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Power conservation has become a serious concern during people’s daily life.
Ubiquitous computing technologies clearly provide a potential way to help us
realize a more environment-friendly lifestyle. In this paper, we propose a ubiq-
uitous power management system called Gynapse, which uses multi-modal sen-
sors to predict the exact usage of each device, and then switches their power
modes based on predicted usage to maximize the total energy saving under the
constraint of user required response time. We build a three-level Hierarchical
Hidden Markov Model (HHMM) to represent and learn the device level usage
patterns from multi-modal sensors. Based on the learned HHMM, we develop
our predictive mechanism in Dynamic Bayesian Network (DBN) scheme to pre-
cisely predict the usage of each device, with user required response time under
consideration. Based on the predicted usage, we follow a four-step process to
balance the total energy saving and response time of devices by switching their
power modes accordingly. Preliminary results demonstrate that Gynapse has
the capability to reduce power consumption while keeping the response time
within user’s requirement, and provides a complementary approach to previous
power management systems.

1. Introduction

Rising global energy demands, increasing costs and limitations on natural re-
sources have raised concerns about energy conservation. As reported by Japanese
government 1), the energy consumption in Residential & Commercial sector has
increased 40% since 1990, among which the most consumed energy is electricity
by various home electronic devices 2). Ubiquitous computing technologies provide
the potential to reduce power consumption. For instance, the lights, heating and
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other devices all sit on a ubiquitous in-house network. Lights can be automati-
cally controlled by sensors that measure the brightness in the room, and switch
off altogether if no one is in the room. The temperature of the living room air
conditioning or floor heating changes according to the number of people in the
room. We can also check if the house is carbon neutral by seeing how much
power is generating from solar panels and how much is used. In this paper, we
will discuss the power saving potential of ubiquitous computing technologies in
an indoor environment.

People have a lot of methods to reduce power consumption in indoor environ-
ments. The most common way is replacing with energy efficient devices. How-
ever, replacement cannot solve all the problems. For instance, even if the resident
replaces a 60 W bulb with a 30 W energy efficient one, it will still waste a lot of
energy if he leaves the bulb ON for 24 h/7d. To eliminate such waste, people try
an alternative way to switch lights off or turn devices into low power mode when
not in use 3), which we call “power mode switching”. This method has drawn
special attention from researchers of ubiquitous computing, and shown promis-
ing results 4),5),10)–15). These systems try to automatically switch power modes of
devices with sensors and controllers installed in indoor environments. We follow
their research and focus on “ubiquitous power mode switching” systems in this
paper.

According to our research, we believe the following requirements are important
for a practically effective power mode switching system:
• The system should have the capability to adaptively handle multiple devices

for human behaviors in different situations. Because of the complexity of
human behavior, a resident usually uses different combinations of devices in
different situations. Therefore, it is natural to require a system to be able
to adaptively coordinate the power mode switching of multiple devices for
behaviors in different situations.

• The system should have the capability to precisely predict the exact usage
of each device. The key of power mode switching is to proactively determine
the future usage of a device, and switch its power mode accordingly. Hence,
precise usage prediction is crucial for such a system. In addition, since we
can only switch power mode of each device, the usage prediction should also
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be at device level. As a result, a system must be able to precisely predict the
usage at device level.

• The system should have the capability to balance the response time of devices
and their total energy saving. For instance, although a PC can save energy
in sleep mode, the resident may feel frustration with its long wake-up time.
Therefore, a system must be able to save energy while keeping the response
time short enough.

Previous power mode switching systems 4),5),10)–15) usually make power mode
switching according to pre-defined “rules” or the resident’s locations. Although
they successfully meet one or two requirements above, none of them can fulfill all
three requirements. In this paper, we propose a ubiquitous power management
system called Gynapse, which uses multi-modal sensors to predict the exact usage
of each device, and then switches their power modes based on predicted usage to
maximize the total energy saving under the constraint of user required response
time. To our best knowledge, it is the first system that fulfills all the requirements
above. Gynapse consists of three important components:
• A probabilistic model to learn residents’ usage patterns at device level from

multi-modal sensors. We build a three-level Hierarchical Hidden Markov
Model (HHMM)6) to represent multiple residents and their device usage,
and use Forwards-Backwards (FB) and Expectation-Maximization (EM) al-
gorithms7) to learn the parameters. The sensor data, such as RFID reading
from keyboard and current data from power lines, are arranged as vectors
to train HHMM. This model provides the capability to adaptively handle
multiple devices for complicated behaviors in different situations.

• A predictive mechanism to forecast the usage probability of multiple devices
in the future. Based on the learned three-level HHMM, we introduce two
variables to represent device’s wake-up time and user’s required response
time, and develop our predictive mechanism in Dynamic Bayesian Network
(DBN)8) scheme. This mechanism provides the capability to precisely predict
the usage of each device, and take response time into consideration.

• A control framework to maximize the energy saving under the constraint of
user required response time. With the predicted usage probability of each
device, we follow a four-step process to calculate the total probability and

energy saving of devices, and switch their power modes according to the
scenario with the highest energy saving and probability. This framework
puts everything together and balances the response time of devices and their
total energy saving.

To conduct our analysis, we use sensor data from MIT PlaceLab 9) to implement
and evaluate Gynapse. We obtain 23 days of data, within which we use 9 days
to train the three-level HHMM, and 14 days to verify the system. After learning
the parameters of our probabilistic model, the predictive mechanism correctly
predicts the device usage for about 90%. Based on the usage prediction, the
control framework successfully balances response time and energy saving, and
achieves an average 11% power saving of 14 days.

The rest of this paper is organized as follows: Section 2 reviews the previous
research on power mode switching systems. Section 3 analyzes the technical
problems we are going to solve. Section 4 describes the design of Gynapse. In
Section 5, we evaluate our system with PlaceLab data and discuss the preliminary
results. Section 6 concludes the paper finally.

2. Related Works

In this section, we will review the previous power mode switching systems
according to the three requirements mentioned in Section 1.

The most straightforward way of power mode switching is automatic power-
off based on pre-defined “rules”. Such systems use infrared or motion sensors
to detect the existence/absence of residents, and then turn on/off the lights or
air-conditioners through Home Energy Management System (HEMS)4),10). Their
motivation is the simplicity to build a rule, such as “If no user in the room for
a time-out period, then turn off the lights.” However, human behaviors are so
complicated that cannot be completely described with such simple rules, e.g., if
one sits still in a chair when reading, the lights may be incorrectly turned off
after a motion time-out period. Additionally, as the number of rules increases,
it may become difficult to coordinate rules in different situations. For instance,
one rule may say “If no user sits in front of TV for a time-out period, then turn
off TV”; whereas, another rule may say “If the user is cooking in kitchen, then
turn on TV”, because he usually watches it when cooking. To eliminate such
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conflicts, people have to define complex rules to describe the situations, which
digress from the original standpoint of simplicity. As a result, such “rule-based
switching” systems do not fulfill the first requirement, since they cannot properly
handle multiple devices for complicated human behaviors in different situations.

To solve the problems of “rule-based switching” systems, researchers have tried
probabilistic models for more efficient power management. The first work is Neu-
ral Network House 11),12), which builds a neural network to predict the mobility
of residents between different “lighting zones”, and switch the power setting of
lights accordingly. A similar work is MavHome project 13), which predicts the
resident’s location together with his most likely path based on an information-
theoretical framework, and pro-actively switches the power mode of devices along
this future route. Harris and Cahill 14),15) introduce the concept of context-aware
power management, and concentrate on switching power modes of a desktop PC
according to predicted usage. They build a Dynamic Bayesian Network (DBN)
for usage prediction based on user’s proximity to PC. Although people argue
that probabilistic prediction rarely achieve 100% accuracy, it can be improved
by integrating high-level information, such as user feedback 16)–18).

A more serious drawback of previous probabilistic power mode switching sys-
tems is they are all based on the prediction of resident’s coarse-grained location
instead of each device’s exact usage. Therefore, they leave two problems unsolved:
1) they imply the device location is fixed, so they can predict usage based on res-
ident’s proximity (location) to device. However, for devices such as TV, which
are controlled via remote, proximity does not work. Furthermore, they cannot
predict proximity to remote, because it is movable. 2) They only discuss the
situation that one (kind of) device at one coarse-grained location, such as the
light in a room. However, it is not unusual that a TV, a DVD player and a light
are in the same room. In this case, previous works cannot decide which device
to use, even if they can predict the resident will enter this room. Therefore,
such “coarse-grained location-based switching” systems do not fulfill the second
requirement, because they cannot predict the exact usage of each device.

People may argue that we can solve the preceding problems, if we have a highly
fine-grained location system that pinpoints every device no matter movable or
not. Unfortunately, no such system exists at current stage. However, researchers

of activity recognition provide an alternative way to model the device level us-
age by using multi-modal sensors. In Refs. 19), 20), they attach RFID tags to
devices such as TV remote and washer, and build probabilistic models such as
Hidden Markov Model (HMM) or Dynamic Bayesian Network (DBN) to infer
the activities in which the devices are used. References 9), 21) use more multi-
modal sensors to recognize activities in addition to RFID tags. However, since
the objective of these researches is to infer the activity given the observed sensor
data, not predict the activity and device usage in the future, they do not fulfill
the second requirement.

As we are aware, no existing power mode switching system is based on the usage
prediction at device level. In this paper, we try to build such a system by using
multi-modal sensors, since it is more realistic than a fine-grained location-based
system. We must make it clear that our system is complementary rather than
competitive to previous coarse-grained location-based systems. On one hand, we
can use them jointly to increase accuracy. For example, we can predict the room
to enter from location system, and predict the device to use from multi-modal
sensors. On the other hand, we can use device level prediction independently.
For instance, no matter a resident’s location is in living room or kitchen, we can
always capture his usage of TV from RFID tag attached to the remote. In this
paper, we will learn and forecast the exact usage of each device from multi-modal
sensors, and switch their power modes based on the usage prediction at device
level.

The third requirement comes from a major frustration of previous power mode
switching systems, which is the users have to wait for a device to wake up 5),22).
To solve this problem, Harle and Hopper 5) classify the electronic devices into
three “wake-up time” categories, and optimize their power mode switching based
on a location-aware system in an office building. However, they have the same
problem as other location-based power management systems, and cannot address
the problem such as remote-controlled devices or multiple devices at the same
location.

From the discussion above, we can find that no previous systems fulfill all three
requirements. To complement previous research, we propose Gynapse, which uses
multi-modal sensors to predict the exact usage of each device, and then switches
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their power modes based on predicted usage to maximize the total energy saving
under the constraint of user required response time. In the following section, we
will analyze the technical problems need to be solved by Gynapse.

3. Problem Statements

As we explained in Section 1, three components are important for Gynapse:
1) a probabilistic model to learn residents’ usage patterns at device level, 2) a
predictive mechanism to forecast the usage probability of multiple devices in the
future, 3) a control framework to maximize energy saving under the constraint
of user required response time. We will analyze the technical challenges of each
component, and formulate the problems we are going to solve.

3.1 Challenges for Probabilistic Model
The main challenge for probabilistic model derives from the fact that hierarchi-

cal structure exists in human behaviors 23),24). For instance, during a high level
activity such as “make breakfast”, the resident may repeat low level actions�1,
such as “use coffee maker” and “use toaster”; or during the activity of “work in
office”, he may repeat actions of “use PC” and “use lamp”. Hence, if the resident
is “using coffee maker”, it is more possible for him to “use toaster” rather than
“use PC” for the next step. This kind of sequences (or transitions) of actions and
activities are actually the “patterns” of resident’s device usage. To learn them,
probabilistic model must properly represent the hierarchical structure in human
behaviors and the transitions between actions and activities.

Another challenge is multiple residents in one family. Although one-person
families will become the largest single category in Japan by 2010 with a percent-
age of 31.2%, multi-person families will still be the mainstream�2. Therefore,
probabilistic model need another hierarchy to represent the status of residents.

3.2 Challenges for Predictive Mechanism
After learning the usage patterns, we can predict the usage probability of multi-

�1 For clarity, we define resident’s direct interaction with a device as a low level “action”, and
define his goal of a sequence of actions as a high level “activity”.

�2 As projected by the National Institute of Population and Social Security Research, because
of the falling birthrate and the aging population, the family structure in Japan will have
influential change by 2010: 31.2% will be single live, 20.1% will be only husband and wife,
27.9% for parents and kids, 9% for single-parent and kids, and 11.8% for others 25).

Fig. 1 Different wake-up times of devices.

Fig. 2 Required response time.

ple devices in the future. There are three challenges for the predictive mechanism.
The first one is it must be able to handle different wake-up times. Figure 1 de-
picts an example. Two devices have different wake-up times, TWU,1 and TWU,2,
respectively. If both of them are awoken at time t, they can only be used after
t1 = t + TWU,1 and t2 = t + TWU,2, respectively. Therefore, if a system wants
to make wake-up decisions at time t, it has to predict the usage probability of
device 1 at time t1, and that of device 2 at time t2, which is defined as wake-up
probability of device i at time t, pt,i.

The second challenge for predictive mechanism is it must consider an acceptable
response time�3 for the resident. An example is illustrated in Fig. 2. A service
request comes at time T . If the device is awoken at that time, the resident cannot
use it until T2 = T + TWU . However, if the resident restricts the response time
no more than TRS = T

′
2−T , then the device must be awoken at least T

′
1, which is

(TWU − TRS) before the service request at T �4. As a result, if we want to make

�3 Response time is defined as the duration between a service is requested and a device is
ready to provide it, such as T2 − T or T

′
2 − T in Fig. 2

�4 The practical upper limit of TRS is TWU , since the user will not accept a device to response
longer than its wake-up time.
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a wake-up decision at T
′
1 like t in Fig. 1, the wake-up probability pT

′
1

is actually
the device usage probability at T

′
1 + (TWU − TRS) instead of T

′
1 + TWU .

The third challenge is improving the accuracy of prediction. Because the pre-
dicting algorithm itself rarely achieve 100% accuracy, some high-level information
should be integrated to improve it.

3.3 Challenges for Control Framework
After predicting the wake-up probability of devices, we can control power mode

switching to maximize the total energy saving under the constraint of user re-
quired response time. As explained in Section 3.2, the user required response
time, TRS , has been considered when predicting wake-up probability pT

′
1
. If this

probability is less than 0.5, which means the device should not be awoken at T
′
1,

then the device has to postpone its wake-up, and the response time will exceed
user’s requirement TRS . Therefore, the restriction that the response time should
not exceed TRS actually becomes that the wake-up probability pT

′
1

should not
fall below 0.5. As a result, the challenge for control framework becomes choos-
ing a combination of devices that will save maximum energy after power mode
switching, under the constraint that the wake-up probability of this combination
is higher than a threshold.

4. Design of Gynapse

To solve the challenges in Section 3, we design a system called Gynapse, which
learns and predicts the exact usage of each device, and then switches their power
modes accordingly to maximize the total energy saving under the constraint
of user required response time. A simplified example of Gynapse is shown in
Fig. 3�1.

We obtain power status of PC, light, tea-maker, and microwave from current
sensors, which are denoted as WK/LP for working/low power modes. Obviously,
power consumption depends on device usage, which is closely correlated with
sensors, such as RFID tag on microwave or Object Movement (OM) sensor on
tea-maker (circles in Fig. 3). Therefore, we can infer the resident’s activities
and device usages from multi-modal sensors. As shown in Fig. 3, after using

�1 We rescale time line and ignore details of sensor data that will not detract our discussion.

Fig. 3 An example of Gynapse.

Fig. 4 System architecture.

PC in office, the resident enters kitchen and turns on light at time 20; then he
heats water with tea-maker and warms food with microwave at time 25 and 35
respectively; at time 80, he leaves kitchen and works on PC again. With this
analysis, we know the PC is not used from time 20 to 80, so it could be switched
into low power mode for saving energy (shaded bar in Fig. 3).

To achieve this goal, we must proactively switch power modes of PC according
to its predicted usage: if we predict the user will head for kitchen to make a
snack, we shall turn PC into low power mode; if we predict he will return to
work, we shall turn PC into working mode. Therefore, we need a functional part
in Gynapse to predict device usage. Another consideration is, the user may feel
frustrated because the long wake-up time of PC. Therefore, we need a functional
part in Gynapse to take response time into consideration.

With these considerations, we design Gynapse’s architecture as in Fig. 4. We
assume a user interface (UI), sensor and control infrastructure exists in an in-
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door ubiquitous computing environment, which could be used to collect user
feedback, detect human activities and switch power mode of devices. Gynapse
consists of one adjunct database of device information, and three functional parts:
Data Aggregator, Forecaster, and Controller. Solid arrows are main data flows.
Data Aggregator receives information from different types of sensors/devices (ar-
row 1), normalizes their values, and builds them into a time series of vectors
�Ot =

(
s1

t , s
2
t , . . . , s

M
t

)
, where M is the number of sensors and t denotes time.

After receiving these vectors (arrow 2), Forecaster builds a three-level Hierar-
chical Hidden Markov Model (HHMM) to learn the usage pattern of devices,
and forecast their usage probabilities through the predictive mechanism. With
the predicted probabilities (arrow 3), Controller makes decisions of power mode
switching to maximize the total power saving under response time constraint.
These decisions (arrow 4) are then sent to the ubiquitous computing infrastruc-
ture to switch devices. If Gynapse makes any wrong decisions, user feedback can
be obtained through user interface. The adjunct database provides the necessary
information of current status (S), wake-up time (TWU ), and power saving (E) of
each device.

In the following sections, we will discuss the details of probabilistic model,
predictive mechanism in Forecaster, and control framework in Controller.

4.1 The Probabilistic Model
Before predicting the usage probability of devices, Forecaster must build a

probabilistic model to learn the usage patterns of them. We use a three-level
Hierarchical Hidden Markov Model (HHMM) to represent and learn residents
status and device usages, because its hierarchical nature easily characterizes nat-
ural hierarchies in human activity and allows for model reusability and more
efficient learning 6),26). Our contribution here is applying HHMM to model the
device usage in a power management system, instead of developing a new exten-
sion of HHMM. Therefore, we focus on explaining the model of single resident
and its generalization to multiple residents, rather than discussing the details of
learning algorithms.

Figure 5 illustrates a model, whose left part with numbered arrows corre-
sponds to our example in Fig. 3. Five different types of nodes are in this model:
R, I, P , E, and O. The R node at the first level is Root state representing

Fig. 5 State transition diagram of three-level HHMM. Shaded nodes are observed; the remain-
ing nodes are hidden. The numbered arrows show the sequence of state transitions.

the status of residents at home. For single resident, it is state (1) if he is at
home, otherwise it is state (0). The I nodes at the second level are Internal
states, which represent activities of the resident, such as “make snack”, or “work
in office”. They may have an arbitrary number of P nodes. The P nodes at
the third level are Production states, which represent the device status, such as
“Tea-maker (TM) is in use”, or “microwave (MW) is not in use”. Production
state is the only one within HHMM that can emit observations, O nodes, which
are the vectors sent by Data Aggregator. The E nodes are End states, which
exist only to signal the horizontal transition is ended, and a vertical transition
to upper level is needed.

Arrows between nodes represent probabilistic dependencies: solid arrows are
transitions between hidden states of HHMM, and dotted line arrows are depen-
dencies between Production states and observations. There are two kinds of state
transitions: 1) horizontal transition at the same level, which means the resident
is going to use another device or to another activity; 2) vertical transition be-
tween different levels, which means the resident starts or finishes using devices in
an activity. For instance, the resident “turns off light” after “using microwave”
(7), a transition to End state (8) means he has finished “making snack” and
a transition back to the second level (9) is needed. Then he goes to “work in
office” and “use PC”, which are represented by transition (10) and (11). This
model clearly represents the hierarchical structure in human behaviors and the
transitions between device usages and activities.

When multiple residents are at home, it becomes a little more complex. If
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they always do the same activities, such as “watch TV” together, it will not be
a problem. If they do different activities at the same time, we have to represent
them separately in the model. As explained before, R node represents the status
of residents at home. If there are two people, we add one dimension to R node,
so the state (1, 1) represent both of them are at home. It is the same for I and P

nodes. For instance, one state of I node will become (make snack, watch TV) to
represent their activities respectively. Of course, as the dimension increases, the
number of state will also increase. Fortunately, it will not increase exponentially,
because the residents in a family tend to do the same activity most of the time,
such as “have dinner” or “watch TV”.

After solving the representation challenges in Section 3.1, we now focus on
learning usage patterns, which is actually learning the probabilistic dependencies:
horizontal transition probabilities, vertical transition probabilities, and observa-
tion probabilities. We follow the notation in Ref. 6) to define them. The Root,
Internal, Production and End states in Fig. 5 are uniformly represented by qd

i ,
where d ∈ [1, 2, 3] denotes the hierarchy level and i is the state index relative to
its parent. E.g., q2

i means an Internal state at the second level. The probability
of state qd−1 vertically transitioning to its children qd

i is specified as πqd−1
(qd

i ).
The probability of state qd

i making a horizontal transition to state qd
j is written

as aqd

ij . Hence, for Root and each Internal state, vertical and horizontal transi-
tion probabilities are defined as the vector Πqd

and the matrix Aqd

respectively.
Production states at the third level q3 are the only type can emit observations.
Therefore, the observation probabilities of Production nodes is represented as the
vector Bq3

, which defines the probability of state q3 producing observation O = k

as bq3
(k) = P

(
O = k|q3

)
�1. The model parameters are denoted in a compact

form as λ = (A,B,Π).
We use the forwards-backwards and expectation-maximization algorithms 7)

to learn the parameters from historical data, and reduce the time complexity
to O(T ), compared with O(T 3) in the original paper of Ref. 6). The learned
parameters λ = (A,B,Π) are used to predict the probability of device usage via

�1 This can be considered as if q3 is in the state “using PC”, then we can observe reading
from RFID tag on keyboard.

Fig. 6 Dynamic Bayesian Network of three-level HHMM. Shaded nodes are observed; the
remaining nodes are hidden. Qd

t is the state at time t, level d; F d
t = 1 if the HHMM

at level d has finished (entered its end state), otherwise F d
t = 0.

the predictive mechanism.
4.2 The Predictive Mechanism
After learning the usage patterns, Forecaster predicts the usage of multiple

devices in future through predictive mechanism. In order to show the tempo-
ral relationship more clearly, we redraw the three-level HHMM as a Dynamic
Bayesian Network (DBN)7),8) in Fig. 6, which is identical to the state transition
diagram in Fig. 5. Although Fig. 5 emphasize the parent-children relationship
between states, Fig. 6 highlights the temporal sequence of them.

Figure 6 shows the three-level HHMM as time slices. At time slice t, the
observation is �Ot =

(
s1

t , s
2
t , . . . , s

M
t

)
; the state at level d is denoted as Qd

t , so the
Root, Internal, and Production states are Q1

t , Q2
t , and Q3

t respectively. F d
t is a

binary indicator that is 1 if it has entered an End state; otherwise it is 0. The
downward arrows between the Q variables represent a state “call” its child. The
upward arrows between the F variables enforce the fact that a higher-level state
can only change when lower-level one finished.

The example in Fig. 5 is also shown in Fig. 6. Suppose at t = 1, Q1
1 represents

the resident is at home, Q2
1 represents he is “making snack”, and Q3

1 represents
he is “using microwave”. Then at t = 2, Q1

2 and Q2
2 keep unchanged, while Q3

2

changes its state to “turn off light”. Since it is the end of “make snack”, F 3
2

becomes 1, which means it has finished and Q2
2 can change state for the next

time slice. At t = 3, Q1
3 is still unchanged, Q2

3 changes to “work in office”, and
Q3

3 changes to “use PC”.
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Given the learned parameters λ = (A,B,Π) in Section 4.1, we first explain how
to predict the states at the next one time slice, and then generalize to next N
time slices.

Suppose we are at t−1, and know the states Qd
t−1 and F d

t−1, where d ∈ [1, 2, 3].
We try to predict the states at t, Qd

t and F d
t . We explain the Production, Internal

and Root states separately.
Production state (the third level): Production state Q3

t follows a Markov
chain with parameters determined by higher-level states Q1:2

t , which we denote
as k for brevity.

If Q3
t−1 does not enter an End state, the value of Q3

t should be drawn from
horizontal transition probability A. Otherwise, it turns F 3

t−1 to be 1 to signal
it is finished, and draws the value of Q3

t from vertical transition probability Π.
Formally, we can write the probability that Q3

t will be in state j as follows:

P
(
Q3

t = j|Q3
t−1 = i, F 3

t−1 = f,Q1:2
t = k

)
=

{
aq3

ij if f = 0
πq2

(q3
j ) if f = 1

(1)

where aq3

ij and πq2
(q3

j ) are the horizontal and vertical transition probabilities
explained in Section 4.1. For clarity, i, j �= End state here, because the End state
is indicated with F 3

t as:

P
(
F 3

t = 1|Q1:2
t = k,Q3

t = i
)

= aq3

i,end (2)

Internal state (the second level): Similar to Production state, Internal
state Q2

t follows a Markov chain with parameters determined by Q1
t , and F 2

t−1

specifies whether we should use the horizontal or vertical transition probability.
The difference is that we now also get a signal from lower-level F 3

t−1: if it has
finished, we are free to change Internal state, otherwise we must remain in the
same state. Formally, we can write the probability that Q2

t is in state j as:

P
(
Q2

t =j|Q2
t−1 = i, F 3

t−1 =b, F 2
t−1 =f,Q1

t = k
)
=

⎧⎪⎨⎪⎩
δ(i, j) b=0
aq2

ij b=1 and f =0
πq1

(q2
j ) b=1 and f =1

(3)

where δ(i, j) = 1 if i = j, otherwise δ(i, j) = 0. F 2
t should turn to 1 only if Q2

t

is “allowed” to enter an End state. Formally, we can write this as follows:

P
(
F 2

t = 1|Q1
t = k,Q2

t = i, F 3
t = b

)
=

{
0 if b = 0

aq2

i,end if b = 1
(4)

Root state (the first level): The Root state Q1
t differs from Internal states

in that it has no parent to specify which distribution to use. The equations are
the same as above, except we eliminate the conditioning on Q1

t = k.
Following Eqs. (1)–(4), we can obtain the probabilities of each state at t, P (Qd

t )
and P (F d

t ), given the parameters λ = (A,B,Π) and the states Qd
t−1 and F d

t−1.
Now we generalize it to next N time slices.

As explained in Section 3.2, we must consider wake-up time TWU and user
required response time TRS for predicting. Suppose we are at time T , and need
predict the probability of device usage at T +(TWU−TRS). Suppose (TWU−TRS)
is equal to the length of 2 time slices�1, so our problem becomes predicting the
probability of Qd

T+2, given the current states Qd
T . We follow Eqs. (1)–(4) to

obtain the probability of Qd
T+1 at first, and then re-use Eqs. (1)–(4) to calculate

the probability of Qd
T+2 based on Qd

T+1. For devices with different (TWU −TRS),
we need repeat this process for different times.

The third challenge discussed in Section 3.2 is the accuracy of prediction. For
instance, Forecaster predicts the resident will “work in office” after “making
snack”, whereas he may actually go to “watch TV”. Essentially, it is impossible to
completely eliminate the incorrect prediction. However, we believe the possibility
still exists to improve Gynapse’s accuracy. A potent candidate is integrating user
feedback with predictive mechanism. As shown in Refs. 16), 17), the accuracy
can be improved by introducing high-level information, such as user feedback.
It actually involves two separate problems: the first is soliciting feedback from
user. This one has been intensively studied by researchers of computer-human
interface, such as explicit feedback from mobile touch screens 27),28) or implicit
feedback from sensor networks 29),30). With this kind of technologies, we can easily

�1 For simplicity, we use discrete time Markov chain here, so (TWU − TRS) is equal to an
integral number of time slices.
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obtain feedback from users. The second and key problem is integrating feedback
with learning and predicting mechanism in Forecaster. The general approaches
are: 1) treating user feedback as hard constraints to Bayesian Network’s learning
algorithms 18),31),32), or 2) incorporating them in the prior knowledge 33). Since
the correctness of the learned model obviously depends on the training samples,
we use a training sample selection method similar to Ref. 18). Suppose we obtain
one feedback to indicate the “make snack→watch TV” transition is correct, while
“make snack→work in office” is incorrect. We replace one set of observation
vectors that represent “make snack→work in office”, with one set representing
“make snack→watch TV” in training samples; we will replace two sets if we get
two feedbacks. As a result, we punish the wrong prediction and reward the user’s
correction, so we can gradually improve prediction accuracy when we re-learn the
model parameters from new training samples.

In this way, we have solved all the challenges in Section 3.2. At last, we send
the predicted probabilities of Production states to Controller, since they are the
wake-up probabilities of devices.

4.3 The Control Framework
After receiving the predicted wake-up probabilities, Controller switches power

mode of multiple devices to maximize the total energy saving under the constraint
of user required response time. As explained in Section 3.3, since the user required
response time TRS has been considered in predicted wake-up probabilities, the
problem actually becomes choosing a scenario that will save the maximum energy
after power mode switching, under the constraint that the wake-up probability
of that scenario is higher than a threshold. Four steps are necessary.

The first step is to calculate the predicted probability of all scenarios. We
use Ii to indicates the usage of device i, where Ii = 1 if it is awoken to working
mode, and 0 if it is in low power mode. Hence, the predicted probability of device
i can be written as:

Pi(Ii) =

{
pi Ii = 1

1 − pi Ii = 0

where pi is the wake-up probability received from Forecaster.

If we have N devices, the predicted scenario can be represented as
(I1, I2, . . . , IN ), and its probability is:

P (I1, I2, . . . , IN ) =
∏

1≤i≤N

Pi(Ii) (5)

As explained in Section 3.3, we choose scenarios whose probability is higher
than 0.5N as the “possible” pool. We use a pool of scenarios instead of the top
one, because the actual scenario more likely falls into a high probability pool,
rather than exactly matches the top 1 predicted scenario�1. At the same time,
we also narrow down the number of scenarios that need to be processed for
following steps.

The second step is to calculate the energy saving of selected scenarios. We
use ei to represent the energy saving of device i, which is the difference of energy
consumption between working and low power modes. Then the energy saving of
scenario (I1, I2, . . . , IN ) is:

ES(I1, I2, . . . , IN ) =
∑

1≤i≤N

ei ∗ (1 − Ii)

which means device i can save energy when it is in low power mode (Ii = 0). To
make it comparable, we normalize the energy saving as:

ẼS(I1, I2, . . . , IN ) =
ES(I1, I2, . . . , IN )∑

1≤i≤N

ei ∗ 1
= 1 −

∑
1≤i≤N

ei ∗ Ii∑
1≤i≤N

ei ∗ 1
(6)

The third step is to calculate the product of energy saving and predicted
probability for the selected pool. The product of scenario (I1, I2, . . . , IN ) can be
calculated by multiplying Eq. (5) and Eq. (6) as:

�1 We can consider the following example: Suppose we predict the top 1 scenario is S1. If
our prediction is perfect, the actual scenario must match S1. However, since no existing
algorithms can achieve 100% accuracy, there must be some actual scenarios mismatch the
top 1 prediction. Now we consider an “extreme” pool, which includes ALL the possible
scenarios. In this case, the actual scenario must fall in this pool with 100% accuracy.
This phenomenon has been broadly observed across predicting algorithms. Some numerical
results can be found in Refs. 34), 35), where the top 4 or 5 prediction always achieve higher
accuracy than the top 1 prediction.
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U(I1, I2, . . . , IN ) = ẼS(I1, I2, . . . , IN ) ∗ (1 + P (I1, I2, . . . , IN )) (7)

We choose the scenario with the maximum product as the “ideal” one, be-
cause it has both high probability and large energy saving. The “1” in Eq. (7)
guarantees that we first compare energy saving of scenarios; if energy saving are
equal, then we compare their probabilities. In this way, we choose a scenario that
maximizes the total energy saving and its wake-up probability is higher than the
threshold of 0.5N to solve the challenge in Section 3.3.

At the last step, the current scenario is compared with the “ideal” one,
and decisions of power mode switching are sent to the ubiquitous computing
environment for execution.

After learning the usage patterns from historical data, Gynapse repeats pre-
diction and these four steps every time slice. In this way, it can handle power
mode switching to maximize the total power saving while ensuring that response
time does not exceed the required level.

5. Implementation and Evaluation

In this section, we shall discuss the details of implementation and evaluation
of Gynapse. We first describe the data and environment of our experiments, and
then discuss the preliminary results.

5.1 Experimental Environment
We use sensor data from MIT PlaceLab 9) to evaluate our system. PlaceLab is

a 1,000 sq. ft. apartment consisting of a living room, dining area, kitchen, small
office, bedroom, full bath and half bath. 15 types of sensors are installed in
PlaceLab: Interior conditions of the apartment are captured using distributed
temperature, humidity, bright, and barometric pressure sensors. The PlaceLab
also features electrical current sensors, water flow and gas flow sensors. Small,
wired switches detect open/close events, such as the opening of linen closet. RFID
tags and MITes object movement sensors can be easily taped onto any non-wired
objects such as chairs, cups, remotes, tea-maker, and other objects people may
manipulate 36). A resident in the PlaceLab can wear up to three wireless 3-axis,
0-10 G accelerometers that measure limb motion. A wireless heart rate monitor
(using a standard Polar chest strap) can also be worn. Five receivers spread

Table 1 Sensors used in Gynapse.

Type Living Dining Kitchen Office Bedroom Hallway
Current 3 3 7 2 2 3
Switch 4 7 20 3 5 5

MITes OM 25 16 40 14 15 25
RFID 10 3 27 13 12 8
Motion 2 1 1 1 1 2
Water — — 4 — — 2
Gas — — 1 — — —

Table 2 Devices used in Gynapse.

devices
Living 2 lights, TV, DVD player, speaker,
Kitchen 2 lights, microwave, coffee maker, tea maker, toaster

dish washer, mixer, can opener, stove, garbage disposer
Dining light, answer machine

Bedroom light, lamp, alarm,
Hallway light, washer, dryer
Office light, computer, monitor, fax machine

throughout the apartment collect all wireless object motion, accelerometer, and
heart rate data sent via the MITes wireless sensors 36). Nine infrared cameras, 9
color cameras, and 18 microphones are distributed throughout the apartment in
cabinet components and above working surfaces. From these multi-modal sensors
a resident’s activities can be inferred 9).

People may argue that, in real life, no residents will install so many sensors in
their house because of cost and complexity. However, it is important for research
purpose to reveal the effectiveness of energy saving for all sensors before we can
narrow them down. As a result, we select a set of 286 sensors that have close
correlation with device usage to build our system, which are shown in Table 1.

Since the sensor values are quite different, Data Aggregator normalizes them
into a range between 0 and 1, and builds them into time series as �Θ =
[ �O1, �O2, . . . , �OT ], where vector �Ot =

(
s1

t , s
2
t , . . . , s

M
t

)
is the observations of

HHMM, as explained in Section 4.
We use multi-modal sensors excluding current sensors to obtain the usage in-

formation of 28 electronic devices, which are listed in Table 2.
We use current sensors to obtain a single device’s wake-up time, and energy
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Fig. 7 Current reading of light.

saving (which is the difference current readings between working and low power
mode). Figure 7 shows the current reading of living room light. Time at point
A and B are 19:06:29.693 and 19:06:34.287 respectively, so the wake-up time of
this light is about 4.5 seconds. We can also find the current difference between
working and low power mode is about 1,500 mA. For multiple devices, we can
calculate their correlation of current status. Figure 8 shows the current status of
coffee maker, toaster, and PC in a morning. We can observe the obvious linkage
between coffee maker and toaster. Statistically, we have the time series of current
consumed by coffee-maker and PC as CCM,t and CPC,t, so their normalized cross-
correlation can be calculated as:

corr =
1

n − 1

tn∑
t=t1

(
CCM,t − C̄CM

) (
CPC,t − C̄PC

)
σCMσPC

where C̄ and σ are mean and standard deviation of time series, and n is the total
number of data points. During this period, the correlation between coffee maker
and toaster is 0.7870, whereas the correlation between coffee maker and PC is
−0.0968. The numerical results also prove our argument in Section 3.1.

There are totally 23 days of data available, within which we use 9 days to train
our three-level HHMM, and the rest 14 days for evaluation.

5.2 Preliminary Results
In this paper, we have mainly discussed three components of Gynapse: 1) a

probabilistic model to learn residents’ usage patterns at device level, 2) a pre-
dictive mechanism to forecast the usage probability of devices, and 3) a control

Fig. 8 Usage correlation of devices.

Fig. 9 Learning curve.

framework to maximize the energy saving under the constraint of user required
response time. Correspondingly, we evaluate Gynapse from four prospects: 1)
the learning curve of probabilistic model, 2) the precision and recall rate of pre-
dictive mechanism, 3) the balance of energy saving and user required response
time, and 4) the total energy saving on each day.

5.2.1 Learning Curve
Figure 9 shows the learning curve of our three-level HHMM. At first the like-

lihood is very low, because the training data is not enough and the parameters
have not been properly learned. As we add more training data, the likelihood
improves gradually. After about 100 hours of training data, the likelihood be-
comes stable. Roughly speaking, we can consider the training data are enough.
However, we have to be aware of two things. First, strictly speaking, the ex-
act hours needed depends on the initial values of parameters, training policy,
and convergence criterion of the learning algorithm 37). E.g., if we require the
converge threshold to be 0.001, we obviously need more training data than a
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Table 3 Precision and recall of predicted usage.

Devices Precision Recall Devices Precision Recall
Living Bedroom
light 95% 93% light 94% 93%
TV 93% 92% lamp 91% 89%
DVD player 89% 85% alarm 84% 81%
Kitchen Dining
light 96% 93% light 93% 92%
microwave 87% 84% answer machine 86% 82%
coffee maker 85% 83% Hallway
tea maker 86% 84% light 93% 91%
toaster 83% 82% washer 89% 88%
dish washer 86% 83% dryer 88% 85%
mixer 82% 81% Office
can opener 80% 78% light 94% 93%
stove 81% 80% PC 92% 90%
garbage disposer 79% 77% fax machine 85% 82%

threshold of 0.1. Meek et al. provide more discussion about sample size and
learning curve in Ref. 38). Second, for some devices such as a stove, the resident
does not use it everyday. Therefore, in practice, we need more days to collect
training sample of stove than a heavily used device such as TV. The small peaks
and valleys on the curve after 100 hours reflect this point.

5.2.2 Precision and Recall
Table 3 shows the precision and recall of predicted device usage, which are

defined as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

where TP (True Positive) means we predict a device to be used, and it is actually
used; FP (False Positive) means we predict a device to be used, but actually it is
not used; FN (False Negative) means we predict a device not to be used, but it
is actually used. Please note that, as explained in Section 5.1, we determine the
actual usage from multi-modal sensors excluding current sensor. In the example
of Fig. 3, we use RFID tag on keyboard to determine the resident actually starts
or stops using PC, but not the current sensor of PC.

From Table 3, we find the predictive mechanism has better performance for
some devices such as lights, TV, and PC. This is because they are used more
frequently, so more training samples are available.

Table 4 Combination of required response time.

Combination Lights (sec) TV (sec) PC (sec)
Comb 0 4 4 4
Comb 1 2 2 2
Comb 2 4 6 6
Comb 3 4 10 10
Comb 4 4 10 30
Comb 5 4 10 44

Fig. 10 Energy saving vs. Response time.

5.2.3 Energy Saving and Required Response Time
As explained in Section 4.3, control framework maximizes the energy saving

under the constraint of user required response time TRS . Since the upper limit of
TRS is a device’s wake-up time TWU , we use lights, TV, and PC to represent three
categories of devices according to their TWU : lights represent the devices with a
short wake-up time such as 4.5 seconds. Therefore, the resident should expect
the lights to response within 4 seconds�1. On the other end, PC represents
the devices with a long wake-up time such as 44 seconds. Then the required
response time of PC can range from 0 to 44 seconds. TV represents the category
between these two. We set a benchmark (Comb 0), where the required response
time is 4 seconds for all devices, and then calculate the extra energy saving of
different combinations of required response time. Table 4 shows the different
combinations.

Figure 10 depicts the extra energy saving (compared with Comb 0) of different
combinations. We can find that, if the resident tolerates slow response from
devices, such as Comb 5, more energy saving is achieved. In contrast, if the

�1 For simplicity, we only use integer here.
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Fig. 11 The real and Gynapse-adjusted power consumption of one day.

resident need immediate response from devices, such as Comb 1, less energy
saving is achieved. It clearly shows Gynpase’s capability of balancing energy
saving and required response time.

5.2.4 Total Energy Saving
After setting the user required response time, control framework calculates the

“ideal” scenario, compares it with the current one, and switches power mode
accordingly. If a device is not used in “ideal” scenario, but its power status is in
working mode, then we can turn it into low power mode for saving energy. In
this way, we can calculate the total power consumption based on the decisions
from Gynapse.

Figure 11 shows the real and Gynapse-adjusted total power consumption of
one day after the HHMM has been properly learned. We can find that the energy
saving are mainly achieved during morning and evening, when multiple electronic
devices are used. While in the early morning and noon, since no devices are used,
almost no power saving is achieved.

Table 5 shows the real power consumption, Gynapse-adjusted power consump-
tion, and saving ratio of 14 evaluation days�1. We find that Gynapse averagely

�1 According to Ref. 39), the average household power consumption in Massachusetts is
21.17 kWh per day. Since PlaceLab is a 1,000 sq. ft. apartment with a single person, it
consumes less electricity than a typical 2,000+ sq. ft. house with four persons.

Table 5 Power consumption and saving ratio of each day.

Day 1 2 3 4 5 6 7
Real (kWh) 8.64 9.82 9.36 3.11 7.68 12.55 7.72
Gynapse (kWh) 7.79 8.57 8.66 3.11 6.83 11.37 7.09
Saving Ratio 9.78% 12.72% 7.46% 0.00% 11.08% 9.36% 8.13%
Day 8 9 10 11 12 13 14
Real (kWh) 9.22 14.35 10.63 9.10 9.09 10.51 9.59
Gynapse (kWh) 8.58 12.37 9.00 7.83 7.90 9.26 8.47
Saving Ratio 7.01% 13.77% 15.32% 14.03% 13.01% 11.89% 11.77%

saves about 11% of energy on these 14 days. The fluctuation of the saving ratio
depends on the resident’s behavior. For instance, since the resident was not at
home on the 4th day, less power was consumed and no power saving was achieved.

6. Conclusions and Discussions

In this paper, we have designed a ubiquitous power management system called
Gynapse, which uses multi-modal sensors to predict the exact usage of each de-
vice, and then switches their power modes based on predicted usage to maximize
the total energy saving under the constraint of user required response time. We
have discussed the challenges and solutions for three important components of
Gynapse:
• We have built a three-level Hierarchical Hidden Markov Model (HHMM) to

represent multiple residents and hierarchical structure of their activities, and
learn the adaptive device usage patterns in different situations from multi-
modal sensors.

• Based on the learned HHMM, we have developed our predictive mechanism
in Dynamic Bayesian Network (DBN) scheme to precisely predict the usage
of each device, with device’s wake-up time and user’s required response time
under consideration.

• With the predicted usage probability of each device, we have followed a four-
step process to balance the total energy saving and response time of devices
by switching their power modes according to the scenario with the highest
energy saving and probability.

Correspondingly, we have used PlaceLab data set to evaluate Gynapse from
four prospects: 1) the learning curve of three-level HHMM, 2) the precision
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and recall rate of predictive mechanism, 3) the balance of energy saving and
user required response time, and 4) the total energy saving on each day. The
preliminary results have demonstrated that as a ubiquitous power management
system, Gynapse has the capability to reduce power consumption while keeping
response time not exceed user requirement. It provides a complementary rather
than competitive apporach to previous power mode switching systems.

6.1 Discussions
In this section, we provide some discussions about Gynapse as follows:
Undesirable aspects of overly energy saving: “Overly energy saving”

means a device should be in working mode, but it is switched off for saving
energy. As a result, it may cause two “undesirable aspects” as follows:
• Incorrect switch-on/off: e.g., when the resident goes to restroom during his

work on PC, Gynapse incorrectly turns PC off. Although the resident is in
a short break, Gynapse switches PC off incorrectly for saving energy.

• Delay of response: e.g., Gynapse does not turn on PC until the resident sits
in front of it, so he has to wait for a long wake-up time. In this case, the
resident wants to use a device, and Gynapse correctly predicts that. However,
for saving energy, Gynapse does not switch it on until the last moment.

In case 1, Gynapse incorrectly predicts the resident’s activity. Essentially,
it is impossible to completely eliminate the incorrect prediction. However, we
believe the possibility still exists to improve Gynapses accuracy. As we discussed
in Section 4.2, a potential method is integrating user feedback with predictive
mechanism. Of course, the incorrect prediction cannot be completely avoided
even if we introduce user feedback into the system. When Gynapse incorrectly
predict device usage, the resident has to explicitly define his policies, like in a
rule-based system, or manually switch the devices. Incorrect prediction is the
limitation of Gynapse, and the choice among Gynapse, rule-based systems and
manual switching depends on the resident and his situation.

In case 2, Gynapse correctly predicts the resident’s activity, but the resident
may still feel frustrated because of the long wake-up time. To solve this problem,
we provide a variable in predictive mechanism to reflect user’s required response
time. Then Gynapse tries to maximize the energy saving under the constraint of
user’s required response time.

Fig. 12 Automatic power-off vs. Gynapse.

Comparison of Gynapse and automatic power-off mechanism in
terms of energy saving: We have already discussed in Section 2 that the
automatic power-off mechanism cannot handle complicated situations, such as
the resident may watch TV when cooking in kitchen. However, in terms of
energy saving, it is still a simple and effective method, which can be found in
infrared-controlled lights or electric pot. A simple example is depicted in Fig. 12.
Assume the resident stops using an electric pot at T1; after a certain time TAF , it
is automatically switched off to low-power model (LP) at T2. When the resident
starts using the pot again at T3, it is switched on. We compare the energy saving
of automatic power-off mechanism with Gynapse at switch-off (around T2) and
switch-on (around T3) respectively.

At switch-off, Gynapse uses the resident’s activity to help make decision. For
instance, if Gynapse finds the resident has left home after using the pot, it can
turn off the pot at T

′
2 without waiting for a certain time. Whether Gynapse saves

more or less energy than automatic mechanism at switch-off actually depends on
the length of TAF and TGF : if TAF is longer, then Gynapse saves more energy;
if TAF is shorter, then Gynapse saves less energy.

At switch-on, since Gynapse predicts the resident’s activity to shorten response
time of devices, it cannot save more energy than automatic power-off mechanism.
For instance, an electric pot may need some time to heat water to a certain
temperature, such as 100◦C for tea. If Gynapse predicts that the resident is
going to make some tea, it can turn on the pot to heat water before T3. Hence,
the resident need not wait for a long response time. In contrast, the automatic
power-off mechanism will not start heating the water until the resident turns
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it on. As a result, Gynapse can help the resident by shortening response time,
though this means less power saving.

Based on the discussion above, we find that for a simple device, whether the
automatic power-off mechanism may save more or less energy depends on the
summation of switch-off and switch-on parts. However, Gynapse can save energy
for devices used in complicated situations, which may not be easily handled by
the automatic power-off mechanism. In addition to energy saving, Gynapse also
considers the response time of devices.

Appropriate information for human activity prediction: Gynapse aims
at providing a flexible scheme that can incorporate a variety of information into
the prediction of human activity, rather than comparing which information is
the most appropriate. As we explained in Section 4, the input of our system is
a time series of vectors �Ot =

(
s1

t , s
2
t , . . . , s

M
t

)
, where si

t corresponds to the value
of sensor i at time t. No matter this “sensor” is a real sensor or a virtual one,
such as “a day of the week”, it can always be put into the vector. This scheme
provides great flexibility to our choice of information. With the development of
sensors and human activity recognition, we can incorporate new information into
our system.

Comparison with other power management systems: We are fully aware
of the importance of comparing Gynapse with previous power management sys-
tems. However, previous systems are all built in their own environments with
different settings of devices and sensors. The lack of benchmark makes the com-
parison very difficult if not impossible. Our evaluation with MIT PlaceLab data
set reflects our effort to use a public data source, so it may be easier for other
researchers to compare with us. However, since PlaceLab data is not designed for
evaluating energy consumption, it inevitably has some limitations, and we have to
leave some situations untested, such as multi-resident models and integration of
user feedback. Currently, we are building a multi-modal sensor database mainly
for power consumption evaluation in our laboratory. We believe the release of our
data will provide a high quality database for further research and comparison.
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