

(a) A solution of logic gates layout for first example         (b) Slicing tree 

Fig. 6 Representation of slicing structure 

In this tree representation, the advantages are (1) Saving the amounts of memory, and the 

smaller alternative solutions space. The matrix representation needs the n x n space, and edge 

list representation needs the m space, but the tree representation needs only n space, where n 

mean the number of nodes, m means the number of edges in the network. (2) By using the 

genetic operations (crossover or mutation), we can change the logic gates layout and right 

exchange the logic gate types in the chromosome. The tree representation has very properly 

good heritability. However, this tree representation has a disadvantage caused by: n-to-1 

mapping. It is mean that we obtain the same result by different chromosomes. For example, 

Chromosomes v1=[1 2 + 3 * 1 2 * %] and v2=[1 2 * 1 2 + 3 * %] produce the same result 

shown in Fig. 6 (a). So we have to consider this disadvantage when we design the genetic 

operations for process convergence. We summarize the advantages (and disadvantages) of our 
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proposed tree representation and other genetic representations in Table 3. 

Table 3 Summarizes the performance of Genetic Representations 

 

3.2 Initialization 

As discussed above, one of difficulty is that different digital circuits require different 

numbers of logic gates. So the length of tree representation-based chromosome should be 

different. In this study, for the initialization of chromosomes, we try to use the most logic 

gates into the chromosome as possible as we can.  

procedure: Guided Random Initialization 

input: a set of inputs Z={1, 2, …, n}, number of logic gates m, a set of logic gate types 

T={*, +, -, ^, &, %, #} 

output: a chromosome 

begin 

initialize a set of logic gates and inputs L←Z; 

initialize a set of inputs Z’ ←Z; 

initialize the number of logic gates in set L: m’←0; 

random select 2 inputs from L: (i, j)←random{(a, b)|L}; 

delete the inputs form Z’←Z’-{i, j} 

random select a logic gate type: t←random{ l|T}; 

generate a logic gate g={(i, j), t} 

update set of logic gates L←L+{g}; 

update the number of logic gates m’← m’+1; 

while (m’=m & Z’=∅) do 

random select 2 inputs from L: (i, j)←random{(a, b)|L}; 

delete the inputs form Z’←Z’-{i, j} 

random select a logic gate type: t←random{ l|T}; 

generate a logic gate g={(i, j), t} 

update set of logic gates L←L+{g}; 

update the number of logic gates m’← m’+1; 

end 

generate the chromosome by L; 

end 

3.3 Fitness Evaluation and strategy 

Generally, the fitness is using the objective function of the problem. However, the objective 

of digital circuits design problem is the boolean value 0 or 1. In most cases, the objective 

value of the chromosome is 0. So it is very difficult to evaluate the chromosomes if all of the 

fitness values are 0. In fact, the digital circuits design problem is very similar to some 

constraint problems when we use GA to solve it. Several techniques have been proposed to 

handle constraints with GAs based on some strategies such as rejecting strategy, repairing 

strategy, modifying genetic operator strategy and penalty strategy. 

Most of these strategies have the advantage that they never generate infeasible solutions, 

but have the disadvantage that they consider no points outside the feasible regions.  Therefore, 

in this study, we adopt the penalty strategy for fitness evaluation. Penalty techniques 

transform a constrained problem into an unconstrained problem by penalizing infeasible 

solutions, in which a penalty term is added to the objective function for any violation of the 

constraints. The key idea of the penalty technique is based on the conventional optimization 

as follows. 

How to determine the penalty term so as to strike a proper balance between the information 

preservation and the selection pressure for the infeasible solutions and to avoid both 

under-penalty and over-penalty 

Keep some infeasible solution in population so as to force genetic search toward to optimal 

solution from both side of feasible and infeasible region. 

We take the addition form expressed as follows: 

eval(x) = f(x) + p(x) 

where x represents a chromosome, f(x) is the objective function of problem (0 or 1), and 

p(x) the penalty term.  

p x =
1

αm+ βb
 

where α and β are parameters for adjusting the penalty values, m is the number of logic 

gates used in the chromosome, and b is the total number of rows which violate the logical 

operation in the truth table. 

3.4 Genetic Operators 

The genetic operators mimic the process of heredity of genes to create new offspring at 

each generation. The operators are used to alter the genetic composition of individuals during 

representation. In the following well-known genetic operators, we combine two kinds of 

crossover and three kinds of mutations. The first motive is to alter the circuit structure, and 

the second motive is to alter the logic gate types. 

Representation Space Feasibility Uniqueness Heritability

Adjacency Matrix Representation n × n Worst 1-to-1 mapping Worst

Edge List Representation m Poor 1-to-1 mapping Poor

Tree Representation n Good n-to-1 mapping Good
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3.4.1 Crossovers 

One-cut Crossover: the cut point has to be selected at the position of the end of logic gate 

symbol (Fig. 7). 

 

Fig. 7 One-cut crossover 

Position-based Crossover (PX): It is essentially a kind of uniform crossover for permutation 

representation together with a repairing procedure. It also can be viewed as a kind of variation 

of Order Crossover (OX) in which the nodes are selected inconsecutively (Fig. 8). 

 

Fig. 8 PX            Fig. 9 Swapping mutation 

 

3.4.2 Mutations 

There are typical three mutations: Swapping Mutation (Fig. 9), Inverting Mutation (Fig. 10) 

and Altering Mutation (Fig. 11) 

 

Fig. 10 An example of inverting mutation   Fig. 11 An example of altering mutation 

3.4.3 Selection 

The selection operator is intended to improve the average quality of the population by 

giving the high-quality chromosomes, i.e., a better chance to get copied into the next 

generation. The selection thereby focuses the exploration on promising regions in the solution 

space. In this paper, the roulette wheel selection, i.e., a type of fitness-proportional selection 

is adopted. 

 

4. Experiments 

In this section, our proposed Tree-based GA is compared with n-cardinality GA (NGA) by 

Coello et al., GA with Cell Crossover (ccGA) by Bao and Watanabe (2009), and two kinds of 

human designers by (1) Karnaugh Maps plus Boolean algebra identities to simplify the circuit, 

and (2) using the Quine–McCluskey Procedure. There are two test problems used. All the 

simulations were performed with Java on Intel(R) Core(TM)2 CPU 6700 2.66GHz 2.00 RAM.  

4.1 Experiment 1 

The first example is a three-even parity problem, whose truth table with three inputs and 

one output is shown in Table 4. Results are listed in Table 5. 

 

Table 4 Truth table for the circuit of 

the first example 

 
 

Table 5 Truth table for the circuit of the second 

example 

 

HD 1: human designers by Karnaugh maps 

HD 2: human designers by Quine–McCluskey 

 

4.2 Experiment 2 

The second example has four inputs and one output, as shown in Table 6. Results are 

compared in Table 7. 

1 2 3 4 5 6 7 8 9

1 2 + 3 * 1 2 * %parent 1:

1 2 3 4 5 6 7 8 9 10 11

1 3 * 1 2 + % 2 3 + &parent 2:

Cut point 1

Cut point 2

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 + 3 * 1 2 + % 2 3 + &offspring 1:

1 2 3 4 5 6 7

1 3 * 1 2 * %offspring 2:

1 2 3 4 5 6 7 8 9

1 2 + 3 * 1 2 * %parent 1:

1 2 3 4 5 6 7 8 9 10 11

1 3 * 1 2 + % 2 3 + &parent 2:

1 2 3 4 5 6 7 8 9

1 2 * 3 + 1 2 % +offspring:

1 2 3 4 5 6 7 8 9

1 2 + 3 * 1 2 * %parent:

1 2 3 4 5 6 7 8 9

1 2 + 3 * 1 2 % *offspring:

1 2 3 4 5 6 7 8 9

1 2 + 3 * 1 2 * %parent:

1 2 3 4 5 6 7 8 9

1 2 + 2 * 1 3 * %offspring:

1 2 3 4 5 6 7 8 9

1 2 + 3 * 1 2 * %parent:

1 2 3 4 5 6 7 8 9

1 2 & 3 * 1 2 * %offspring:

1 2 3 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Algorithm Solution # of logic gates

HD 1 F=3*(1%2)+2*(1%3) 5 gates

HD 2 F=1-*2*3+1*(2%3) 6 gates

ccGA F=3*(1+2)%(1*2) 4 gates

Proposed Tree-

based GA
F=(1+2)*3%(1*2) 4 gates
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Table 6 Comparison of the 

best solutions for the circuit 

of the first example 

 

Table 7 Comparison of the best solutions for the circuit of 

the second example 

 

Comparisons of the approach to others that n-cardinality GA 

(NGA), GA with Cell Crossover (ccGA), and 2 kinds of 

human designers by Karnaugh maps plus boolean algebra 

identities to simplify the circuit, and the Quine–McCluskey 

procedure, provides better results on 2 test experiments. 

 

5. Conclusions 

In this study, we investigated a chromosome representation, crossover and mutation operators 

on the performance of GAs for digital circuits design. Based on the performance analysis of 

these chromosome representation methods in GAs, we proposed a tree-based representation, 

in which initialization depends on an guided random initialization. Considering the 

characteristics of the tree-based chromosome representation, we adapted two kinds of 

crossover operators and three kinds of mutation operators. Comparing our approach with 

others which are n-cardinality GA (NGA), GA with Cell Crossover (ccGA), and two kinds of 

human designers by Karnaugh maps plus boolean algebra identities, and the 

Quine–McCluskey procedure, the proposed one showed better results on two test experiments. 

As a result our porposed approach can generate better circuit than that by other 

approaches.This study was realized to investigate the effects of the different chromosome 

representation method; the interaction of the representation with the crossover operators and 

mutation operators affect its performance. 

In the future, we will investigate the proposed tree-based GA to solve the multi-output 

digital circuits design, and evaluate the performance on the large-scale, real-life instances; and 

also improve the tree-based GA for the multi-objective digital circuits design. 
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1 2 3 4 F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

Algorithm Solution # of logic gates

HD 1 F=((1-*3)%(4-*2-))+((3-*4)*(1%W-)) 11 gates

Sasao F=3-%4-*2-%3*4-*1-%3-*4-*2 12 gates

ccGA F=(2*4*3-%((2+4)%1%(3+4+1)))- 10 gates

Proposed Tree-

based GA
F=((2+3*4)%((3+4)*(3%1)))- 7 gates
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