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This paper presents an evolutionary synthesis of feature extraction programs
for object recognition. The evolutionary synthesis method employed is based
on linear genetic programming which is combined with redundancy-removed
recombination. The evolutionary synthesis can automatically construct fea-
ture extraction programs for a given object recognition problem, without any
domain-specific knowledge. Experiments were done on a lawn weed detection
problem with both a low-level performance measure, i.e., segmentation accu-
racy, and an application-level performance measure, i.e., simulated weed con-
trol performance. Compared with four human-designed lawn weed detection
methods, the results show that the performance of synthesized feature extrac-
tion programs is significantly better than three human-designed methods when
evaluated with the low-level measure, and is better than two human-designed
methods according to the application-level measure.

1. Introduction

Designing a feature extraction program for a given object recognition problem
is a difficult, time-consuming task. Usually, it is performed by human experts
who have to consider what features are appropriate for the problem at hand and
how to extract such features from images. Human experts generally carry out
this task based on their knowledge and experience, and sometimes under time
constraints. This implies that the entire feature space cannot be explored, and
it is possible that unconventional but potential features may be ignored.
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Up to now, many researchers have attempted to cope with the difficulties in
designing not only feature extraction programs but also various processes, in-
cluding performing object recognition itself. Most methods adopt evolutionary
algorithms (EA)1)—a set of powerful optimization/search strategies inspired by
the biological evolution found in nature —to automatically synthesize programs.
Many approaches have been proposed with various EA techniques, such as ge-
netic algorithms (GA)2), tree-based genetic programming (GP)3)–6), graph-based
GP 7),8), and linear GP 9).

We focus on an approach based on linear GP 10),11) because of the following ad-
vantages: 1) Its representation is simple but powerful enough to represent graph-
structure-based programs, which are more general than tree-based programs. 2)
There is an algorithm for removing (structural) introns — the instructions that
have no effect on the program output —at run-time 10). Therefore we can avoid
wasteful execution of such instructions and greatly accelerate the evolutionary
process. 3) There is a canonical transformation that converts redundant represen-
tations into a canonical form in which redundancies are removed 12). This enables
us to improve the performance of the evolution process by various techniques 13).

Here, we present a way to improve the search performance of linear GP by
using redundancy-removed (RR) recombination �1. The key idea of this RR re-
combination is to avoid searches for already discovered programs . In this paper,
we will show a result that indicates an advantage of the linear GP with RR re-
combination over linear GPs with conventional recombinations. Moreover, we
mainly focus on the following important question: Are programs synthesized
by the linear GP better than, comparable to, or worse than human-designed
programs? The main objective of this work is to evaluate the programs syn-
thesized by linear GP based system with RR recombination, and compare them
with conventional (human-designed) methods described by related works. We
have conducted an experiment with a lawn weed detection problem 15),16)—to
detect weed areas from a lawn background to perform weed control automati-
cally. Evaluation was performed using both a low-level measure, i.e., segmenta-
tion accuracy, and an application-level measure, i.e., weed control performance.

�1 Redundancy-removed recombination was first presented in Ref. 14).
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1228 Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear GP

Experimental results show that the synthesized program is significantly better
than three human-designed lawn weed detection methods when evaluated with
the low-level measure and is better than two human-designed methods when the
application-level performance measure is applied.

The rest of this paper is organized as follows. Section 2 describes the linear
GP based synthesis of feature extraction programs. Section 3 explains the redun-
dancies in linear GP, canonical transformation and RR recombination. Section
4 describes the target problem and human-designed methods that are compared
against. Section 5 shows our experimental results. Section 6 concludes the paper.

2. Linear GP Based Synthesis of Feature Extraction Programs

The overview of the evolutionary system for synthesizing feature extraction
programs is shown in Fig. 1. At the beginning of the evolutionary process, a
population of feature extraction programs is randomly generated and is used as an
initial population. Then all programs in the population are evaluated based on a
set of training images and ground truths (provided by a user). In the evaluation,
leave-one-out cross-validation 17) is adopted, and the average segmentation (or
classification) accuracy is used as the performance measure (or fitness value) of
programs. Based on the evaluation, programs that have better performance are

Fig. 1 Overview of evolutionary synthesis of feature extraction programs.

more likely to survive and produce offspring. The produced offspring population
is considered to be the current population and is evaluated again. This evolution
process continues from generation to generation until termination criteria are
satisfied. Afterward, the program that gives the best performance in the current
population is considered to be the output of the feature extraction program
synthesis system.

We adopt a linear GP representation 10),11) in this work. In particular, a feature
extraction program is represented by using a fixed-length sequence of basic image

Fig. 2 Linear GP representation with sub-program structure.
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processing operations, e.g., thresholding, filtering, edge detection, and histogram
equalization (see Appendix). These basic image processing operations are used
as primitive operations (POs). In the execution process, each instruction is se-
quentially decoded and executed based on a set of shared registers, analogous
to the program execution on modern microprocessors. Namely, an instruction
fetches inputs from registers, processes them, and stores the processed result into
a register. Two types of registers are used: image registers (RI) and numeri-
cal registers (RN ). Each instruction is encoded by using four components, i.e.,
one operation code (op-code) that describes the PO to be executed and three
arguments that describe either the indexes of the input and output registers or a
parameter of the instruction. In this work, one linear program consists of multi-
ple sub-programs (Fig. 2). Each sub-program is executed independently of each
other and generates one feature image. For each pixel, the intensity values in all
feature images are integrated to construct a feature vector. A classifier is adopted
to decide which class that pixel belongs to, based upon the feature vector. Here,
we adopt a Bayesian classifier with a histogram approximation method 17), in
which pattern distributions are approximated by using histograms.

3. Linear GP with Redundancy-removed Recombination

3.1 Redundancies in Linear GP and Canonical Transform
Here we will describe the causes of redundancies in linear GP representation: 1)

One of the causes is the existence of introns —the instructions that do not affect
the program output �1. While introns change the linear GP representations, they
do not change the program output. 2) A protection mechanism that prevents the
execution of undefined operations or references to undefined registers is needed to
eliminate redundancies. For example, if we use 10 POs to construct programs, we

�1 In linear GPs, introns can be divided into two types: structural and semantic introns 10).
In this work, we consider only structural introns because semantic introns highly depend on
the problem to be solved, and are very difficult to be detected. Although a semantic intron
removal method has been described in Ref. 10), the method is not practical for our problem
due to a huge number of iterations and the method does not guarantee the removal of all
semantic introns. However, if there is an efficient algorithm to remove semantic introns, it
can be added into the intron removal step of the canonical transformation. In the remaining
sections, the term intron refers to structural introns only.

Fig. 3 Examples of redundancies: two instruction sequences containing the same operations
but in different order (left) and two instruction sequences assigning register usage in
different ways (right) ( c©2008 IEEE).

need at least four bits to represent all POs. However, since four bits can represent
more than 10 numbers, undefined operations may result. In this case, a simple
mechanism that replaces the original op-code by the op-code modulo NPO (NPO

is the number of POs) can be adopted to prevent the execution of undefined
operations. This causes redundant representations because the op-codes of 0 and
10 (or 1 and 11, and so on) map to the same operation. 3) Different instruction
orders also cause redundancies if there are two (or more) instructions running
in parallel which do not depend on each other. For example, Fig. 3 (left) shows
a case where the first two instructions can be reordered without any effect on
the program output. 4) Generally, an identical program can be constructed that
uses registers in alternative ways. Figure 3 (right) shows an example of two
instruction sequences that represent two identical programs that use registers in
different ways. 5) The use of sub-program structure, as described in Section 2,
also causes redundancies because a change in the order of image features does
not affect the classification result, even though the representations are different.

Recently, we have proposed a transformation that converts linear GP represen-
tations into canonical forms in which such redundancies are removed 12). It can
be briefly described as follows (more details can found in Ref. 12)).
( 1 ) Intron removal: we use an algorithm described in Ref. 10) to remove struc-

tural introns from the instruction sequence under consideration. The algo-
rithm searches backwards from the last instruction through the dependent
instructions, and marks them as effective instructions because they relate
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to the data flow of the program output. The remaining unmarked instruc-
tions are considered to be structural introns and are removed from the
sequence.

( 2 ) Conversion to modulo form: we replace the original op-code and arguments
by their modulo forms (the op-code modulo NPO and argument modulo
Nreg, where Nreg is the number of registers of the corresponding data type).

( 3 ) Instruction reordering: we search backwards from the last effective in-
struction through the dependent instructions based on a depth-first-search
scheme. If we cannot search further from an instruction, we will assign it
the current order and go back to the previous instruction, then repeat this
step (the current order is increased by one). By doing this, different in-
dividuals representing the identical program will be reordered in the same
way.

( 4 ) Register reassignment: starting from the first effective instruction, we iden-
tify that the content stored in registers and until which instruction cycle
they are needed. Then we set a write-protected flag on each correspond-
ing register until the execution cycle of that instruction. Next, we assign
the input register index based on the data flow but assign the non-write-
protected register that has the lowest index as the output register. We then
go to the next instruction and repeat this step.

( 5 ) Sub-program reordering: we compare the effective lengths of sub-programs,
and reorder them based on ascending order in length.

Once we know the canonical forms of two individuals, we can easily verify
whether or not they represent identical programs. We can achieve this by com-
paring the lengths of the two canonical forms. If they have equal lengths, we
then compare their (genotypic) contents byte-by-byte. The two individuals that
have exactly the same canonical form will represent identical programs.

3.2 Redundancy-removed Recombination
The redundancy-removed (RR) recombination 14) exploits the canonical form

to verify whether a generated offspring represents a previously discovered pro-
gram earlier in the evolutionary search. In particular, we store all canonical
forms of the programs that have already been discovered in memory. Once an
offspring is generated, it will be transformed into its canonical form, and com-

pared with the other canonical forms in memory. If it matches a canonical form
in memory, it means that the generated offspring represents a program that was
previously discovered. If this happens, the program will not be allowed to survive
to the next generation. We call such an offspring a redundant offspring. The RR
recombination consists of two operators: RR crossover and RR mutation.

For RR crossover, a conventional crossover such as one-point, two-point or
uniform crossovers is applied to a pair of parents to generate offspring (here we
consider only one offspring per crossover). If the generated offspring is redundant,
it will be ignored, and parents will be (randomly) re-selected to generate new
offspring instead. If the new offspring is still redundant, this process will be
repeated. In the case that the maximum number of repeats (20 in our work)
is reached and no non-redundant offspring is generated, the latest offspring is
allowed to survive in the next generation. For RR mutation, we apply a mutation
operation on the same offspring repeatedly until it becomes a non-redundant
offspring.

3.3 Comparison with Conventional Recombinations
Here, linear GPs with different recombinations, i.e., two-point crossover, pa-

rameterized uniform crossover 18) (with gene exchanging probability of 0.2), and
RR-recombination, were evaluated. We used an artificial problem as the test
problem. In particular, we defined an image processing program, based on the
POs provided, that transforms an input image into an output image. The goal
is to search for the defined image processing program in the search space. In
this case, there is at least one correct solution that exists in the search space.
Consequently, we can observe whether the linear GPs can synthesize the correct
solution. The defined image processing program consists of three POs, i.e., the
Sobel operator, adaptive mean thresholding, and morphological opening with a
square structural element of size 3 × 3, connected in sequential order. The pa-
rameters of the linear GPs are shown in Table 1 �1. Each approach has been
executed for 20 trials with different seeds (using five training images of size 160

�1 For linear GP with the RR recombination, we used a large tournament size (10) to balance
the exploration and exploitation powers, which is a key issues in the success of EAs1).
However, the use of a large tournament size for the two conventional recombinations causes
more redundancies, resulting in poorer performance.
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Table 1 Parameter settings.

Parameter Setting Parameter Setting
Population size 100 Number of image registers 6
Maximum generation 500 Number of numerical registers 6
Crossover rate 0.74 Mutation rate 0.25
Reproduction rate (elitist) 0.01 Tournament size
Length of sub-program 10 - conventional crossover 2
Number of POs 51 - RR recombination 10

Table 2 Comparison of two-point crossover, parameterized uniform crossover, and
redundancy-removed recombination.

Method Two-point Parameterized Redundancy-
uniform removed

Number of hits 4 5 11
Average best fitness 95.74 96.01 97.79
Average generations 436.60 429.10 277.45
Average generations
(only hit trials) 183.00 216.40 95.36

× 120 pixels).
The experimental results are shown in Table 2. We count the number of

trials required until the linear GPs can find the correct solution (number of hits),
and also report on the average fitness and average generations needed. The
results show that the linear GPs with the two-point and parameterized-uniform
crossovers attain the correct solution for only four and five trials, respectively,
while the linear GP with the RR recombination achieves the correct solution for
11 trials. Moreover, the linear GP with the RR recombination can converge to the
correct solution within a smaller number of generations. This shows an advantage
of the RR recombination over the conventional recombination methods.

4. Lawn Weed Detection Problem

4.1 Dataset
Image processing based weed detection methods have been widely studied,

especially for agriculture fields. Automatic weed control systems exploit a weed
detection method to locate the area of weeds in a field so that the systems can
accurately remove the weeds from the field, e.g. by spraying herbicide only onto
the area of detected weed instead of spraying in the entire area. We are interested

Fig. 4 An example of a lawn weed image and its ground truth.

in weed detection in lawn fields. The lawn weed database used in this experiment
is the database 1 used in Ref. 15). It consists of 30 images (note that among them,
five images are lawn background images that contain no weeds). The image size
is 640× 480 pixels, covering lawn area of size 274× 205 mm. Figure 4 shows an
example of a lawn image that includes some weeds.

4.2 Compared Methods
Until now, various methods have been proposed for weed detection in lawns.

Ahmad, et al.19) proposed a weed detection method based on gray-scale unifor-
mity analysis (denoted by UA) which distinguishes weed surfaces from lawn sur-
faces based on the difference in gray-value distributions of both surfaces. Then,
as a post-processing process, a blob inspection method is exploited to remove
misclassified blobs. Previously, we have proposed two lawn weed detection meth-
ods 15). One is a Bayesian classifier based method (denoted by BC) which detects
weeds using two textural features, i.e., mean and variance of edge strength. The
other one is a morphological operation based method (denoted by MO) which
segments weeds from a lawn background by using morphological image processing
techniques such as closing and opening. Moreover, in Ref. 16), the BC method
is slightly modified. In particular, a support vector machine is adopted instead
of a Bayesian classifier. We found that it is better than the BC method in some
situations. We denote this modified method by SVM. In this work, all four
human-designed methods, i.e., UA, BC, MO, and SVM methods, are compared
with the feature extraction programs synthesized by the linear GP with RR re-
combination.
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5. Experimental Results

Here we evaluate and compare the performance of synthesized programs with
the lawn weed detection methods described in the previous section. We adopt
two kinds of performance measures. One is a low-level measure —segmentation
accuracy (Section 5.1). The other is an application-level measure which measures
the performance of weed control (Section 5.2).

5.1 Low-level Measure: Segmentation Accuracy
We run the linear GP with the RR recombination with the parameters described

in Table 1 to synthesize feature extraction programs for the lawn weed detection
problem. Segmentation accuracy, which is the ratio of the number of correctly
segmented pixels to the total number of pixels, was used as the fitness function for
the evolutionary process. We chose the number of features (sub-programs) to be
two so that it is equal to the number of features used by the other methods under
consideration (BC and SVM). Ten independent GP runs were conducted with
different seeds (using five training images). Once we obtained the best program
from each trial, we compared them with the four human-designed methods. To
perform a statistical test, we divided the database of 30 images into six folds of
five images, and performed the experiments six times so that a different fold is

Table 3 Segmentation accuracies (%) of the human-designed methods and programs
synthesized by 10 GP trials based on test sets (over six experiments).

Test set # 1 2 3 4 5 6 AVG STD
MO 98.60 98.40 98.49 98.50 98.46 98.33 98.46 0.43
UA 98.45 98.26 98.27 98.35 98.26 98.14 98.29 0.10
BC 98.41 98.11 98.21 98.25 98.23 98.07 98.21 0.12
SVM 97.62 97.19 97.32 97.64 97.67 96.91 97.39 0.31

Trial #1 98.50 98.26 98.32 98.41 98.28 98.06 98.30 0.15
Trial #2 98.64 97.57 98.47 98.23 97.90 97.72 98.09 0.43
Trial #3 98.25 96.88 98.30 98.10 96.96 93.49 97.00 1.84
Trial #4 98.51 98.02 98.01 98.40 97.91 97.98 98.14 0.25
Trial #5 98.75 98.39 98.48 97.89 98.52 98.44 98.41 0.28
Trial #6 97.83 98.34 98.25 98.51 98.42 98.27 98.27 0.23
Trial #7 98.37 97.70 98.40 97.86 98.26 97.82 98.07 0.31
Trial #8 98.66 98.46 98.51 98.58 98.47 98.23 98.48 0.15
Trial #9 98.34 98.28 98.31 98.09 98.31 98.11 98.24 0.11
Trial #10 97.94 97.90 97.79 98.12 97.81 97.60 97.86 0.17

the training set each time and the remaining folds are used for testing.
Table 3 shows the segmentation accuracy of the synthesized programs and

the human-designed methods. Note that the parameters (such as window size,
threshold values, and structure element size) of the human-designed methods
were adjusted and only the best results were shown. The synthesized programs
can correctly segment the weed areas from a lawn background with average ac-
curacies of 97–98% for the test sets. Among 10 trials, the best one, with an
average segmentation accuracy of 98.48%, is from GP trial #8 (Fig. 5, top left),
followed by trial #5 (Fig. 5, top right) and trial #1 (Fig. 5, bottom). The average
segmentation accuracy of trial #8 is higher than that of the four human-designed
methods. We conducted a statistical t-test 20) to check whether the average seg-
mentation accuracy obtained by GP trial #8 is significantly higher (the alterna-
tive hypothesis H1). The p-values, i.e., probabilities that the null hypothesis H0

(no difference between the two average values) is valid, are shown in Table 4.

Fig. 5 Flowcharts of the synthesized feature extraction programs of trials # 1, 5, and 8 (WS
stands for window size, the solid-lines represent image data flow, and the dashed-lines
represent numeric data flow).
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Table 4 Statistical t-test (p-value) between the human-designed methods and the GP trial
#8.

MO UA BC SVM

0.24 1.65 × 10−4 1.19 × 10−4 2.18 × 10−5

Table 5 Ranking based on the segmentation accuracies (the four human-designed methods
and 10 GP trials).

Test set # 1 2 3 4 5 6 AVG
MO 4 2 2 3 3 2 2.67
UA 7 6 9 6 7 5 6.67
BC 8 8 11 7 9 7 8.33
SVM 14 13 14 14 13 13 13.50
Trial #8 2 1 1 1 2 4 1.83
Trial #5 1 3 3 12 1 1 3.50
Trial #1 6 7 6 4 6 8 6.17

The results show that GP trial #8 is significantly better than the UA, BC, and
SVM methods.

We then ranked for the four other methods under comparison and the 10 GP
trials (Table 5). The results show that trial #8 has the best average rank
(1.83), followed by the MO method, trial #5, then trial #1. The UA and BC
methods have moderate ranks: 6.67 and 8.33, respectively. Also, all synthesized
programs are better than the SVM method (averaged rank of 13.50) for almost
all experiments. This demonstrates the success of the synthesized program over
the other methods under comparison using the low-level measure.

5.2 Application-level Measure: Weed Control Performance
Here we compare the synthesized program with the human-designed methods

based on their performance in simulated weed control systems. Two types of
simulated weed control systems are considered. One is a chemical-based system
which destroys weeds by spraying herbicide, and the other is an electrical-based
system which destroys weeds by applying high-voltage spark discharges onto the
weeds (see Appendix). These two systems have been described and adopted in
Ref. 15). The performance of weed control in the chemical-based and electrical-
based systems are shown in Table 6 and Table 7, respectively. Again, the
parameters of the human-designed method were adjusted for each system and

Table 6 Average performance comparison of lawn weed detection methods for the chemical-
based weed control system.

Rank Method Six validation sets: the average number of weeds = 66.67,
the average number of weed blocks = 1615.83

KWR (NKW ) CSPR (NCSB) FSPR (NFSB) HBRR

1 BC 87.80% (58.50) 93.36% (1330.17) 6.64% (94.67) 91.09%
2 UA 85.00% (56.67) 95.49% (1375.00) 4.51% (65.00) 91.00%
3 Synthesis

(trial #8) 83.25% (55.50) 93.80% (1396.83) 6.20% (92.33) 90.69%
4 SVM 79.07% (52.67) 98.81% (1187.00) 1.19% (14.33) 92.49%
5 MO 78.45% (52.50) 91.86% (1439.17) 8.14% (127.50) 90.21%

Table 7 Average performance comparison of lawn weed detection methods for the electrical-
based weed control system.

Rank Method Six validation sets: the average number of weeds = 66.67

KWR (NKW ) CSPKR (NCSPK) FSPKR (NFSPK)

1 SVM 75.47% (50.17) 96.95% (153.50) 3.05% (4.83)
2 BC 73.47% (48.83) 95.92% (113.50) 4.08% (4.10)
3 Synthesis

(trial #1) 67.35% (44.83) 94.79% (78.83) 5.21% (4.33)
4 UA 63.88% (42.50) 95.15% (81.67) 4.85% (4.17)
5 MO 52.64% (35.00) 91.78% (55.83) 8.22% (5.00)

the best values are shown. For the synthesized programs, we considered only
the program with the best performance for each weed control situation, i.e., trial
#8, which is also the best according to the low-level measure (Fig. 5, top left) for
the chemical-based system, and trial #1 (Fig. 5, bottom) for the electrical-based
system �1.

The main values we compared are the killed weed rate (KWR), which indicates
weed destruction performance, and the number of false sprayed blocks NFSB (or
the number of false sparks NFSPK) which describes destruction error. Ranking
was done based on these values. The ranking criterion we used is the same as in
our previous work 16), i.e., the method that gives errors lower than an acceptable

�1 Note that best individual using the low-level measure does not necessarily have the best
performance for the application-level experiments because the goals of these two measures
are different. For example, for the case of the electrical-based system, we do not need to
obtain completed segmentation results to apply spark discharges to all weeds but we need
to detect only at least one part of each weed. Better results in segmentation accuracy do
not guarantee that more weeds must be detected.
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value and gives higher weed destruction performance will have a better rank.
The acceptable values of the chemical-based and electrical-based systems are 160
false sprayed blocks and five false sparks, respectively.

In the case of the chemical-based system, the synthesized program is ranked
third among all five methods. The weed destruction performance (KWR) of trial
#8 is lower than that of the best one (BC) by 4.55 points, but results in slightly
lower spraying errors (false spray rate, FSPR). However, trial #8 is better
than the MO method (which had the best low-level measure among the four
human-designed methods) for both KWR and FSPR. Note that all methods
can successfully reduce the amount of herbicide usage, i.e., they give herbicide
reduction rates HBRRs of higher than 90%, and these numbers are not much
different from each other.

In the case of the electrical-based system, the synthesized program (trial #1)
is ranked third again. Its weed destruction performance is lower than that of
the SVM and BC methods by around 8 and 6 points, respectively. However it is
slightly better than that of UA and is clearly better than that of MO (around
15 points). All of the methods are not noticeably different in terms of sparking
errors (NFSPK). Although the results suggest that the feature extraction pro-
grams, which was automatically generated without any domain-specific knowl-
edge, could not beat all of the human-designed methods under consideration,
their performances are still competitive.

5.3 Discussion
The experimental results show that the programs synthesized by the linear GP

with RR recombination can outperform conventional weed detection methods
when evaluated using the low-level performance measure. The statistical t-test
shows that trial #8 is significantly better than three human-designed methods.
The main reason for this success is that the proposed linear GP system has
searched through a great number of feature extraction programs (some of them
might be unconventional) based on the evolutionary search strategy. This pro-
cedure focuses on programs with better performance while still preserving global
search. According to the parameter setting, 50,000 individuals are generated in
one GP trial. Note that these programs are not just considered, but actually
executed and evaluated so that their actual performance can be quantified. In

addition, by using the RR recombination, the linear GP is forced to find new
feature extraction programs that have not been discovered yet. This increases
the number of different programs considered in the evolutionary search.

For the application-level evaluation, we have found that the proposed linear
GP can synthesize programs that are similar in performance to, but not bet-
ter than, the human-designed methods under examination. This is because the
fitness function we used, i.e., segmentation accuracy, does not directly indicate
the performance of weed control systems. Moreover, based on the ranking, we
considered both weed destruction performance (KWR) and weed destruction
error (NFSB or NFSPK). They are the two objectives to be optimized. This
points out the need for a multi-objective optimization technique. If the feature
extraction program synthesis system can optimize various objectives simultane-
ously, it might be possible to synthesize programs that are also better for the
application-level measure.

A major concern of this system seems to be its huge computation time. How-
ever, it is possible to be executed on an inexpensive present-day desktop system.
In this paper, we have run this system on an Intel Core2 Duo PC with 1,024 GB
of memory. One GP trial took computation time from several dozen to around a
hundred hours of CPU time (but two GP trials can simultaneously be executed).
Its computation cost could be significantly reduced by using a general purpose
graphics processing unit (GPGPU) for executing image processing operations 21),
or by using an algorithmic reduction (e.g., as in Refs. 13), 22)).

6. Conclusion

We have described a procedure for the evolutionary synthesis of feature ex-
traction program based on linear GP with RR recombination. It can auto-
matically synthesize feature extraction programs for a given problem without
domain-specific knowledge. A lawn weed detection problem was considered in
this paper. We compared the performance of the feature extraction program
synthesized by the system with the detection methods proposed in the literature.
The experimental results show that the performance of the synthesized program
is significantly better than three human-designed lawn weed detection methods
using a low-level evaluation measure and is better than two human-designed
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methods using an application-level measure. The main reason for this success is
that the evolutionary synthesis system can search for a large number of different
programs based on an evolutionary search strategy which considers redundancies.
In the future, we plan to improve the performance of the evolutionary synthesis
of feature extraction programs by using a multi-objective optimization technique
so that we can simultaneously optimize multiple objectives.
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Appendix: Primitive Operations

Table 8 shows a list of basic image processing operations we used in this work.

Appendix: Evaluation of Chemical-based Weed Control Systems
Evaluation of simulated chemical-based weed control systems is described as

follows.
( 1 ) Divide the detected weed image into small blocks (block size = 30 × 16

pixels).
( 2 ) For each block, if more than 10% of the block size area is classified as weed

pixels, we call that block a weed block. All weed blocks are sprayed with
herbicide.

( 3 ) Compared with manually segmented weed area (ground truth), find the
number of weeds whose area of more than 30% is sprayed (NKW ). These
are destroyed (killed) weeds.

( 4 ) Find the number of sprayed blocks (NSPB), the number of sprayed weed

Table 8 A list of the primitive operations used in this work.

One-input operations Two-input operations
image → image image, image → image
highpass filter image addition
Sobel operation image subtraction
image negative image, real value → image
mean thresholding lowpass filter
entropy thresholding median filter
histogram equalization morphological dilation
image → real value morphological erosion
global mean morphological opening
global variance morphological closing
global STD local histogram equalization
global skewness thresholding
global kurtosis local variance
global maximum local skewness
global minimum local kurtosis
global median local maximum (max filter)
global mode local minimum (min filter)
global range local mode
global entropy local range

local entropy

blocks (NCSPB), the number of sprayed non-weed blocks (NFSPB).
( 5 ) Calculate killed weed rate (KWR), correct spray rate (CSPR), false spray

rate (FSPR), and herbicide reduction rate (HBRR) as specified by the
following equations:

KWR =
NKW

NW
, (1)

CSPR =
NCSPB

NSPB
, (2)

FSPR =
NFSPB

NSPB
= 1 − CSPR, (3)

HBRR = 1 − NSPB

NB
, (4)

where NW is the total number of weeds in the dataset and NB is the total
number of blocks.

Appendix: Evaluation of Electrical-based Weed Control Systems
Evaluation of simulated electrical-based weed control systems is described as

follows.
( 1 ) Find a set of sparking points 16) from the detected weed image. A spark

discharge will be applied to each sparking point.
( 2 ) Calculate KWR according to Eq. (1), and correct spark rate (CSPKR),

and false spark rate (FSPKR) as described by the following equations:

CSPKR =
NCSPK

NSPK
, (5)

FSPKR =
NFSPK

NSPK
, (6)

where NCSPK is the number of sparked weed pixels (correct sparks),
NFSPK is the number of sparked non-weed pixels (false sparks), and NSPK

is the total number of sparked points.
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