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一般化KaboozleのNP完全性

浅 野 哲 夫†1 Erik D. Demaine†2

Martin L. Demaine†2 上 原 隆 平†1

Kaboozle とはパズルの一種で，数枚の正方形のカードからなる．それぞれのカー
ドの両面には色つきのパスや端点が描かれ，いくつか穴が空けられている．パズルの
目的は，すべてのカードを適切な順序と向きで重ねて，特定の色のパスの両端点をそ
の色の１本のパスでつなぐことである．カードの裏表・回転・順序という自由度があ
るので，この問題が一般に NP完全であることは容易に想像できる．本稿では，これ
ら３種類の自由度のどれか１つを使うだけで，この問題が NP完全であることを示す．
さらに Kaboozle を全部つなぎ合わせて１次元上の問題に制限する．具体的には，す
べてのカードを帯状につなぎ合わせ，しかもつなぎ目の山折り/谷折りをすべて指定
する．このときカードの回転や裏返しは禁止され，またカードの順序もかなり限定さ
れる．そこまで限定しても一般化 Kaboozle は NP 完全問題である．
キーワード： Kaboozle, Transposer, シルエット，パズル，折り紙．

NP-completeness of generalized Kaboozle

Tetsuo Asano,†1 Erik D. Demaine,†2

Martin L. Demaine†2 and Ryuhei Uehara†1

Kaboozle is a puzzle consisting of several square cards, each annotated with
colored paths and dots drawn on both sides and holes drilled. The goal is to
join two colored dots with paths of the same color (and fill all holes) by stack-
ing the cards suitably. The freedoms here are to reflect, rotate, and order the
cards arbitrarily, so it is not surprising that the problem is NP-complete (as we
show). More surprising is that any one of these freedoms—reflection, rotation,
and order—is alone enough to make the puzzle NP-complete. Furthermore, we
show NP-completeness of a particularly constrained form of Kaboozle related
to 1D paper folding. Specifically, we suppose that the cards are glued together
into a strip, where each glued edge has a specified folding direction (mountain
or valley). This variation removes the ability to rotate and reflect cards, and
restricts the order to be a valid folded state of a given 1D mountain-valley
pattern.
Keywords: Kaboozle, Transposer, silhouette, puzzles, origami.

図 1 The four Kaboozle cards and one of the ten solutions.

1. Introduction

Kaboozle: The Labyrinth Puzzle is a puzzle created and developed in 2007 by Alba-

tross Games Ltd., London.?1 This “multi-layer labyrinth” consists of four square cards;

see Figure 1. (In fact, each card is octagonal, but the pattern on it is a square.) Each

card has holes drilled in different locations, and various colored paths and dots drawn

on both sides. The goal is to arrange the cards—by rotation, reflection, and stacking

in an arbitrary order—to create a continuous monochromatic path between the corner

dots of the same color that is visible on one side of the stack. The goal of this paper is to

understand what makes this puzzle NP-complete, when generalized to n cards instead

of four.

Kaboozle is an example of a broader class of puzzles in which patterned pieces with

holes must be arranged to achieve some goal, such as monochromatic sides. For exam-

ple, Albatross Games Ltd. places Kaboozle in a series of puzzles called Transposers,?2

which all have this style. See4) for descriptions, and10) for the relevant patent. Our

†1 北陸先端科学技術大学院大学 情報科学研究科
School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

†2 Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology (MIT)

?1 http://www.transposer.co.uk/KABpage1.htm
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図 2 The classic silhouette puzzle “Question du Lapin”.

NP-hardness proofs for Kaboozle immediately imply NP-completeness for this general

family of puzzles, though there are likely other special cases of interest.

An earlier form of this type of puzzle is a silhouette puzzle, where pieces are regions

with holes (no pattern beyond opaque/transparent) and the goal is to make a target

shape. Perhaps the first silhouette puzzle, and certainly the best known, is the “Ques-

tion du Lapin” or “Rabbit Silhouette Puzzle”, first produced in Paris around 19007)

[p. 35]. Figure 2 shows the puzzle: given the five cards on the left, stack them with the

right orientations to obtain one of two different rabbit silhouettes. The puzzle can be

played online.?1

The freedoms in a silhouette puzzle are reflection and rotation of the cards; the card

stacking order has no effect on the silhouette. (In fact, both rabbits can be obtained

without reflecting the cards in Figure 2, so that puzzle only needs rotation.) Are these

freedoms enough for NP-completeness? We show that indeed silhouette puzzles are

NP-complete, even allowing just rotation or just vertical reflection of the pieces. Fur-

thermore, we show that Kaboozle is NP-complete under the same restriction of just

rotation or just vertical reflection.

But is reflection or rotation necessary for Kaboozle to be NP-complete? We show

?1 http://www.puzzles.com/PuzzlePlayground/Silhouettes/Silhouettes.htm

図 3 Puzzle commercialized as “Pick the Pickaninnies”. Figure from5).

that Kaboozle is NP-complete even when the cards can only be stacked in a desired

order, without rotation or reflection. We also show that Kaboozle is NP-complete when

restricted to a restricted class of orderings that arise from paper folding, as described

below.

Our folding variation of Kaboozle is inspired by a 1907 patent5) commercialized as

the (politically incorrect) “Pick the Pickaninnies” puzzle8). This puzzle consists of a

single piece, shown on the left of Figure 3, with holes, images (stars), and crease lines.

The goal is to fold along the crease lines to make an array of stars, as shown on the

right. This type of puzzle severely limits the valid stacking orders of the parts, while

also effectively forbidding rotation and reflection of the parts.

We consider a simple general puzzle along these lines, by restricting a generalized

Kaboozle puzzle. Namely, we glue all the cards in the Kaboozle puzzle into a strip,

and specify the folding direction (mountain or valley) on each glued edge (crease). Now

the only freedom is folding the 1D strip of paper down to a unit size, respecting the

folding directions. This freedom is a weak form of the ordering of the cards; rotation

and reflection are effectively forbidden.

This idea also comes from problems in computational origami. In polynomial time,

we can determine whether a mountain-valley pattern on a 1D strip of paper can be

folded flat, when the distances between creases are not all the same1). A recent notion

is folding complexity, the minimum number of simple folds required to construct a unit-

spaced mountain-valley pattern (string)2). For example, n pleats alternating mountain
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and valley can be folded in a polylogarithmic number of simple folds and unfolds. On

the contrary, the number of different ways to fold a uniform mountain-valley pattern

of length n down to unit length is not well-investigated. The number of foldings of

a paper strip of length n to unit length has been computed by enumeration, and it

seems to be exponentially large; the curve fits to Θ(3.3n)6) [A000136]. However, as far

as the authors know, the details are not investigated, and it was not known whether

this function is polynomial or exponential. Recently, the last author showed theoretical

lower and upper bounds of this function: it is Ω(3.07n) and O(4n)9). These results

imply that a given random mountain-valley pattern of length n has Θ(1.65n) foldings

on average, which is bounded between Ω(1.53n) and O(2n).

Intuitively, the folding version of the Kaboozle puzzle seems easy. Perhaps we could

apply the standard dynamic programming technique from one side of the strip? But this

intuition is not correct. Essentially, the problem requires folding a 1D strip of paper,

but the strip has labels which place constraints on the folding. Despite the situation

being quite restrictive, we prove the problem is still NP-complete.

Therefore we conclude that the generalized Kaboozle problem is NP-complete even if

we allow only one of ordering, rotation, or reflection of the cards, and in the ordering

case, even if the ordering comes from a 1D strip folding.

2. Preliminaries

We generalize the number of the Kaboozle cards to n + 1. Each card is square, with

some fragments of a path drawn on both sides, and some holes drilled into it. We will

use just one color of path we have to join. The (potential) endpoints of a path are

distinguishable from the other fragments. To simplify, we assume that the cards are

numbered 0, 1, 2, . . . , n.

A strip of the cards can be constructed as follows: for each 0 ≤ i ≤ n − 1, the right

side of the card i is glued to the left side of the card i + 1, and that side is called the

(i + 1)st crease. Each crease has a label “M” or “V” which means that the strip must

be mountain folded or valley folded at the crease. (We define one side of the strip as

the top side, and creases are mountain or valley folded with respect to this side.) We

assume that the label of the first crease is “M” without loss of generality, or otherwise

specified. For a strip of the cards, a folded state is a flat folding of unit length (where

the unit is the width of a card) such that each crease is consistent with its label. (A

folded state always exists for any string of labels9).)

The main problem in this paper is the following:

Input: A strip of n + 1 Kaboozle cards, each with a label of length n.

Question: Determine whether the strip has a folded state that is consistent with the

labels, and exactly one connected path is drawn on a surface of the folded state.

We begin with an observation for folding a unit pattern:

Observation1 A strip of n+1 cards with n creases has a unique folded state if and

only if the crease pattern is a pleat, i.e., “MVMV· · ·MV” or “MVMV· · ·MVM”.

Proof. Suppose that a mountain-valley pattern has a unique folded state. Without loss

of generality, we assume that the first crease is a mountain. If the second crease is also

a mountain, we have two folded states of the cards 1, 2, and 3: 2, 1, 3 and 2, 3, 1. Hence

the second crease must be valley. We can repeat the argument for each crease, and

obtain the pleat pattern.

Using the pleats, we introduce a useful folding pattern for NP-completeness, namely,

the shuffle pattern of length i: “(MV)i−1MM(VM)i−1”.(Here we use the standard nota-

tion xk for string repetition: e.g., “(MV)3MM(VM)3”=“MVMVMVMMVMVMVM”.)

By Observation 1, the left and right pleats are folded uniquely and independently. How-

ever, these pleats can be combined in any order to fold to unit length. Thus we have(
2i
i

)
distinct foldings of the shuffle pattern of length i. We note that the center card of

the shuffle pattern of length i, the card i + 1 in our notation, always appears on one

side of any folded state. We call this side the top of the shuffle pattern, and card i + 1

the top card (although it may come to the “bottom” in a natural folding).

3. NP-completeness of generalized Kaboozle

It is easy to see that all the problems in this paper are in NP. Hence we concentrate

on the proofs of NP-hardness. Our reduction is from the 1-in-3 3SAT problem:

Input: A conjunctive normal form (CNF) Boolean formula F (x1, . . . , xn) = c1 ∧ c2 ∧
· · · ∧ cm, where each clause ci = (`i

1 ∨ `i
2 ∨ `i

3) has three literals `i
j ∈ {x1, . . . ,

xn, x̄1, . . . , x̄n}.
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図 4 Example of the reduction for F (x1, x2, x3, x4) = (x1 ∨x2 ∨x3)∧ (x̄1 ∨x2 ∨x4)∧ (x̄2 ∨x3 ∨ x̄4).

Question: Determine whether F has a truth assignment such that each clause con-

tains exactly one true literal.

This problem is a well-known NP-complete variant of 3-satisfiability3) [LO4].

For a given CNF formula F (x1, . . . , xn) with n variable and m clauses, we use

4n + 1 Kaboozle cards as follows. Figure 4 shows an example of the reduction for

F (x1, x2, x3) = (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x4)∧ (x̄2 ∨ x3 ∨ x̄4). Each gray area is a hole

in the card, each black line is a fragment of the unique path, and the black circles are

the endpoints of the unique path.

Top card: One top card is placed at the top of the shuffle pattern, and it represents m

clauses. On the top card, two endpoints of the unique path are drawn, and each clause

is represented by a hole in the card. Each hole has two dimples corresponding to the

borders of the path and that will be extended to one of three possible directions by the

variable cards described below.

Variable card: We use 2n variable cards. Here, the index i with 1 ≤ i ≤ n is used to

represent the ith variable, and the index j with 1 ≤ j ≤ m is used to represent the jth

clause. Each card represents either xi or x̄i. We make m gadgets on the card for the

variable xi as follows.

If neither xi nor x̄i appear in clause cj , the card xi has a hole at that place. Hence

this card has no influence at that place of clause cj .

If xi appears in clause cj , the card xi has a part of the path at that place. According

to the position (first, second, or third literal) in the clause, the path is depicted at top,

center, or bottom, respectively, as shown in Figure 4.

If x̄i appears in clause cj , the card xi has a cover area of the path at that place. This

white area covers the corresponding path drawn on the variable card x̄i, as shown in

Figure 4.

Each variable card x̄i is symmetric to the variable card xi, and hence omitted.

Blank card: We use 2n blank cards depicted in Figure 4. They will be used to join

variable cards and the top card. They have no influence on the appearance of the

variable cards.

We first show that generalized Kaboozle is NP-complete, without requiring a strip

folding:

Theorem2 Generalized Kaboozle is NP-complete, even forbidding reflection and

rotation.

Proof. We use the top card and 2n variable cards. Make the cards asymmetric, e.g., by

shifting the gadgets on each card a little, to forbid reflecting or rotating the cards (if

that is allowed). Clearly, the reduction can be done in a polynomial time.

Because of the pictures of the endpoints of the unique path, the top card must be

on top. It is not difficult to see that card xi has no influence on cards xj and x̄j if

i 6= j. Hence it is sufficient to consider the ordering between each pair xi and x̄i for

i = 1, 2, . . . , n.

When F (x1, . . . , xn) has a solution, i.e., each clause cj contains exactly one true lit-

eral `j
i , the card corresponding to the literal activates one of three parts on the card

that joins the two endpoints of the parts of path incident to the hole representing cj in

the top card. For example, consider the (wrong) assignment x1 = 0, x2 = 1, x3 = 0, and

x4 = 1 for F (x1, x2, x3, x4) from Figure 4, as shown in Figure 5. Then we put the card

x̄1 over the card x1, the card x2 over the card x̄2, and so on. Then, the card x̄1 covers

the parts of the path on the card x1, the card x2 covers the parts of the path on the

card x̄2, and so on. Any two cards corresponding to different variables can be stacked

c© 2010 Information Processing Society of Japan4

Vol.2010-AL-130 No.3
2010/5/19



情報処理学会研究報告
IPSJ SIG Technical Report

c1 c2 c3

Topc1 c2 c3

x4

x3

c1 c2 c3

x2

c1 c2 c3

c1 c2 c3

x1

c1 c2 c3

Top

x4

x3

x2

x1

図 5 For F (x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4), a wrong ordering of the

cards that corresponds to a wrong assignment x1 = 0, x2 = 1, x3 = 0, and x4 = 1. For this

assignment, the first clause c1 contains one true literal, the second clause c2 contains three true

literals, and the third clause c3 contains no true literal.

in any order. For example, we can arrange “top”, x̄1, x1, x2, x̄2; “top”, x̄1, x2, x̄2, x1;

or “top”, x̄1, x2, x1, x̄2; and so on. For this assignment, the clause c1 = (x1 ∨ x2 ∨ x3)

satisfies the condition of the 1-in-3 3SAT because only x2 is true. Hence the hole cor-

responding to c1 in the top card is filled and the path is joined properly. On the other

hand, all literals are true in the clause c2, and no literal is true in the clause c3. Hence

the hole corresponding to c2 produces loops and the path is disconnected at the hole

corresponding to c3.

Therefore, the two endpoints of the path on the top card are joined by one simple

path if and only if each cj contains exactly one true literal.

We now turn to the main theorem.

Theorem3 Generalized Kaboozle is NP-complete even in a strip with fixed

mountain-valley pattern.

Proof. We use the top card, 2n variable cards, and 2n blank cards. We join these cards

into a strip as “xn-b-xn−1-b-· · ·-b-x2-b-x1-b-top-b-x̄1-b-x̄2-b-· · ·-b-x̄n−1-b-x̄n”, where

“b” means a blank card. Figure 6 shows the example from Figure 4. We glue the blank

cards upside down, which will be reflected by folding to unit length. The mountain-

valley pattern is the shuffle pattern of length n; that is, the creases on either side of

the top card are mountain, and from there, the other creases are defined to form two

pleats of length n.

Now, the left pleat of the top card makes the sequence of xis, and the right pleat

makes the sequence of x̄is. For each pair of xi and x̄i, we can choose the ordering

x2 x1

x3x4

TopBlank

c1 c2 c3c1 c2 c3 c1 c2 c3c1 c2 c3 c1 c2 c3

c1 c2 c3 c1 c2 c3c1 c2 c3 c1 c2 c3

x4x3

x2x1

BlankBlank

BlankBlank Blank

BlankBlank

MV MMVM

MVMV MVM V

MV V M

図 6 The cards joined in a strip.

between the corresponding cards with an appropriate shuffling. This means that we

can assign true or false to this variable. Moreover, thanks to the blank cards between

the variable cards, we can arrange the ordering of the cards xi and x̄i independently for

each i. Hence, by Theorem 2 and the property of the shuffle pattern, the constructed

Kaboozle strip with fixed mountain-valley pattern has a solution if and only if the 1-in-3

3SAT has a solution.

Carefully checking the proof of the main theorem, we can also let the mountain-valley

pattern be free:

Corollary4 Generalized Kaboozle is NP-complete even in the strip form and allow-

ing any mountain-valley pattern.

Proof. We use the same strip in the proof of Theorem 3. Even if the mountain-valley

pattern is not specified, the top card should be on top; otherwise, the endpoints of the

path disappear. Hence both creases bordering the top card are mountains. If the 1-in-3

3SAT instance has a solution, the constructed Kaboozle puzzle has a solution by the

folding in the proof of Theorem 3. On the other hand, if the Kaboozle puzzle has a

solution, we can extract the ordering between xi and x̄i for each i with 1 ≤ i ≤ n from

the folded state. From these orderings, we can construct the solution to the 1-in-3 3SAT

instance.

By combining gadgets, we can show that generalized Kaboozle is also NP-complete

if we allow only either rotation or reflection. Note that we can rotate a card 180◦ by

the combination of a horizontal reflection and a vertical reflection. To forbid this kind

of cheating with cards, we restrict reflection to be vertical.
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図 7 Gadgets for rotation and reflection.

Theorem5 Generalized Kaboozle is NP-complete even if the card ordering is fixed

(or free), and (1) only 180◦ rotation of the cards is allowed, or (2) only vertical reflection

of the cards is allowed.

Proof. As in the proof of Theorem 2, we prepare the top card and 2n variable cards.

Now, the top card is enlarged to twice of the original cards; see Figure 7(1).

Rotation: For each variable xi, two variable cards xi and x̄i are glued so that 180◦

rotation exchanges them; see Figure 7(2).

Vertical reflection: For each variable xi, two variable cards xi and x̄i are glued so

that a vertical reflection exchanges them; see Figure 7(3).

Then it is easy to see that the ordering of the cards has no influence, except the top

card which should be the top, and the resultant Kaboozle has a solution if and only if

the 1-in-3 3SAT instance has a satisfying truth assignment.

Along similar lines, we can show that silhouette puzzles are NP-complete:

Theorem6 Silhouette puzzles are NP-complete even if (1) only 180◦ rotation of the

cards is allowed, or (2) only vertical reflection of the cards is allowed.

Proof. We reduce from regular (not 1-in-3) SAT, mimicking the gadgets in Figure 7.

The top card has one hole per clause, all in the top half of the card. Each variable

card reserves the top and bottom halves for the true and false literals; each side has a

solid patch for each clause the literal satisfies, and a hole for all other clauses. As in

Figure 7, the top and bottom sides are rotations or vertical reflections of each other

according to the variation. A rectangular silhouette is possible if and only if the formula

is satisfiable.
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