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On the Number of Rooms

in a Rectangular Solid Dissection

Hidenori Ohta,†1 Toshinori Yamada†2

and Kunihiro Fujiyoshi†1

In these years, 3D-LSIs which consist of several silicon layers have been de-
veloped and attracted attention. For floorplaning of 3D-LSIs, a rectangular
solid dissection, which is a dissection of a rectangular solid into smaller rect-
angular solids by planes, also has attracted attention and been studied much.
However, not so many properties have been clarified about a rectangular solid
dissection. This paper presents the relation between the number of rooms and
that of walls in a rectangular solid dissection.

1. Introduction

A rectangular dissection (also called floorplan) is a dissection of a rectangle
into smaller rectangles (called rooms) by horizontal and vertical line segments
(called segs), and is used for a 2D-LSI layout design by placing at most one
module in each room and by wiring between modules along segs. In order that the
given modules may be embedded into the rooms, the floorplan is adjusted without
topological changing. It is well known that N = seg+1 in a rectangular dissection
without crossing any two segs 1), where N and seg are the number of rooms and
segs (not containing four edges of the bounding rectangle), respectively. The Q-
sequence proposed by Sakanushi, et al. 2) is based on the property of N = seg+1,
and can represent any rectangular dissection without crossing any two segs. It
is known that a near optimal floorplan (e.g., a floorplan with even smaller area)
can be obtained in a practical time by searching the corresponding Q-sequences
by simulated annealing.
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Recently, the development of 3D-MCMs (Multi Chip Modules) which a num-
ber of semiconductor chips pack into and 3D-LSIs consisting of a number of
layers integrating many active devices draws attention industrially. The follow-
ing problem, so called “3D block packing problem,” has been studied for their
layout designs 3)–6): Given rectangular solid blocks, place these blocks in the
minimum bounding rectangular solid without overlap. However, the problem of
wiring between modules is not considered in the 3D block packing problem at
all, and therefore routing in a 3D-LSI design may be carried out in disorder,
which leads to the increase of the wire length in the resulting 3D-LSI and a
degradation in performance.

In order to solve this problem, we can use a “rectangular solid dissection,”
which is a dissection of the rectangular solid into smaller rectangular solids (called
rooms) by dissection faces (called walls). Each of the modules is located in a room
and we can wire between modules along walls, which is similar to wiring along
segs in the 2D-LSI layout design. As a consequence, we can avoid disorderly
routing in a 3D-LSI and the degradation in performance.

As representations of a rectangular solid dissection, Slicing-tree 7) and O-
Sequence 8) were proposed. Slicing-tree can represent any slicing structure and
the O-sequence can represent any rectangular solid dissection if the rectangu-
lar solid dissection is under the following two restrictions. The first restriction
is that the shapes of all the walls are rectangles. The second one is that any
two walls do not cross each other. Any slicing structure is also under the two
restrictions.

By using Slicing-tree or O-Sequence with simulated annealing, we can search
for good rectangular solid dissection (3D-Floorplan). However, there are so many
rectangular solid dissections which the representations can not express. Those
rectangular solid dissections may include optimal solutions and we may miss good
solutions. By removing these restrictions and considering a general structure of
rectangular solid dissections, we will be able to search for a better solution.
However, no representation to express the general structure of rectangular solid
dissections has been proposed.

One of the reasons why such a good method has not been invented is that the
properties of a rectangular solid dissection are not clear. Basic properties of a
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rectangular dissection are well known while not so many properties have been
clarified about a rectangular solid dissection.

In this paper, we give one of the important basic properties, that is, the relation
between the number of rooms and that of walls in a rectangular solid dissection.

The rest of the paper is organized as follows: In Section 2, we present the
relation between the number of rooms and that of segs in an orthogonal dissection
of a rectangle, which is a generalization of a rectangle dissection. Using the
relation, Section 3 gives the relation between the number of rooms and that of
walls in a rectangular solid dissection of a rectangular solid. Finally, Section 4
gives our conclusion.

2. Orthogonal Dissection of Rectangle

Consider a rectangle, which is called an entire rectangle. The four edges of the
entire rectangle are called external segs. An orthogonal dissection of the entire
rectangle is a dissection of the rectangle into smaller regions, called rooms, by
horizontal and vertical line segments, called internal segs. Figure 1 shows an
orthogonal dissection of the rectangle into 13 rooms a, b, . . . , and m. Throughout
the section, a “seg” means an internal or external seg. Let S(Δ) denote the
number of internal segs in an orthogonal dissection Δ.

2.1 Segs
In the paper, we assume that each endpoint of a seg is on exactly one other

segment perpendicularly. By the assumption, the corner among four rooms b, c,
e, and f in Fig. 1 must be viewed as either of the following two cases (C1) and
(C2), but not as the case in Fig. 2 (a):
(C1) The point of intersection of two segs (Fig. 2 (b));
(C2) The common endpoint of two vertical [horizontal] segs on a horizontal

Fig. 1 Orthogonal dissection of rectangle which is dissected into 13 rooms a, b, . . . , and m.

[vertical] seg (Fig. 2 (c) [Fig. 2 (d)] ).
The points in (C1) and (C2) are called a cross point and cross-shaped corner,
respectively. Let C(Δ) denote the number of cross points in an orthogonal dis-
section Δ.

Similarly, the corner among three rooms b, i, and j must be viewed as an
endpoint of one seg on the other seg. An endpoint of a seg is called a T-shaped
corner if the endpoint is not an endpoint of the other seg.

We call the common endpoint of a vertical internal seg and horizontal internal
seg an L-shaped corner. Let L(Δ) denote the number of L-shaped corners in an
orthogonal dissection Δ.

2.2 Rooms and Holes
A room in an orthogonal dissection of the entire rectangle is each of maximally

connected regions obtained from the entire rectangle by deleting all segments.
Notice that a room contains no segment in its boundary, that is a room is open.
Let R(Δ) denote the number of rooms in an orthogonal dissection Δ.

A hole of room R is a maximally connected region surrounded by R. Notice
that a hole contains a boundary to R, that is a hole is closed. Therefore, room b

in Fig. 1 has two holes (Fig. 3), and any region containing room m is not a hole
of b. Let H(Δ) denote the summation of the number of holes over all the rooms
in an orthogonal dissection Δ.

(a) Two vertical segs and two horizontal segs (b) Intersection of two segs

(c) Two vertical segs (d) One vertical seg

and one horizontal seg and two horizontal segs

Fig. 2 The corner among 4 rooms b, c, e, and f in Fig. 1.
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Fig. 3 Two holes of room b in Fig. 1.

Fig. 4 Graph G obtained from Fig. 1.

2.3 Number of Rooms in an Orthogonal Dissection of a Rectangle
In the paper, we use the following famous theorem:
Theorem 1 (Euler’s polyhedron theorem) Let V , E, F , and C be the

numbers of vertices, edges, faces, and connected components in a plane graph.
Then, V − E + F = C + 1. �

And we have the following theorem:
Theorem 2 For any orthogonal dissection Δ of an entire rectangle,

R(Δ) = S(Δ) + C(Δ) − L(Δ) + H(Δ) + 1.

Proof Consider any orthogonal dissection Δ of an entire rectangle. As-
sume without loss of generality that there exists no cross-shaped corner in Δ;
Otherwise, we can move a seg to remove a cross-shaped corner without changing
the number of rooms, segs, cross points, L-shaped corners, and holes in Δ. Let G

be a graph obtained from Δ in a natural way, each vertex of which represents a
T-shaped corner, L-shaped corner, cross point, or a vertex of the entire rectangle.
Figure 4 shows a graph obtained from the orthogonal dissection in Fig. 1. Notice
that the number of T-shaped corners in the dissection Δ is (S(Δ) − L(Δ)) × 2.
The number of vertices in G is

V = (S(Δ) − L(Δ)) × 2 + L(Δ) + C(Δ) + 4,

and the number of connected components in G is C = H(Δ) + 1. Each seg l in
Δ is divided into

(# of T-shaped corners on l but endpoints of l) + (# of segs across l) + 1
edges in G, and so the number of edges in G is

E = (S(Δ) − L(Δ)) × 2 + C(Δ) × 2 + (S(Δ) + 4).
It is easy to see that G is a plane graph and that the number of faces in G is
F = R(Δ) + 1. Hence we conclude by Theorem 1 that

L(Δ) − C(Δ) − S(Δ) + R(Δ) + 1 = H(Δ) + 2,

that is
R(Δ) = S(Δ) + C(Δ) − L(Δ) + H(Δ) + 1.

�
An orthogonal dissection Δ of the entire rectangle is called a rectangular dis-

section if every room in Δ is a rectangle. Since a rectangular dissection has no
L-shaped corner and no hole, we have the following corollary from Theorem 2:

Corollary 1 R(Δ) = S(Δ) + C(Δ) + 1 for any rectangular dissection Δ. �

3. Rectangular Solid Dissection of Rectangular Solid

Consider a rectangular solid, called an entire rectangular solid, along the x-,
y-, and z-axes in the space. The six faces consisting of the entire rectangular
solid are called the external walls. A rectangular solid dissection of the entire
rectangular solid is a dissection of the rectangular solid into smaller rectangular
solids, called rooms, by planes, called internal walls, perpendicular to the x-, y-,
or z-axis. Throughout the section, a “wall” means an internal or external wall.
Each wall does not contain its boundary. A room contains no wall and does not
intersect any other room. Figure 5 shows a rectangular solid dissection into
nine rooms a, b, . . . , and i. Figure 6 shows a rectangular solid dissection into 6
rooms a, b, . . . , and f .

In a rectangular solid dissection, each room touches six faces of walls. A bound-
ary of an internal wall perpendicular to the x-axis consists of line segments along
the y- or z-axis. In the paper, we assume that for each line segment l along
the y-axis [z-axis] in a boundary of an internal wall perpendicular to the x-axis,
there is exactly one wall containing l and perpendicular to the z-axis [y-axis]
wall. We have a similar assumption to the internal wall perpendicular to the
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Fig. 5 Rectangular solid dissection.

Fig. 6 Rectangular solid dissection 2.

y- or z-axis. These assumptions were also applied in the literature 8). With the
assumptions, a boundary and a shape of each of the walls are specified. Ac-
cording to these assumptions, the rectangular solid dissection in Fig. 5 must be
dissected by five non-rectangle internal walls. Figure 7 shows five internal walls
of rectangular solid dissection in Fig. 5. Figure 6 must be dissected by two rect-
angles and two non-rectangle internal walls. Note that two internal walls cross
each other. Figure 8 shows four internal walls of rectangular solid dissection in
Fig. 6. Let W(Φ) be the number of internal walls in a rectangular solid dissection
Φ.

A hole of a wall is defined by a similar way of that in a room in Section 2.2.
That is a hole of a wall W is a maximally connected region surrounded by W .
Notice that a hole contains a boundary to W , that is a hole is closed. Let H(Φ)
be the total number of holes over all the internal walls in a rectangular solid
dissection Φ.

(a) Walls A, B, C, D, E (b) Wall A (c) Wall B

(d) Wall C (e) Wall D (f) Wall E

Fig. 7 Five walls in rectangular solid dissection in Fig. 5.

(a) Walls A, B, C, D (b) Wall A (c) Wall B (d) Walls C, D

Fig. 8 Four walls in rectangular solid dissection in Fig. 6.

3.1 Crosses—Intersections of Two Walls—
A cross of two walls is a line segment of their intersection in a rectangular solid

dissection. Notice that there exist multiple crosses of two walls, e.g., two crosses
ab and cd of walls A and B in Fig. 9. Let I(Φ) be the number of crosses in a

Journal of Information Processing Vol. 18 138–146 (Mar. 2010) c© 2010 Information Processing Society of Japan



142 On the Number of Rooms in a Rectangular Solid Dissection

(a) Two walls A and B (b) Wall A (c) Wall B

Fig. 9 Two crosses ab and cd of two walls A and B.

(a) Corner o of three walls (b) Wall A

(c) Wall B (d) Wall C

Fig. 10 Corner o of three walls A, B, and C.

rectangular solid dissection Φ.
3.2 Corners—Intersections of Three Walls—
The corner of three walls is the point of their intersection in a rectangular solid

dissection. Then, the corner is on the cross of any two of these walls. Figure 10

(a) Wall A containing vertex o

with interior angle of 270 degree

(b) Case (T1) (c) Case (T2)-(1) (d) Case (T2)-(2)

(e) Case (T2)-(3) (f) Case (T2)-(4) (g) Case (T3)

Fig. 11 Wall A containing vertex o with interior angle of 270 degree (Note that vertex o in
(b) is a three-cornered point).

shows the corner o of three walls A, B, and C. Let C(Φ) be the number of corners
in a rectangular solid dissection Φ.

3.3 Three-cornered Points
Consider a wall A whose boundary containing a vertex o with an interior angle

of 270 degree (Fig. 11 (a)). By the definition of a wall, we have a wall B [C]
containing a line segment ao [bo] and perpendicular to wall A. There are three

Journal of Information Processing Vol. 18 138–146 (Mar. 2010) c© 2010 Information Processing Society of Japan



143 On the Number of Rooms in a Rectangular Solid Dissection

cases for the dissection to be a rectangular solid dissection:
(T1) The dissection has no cross of A and B with endpoint o, and no cross of

A and C with endpoint o as in Fig. 11 (b);
(T2) The dissection has a cross with endpoint o and on wall A, either that of

A and B as in Fig. 11 (c) or (d), or that of A and C as in Fig. 11 (e) or (f);
(T3) The dissection has two crosses with endpoint o and on wall A, that of A

and B, and that of A and C (Fig. 11 (g)).
The vertex o in (T1) is called a three-cornered point. Then, three walls have
interior angle of 270 degree at vertex o. Let T (Φ) be the number of three-
cornered points in a rectangular solid dissection Φ.

3.4 Number of Rooms in a Rectangular Solid Dissection
Theorem 3 For any rectangular solid dissection Φ,
R(Φ) = W(Φ) −H(Φ) + I(Φ) + C(Φ) + T (Φ) + 1.

Proof The theorem is proved by induction on R(Φ).
If R(Φ) = 1 then the theorem holds since W(Φ) = 0, which implies that H(Φ) =
I(Φ) = C(Φ) = T (Φ) = 0.
Assume that R(Φ) ≥ 2. Assume for the inductive step that the theorem holds
for any rectangular solid dissection Ψ with R(Ψ) < R(Φ). Since R(Φ) ≥ 2, we
have W(Φ) ≥ 1. Fix any internal wall α (Fig. 12 (a)). Assume without loss
of generality that α is perpendicular to the z-axis, and that the infinity plane
containing α does not contain any other wall; Otherwise, we can move α in
the z-direction. Consider a rectangular solid dissection Φ′ obtained from Φ by
replacing α with α′ that is the wall of the cross section of the entire rectangular
solid containing α (Fig. 12 (b)). Let

R(Φ′) = R(Φ) + r, H(Φ′) = H(Φ) − h,

I(Φ′) = I(Φ) + s, C(Φ′) = C(Φ) + c,

T (Φ′) = T (Φ) − t.

Then, we have the following lemma:
Lemma 1 r = s + c − t + h.

Proof of Lemma 1 Consider the orthogonal dissection Δ such that the
entire rectangle in Δ corresponds to the rectangle containing four edges around
α′, and each internal seg in Δ corresponds to a line segment of intersection of

(a) Wall α (b) Wall α′

(c) Orthogonal dissection from α′ (d) Two rectangular solid dissections

Fig. 12 Proof of Theorem 3.

α′ −α and an internal wall in Φ′, where α′ −α is the region obtained from α′ by
deleting a region in α (Fig. 12 (c)). In the following, we will estimate each term
in equation

R(Δ) = S(Δ) + C(Δ) − L(Δ) + H(Δ) + 1.

Each of all the rooms, except α, in Δ corresponds to a distinct room in Φ which
is divided into two rooms by replacing α in Φ with α′ in Φ′. Thus, R(Δ) = r+1.

Consider any endpoint of an internal seg in Δ. Notice that each internal seg
in Δ is contained in a cross in Φ′. So, we have the following two cases, (E1) and
(E2):
(E1) The endpoint corresponds to the endpoint of the cross;
(E2) The endpoint corresponds to neither of the endpoints of the cross.
Therefore, each internal seg l in Δ can be classified into the following three
groups, (S0), (S1), and (S2):
(S0) Both endpoints of l are in (E1);
(S1) One endpoint of l is in (E1) and the other endpoint is in (E2);
(S2) Both endpoints of l are in (E2).
Let s0, s1 and s3 denote the numbers of segs in (S0), (S1), and (S2) respectively.
Then, S(Δ) = s0 + s1 + s2.
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(a) Point o in Φ corresponding to a corner in Φ′ (b) Δ corresponding to (a)

Fig. 13 Corner o in Φ′ corresponding to T-shaped corner in Ψ.

Let q denote the number of cross points in Δ. That is, q = C(Δ).
Each L-shaped corner in Δ corresponds to a point in Φ corresponding to vertex

o in either of (T1)–(T3) of Fig. 11, where A corresponds to α. Let t1, t2, and t3
denote the numbers of points in Φ corresponding to o in (T1), (T2), and (T3) of
Fig. 11, respectively. Then, L(Δ) = t1 + t2 + t3.

The holes of room α in Δ are the same as those of wall α in Φ, which disappear
in Φ′ by replacing α with α′. Therefore, H(Δ) = h.

From the above argument, we conclude by Theorem 2 that
r + 1 = (s0 + s1 + s2) + q − (t1 + t2 + t3) + h + 1. (1)

Any seg in (S0) corresponds to a new cross generated in replacing α with α′, and
one in (S2) corresponds to a cross obtained from two crosses by merging them.
Thus,

s = s0 − s2. (2)
Let p denote the number of corners in Φ′ corresponding to T-shaped corners in
Δ (Fig. 13). Since p + q + t3 corners are generated and t1 three-cornered points
disappear by replacing α with α′, we obtain that

c = p + q + t3 (3)
and

t = t1. (4)
Δ has s1 + 2s2 endpoints of case (E2). On the other hand, each endpoint of case
(E2) corresponds to a point o in either of (a) of Fig. 13, (T2) of Fig. 11 and (T3)
of Fig. 11. Note that we count two endpoints for o in (T3) of Fig. 11, one for seg

(a) Wall β across wall α′ (b) Wall β and corresponding graph G

Fig. 14 Conversion of Wall β across Wall α′.

ao and the other for seg bo. Therefore, we obtain that
p + t2 + 2t3 = s1 + 2s2. (5)

By Eqs. (1)–(5), we conclude that
r + 1 = (s0 + s1 + s2) + q − (t1 + t2 + t3) + h + 1,

r = (s0 − s2) + (p + q + t3) − t1 + h

+ (s1 + 2s2) − (p + t2 + 2t3)
= s + c − t + h.

�
Let Φ′′ be the rectangular solid dissection obtained from Φ′ by cutting each wall
across α′ into multiple walls by α′.

Lemma 2

W(Φ′) −H(Φ′) + I(Φ′) + C(Φ′)

= W(Φ′′) −H(Φ′′) + I(Φ′′) + C(Φ′′).

Proof of Lemma 2 Fix any internal wall β across α′ in Φ′ (Fig. 14 (a)),
and consider a graph G obtained from β by replacing each wall in Φ′′ corre-
sponding to β with a vertex and replacing each cross of α′ and β with an edge
(Fig. 14 (b)). It is easy to see that G is a connected plane graph, and that each
hole of β corresponds to an inner face in G. Let F be the number of walls in
Φ′′ corresponding to β, H be the number of holes of β, and C be the number of
cross segments by α′ and β. Since the numbers of vertices, edges, and faces are
F , C, and H + 1, respectively, we have by Theorem 1

F + (H + 1) − C = 2.

That is,
1 − H + C = F,
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and hence
W(Φ′) −H(Φ′) + Ip(Φ′) = W(Φ′′) −H(Φ′′) + Ip(Φ′′),

where Ip(Φ′) [Ip(Φ′′)] denotes the number of crosses parallel to α′ in Φ′[Φ′′].
Next, consider any cross l perpendicular to α′. If l is not across α′ then l is also
a cross in Φ′′. Otherwise, the intersection of l and α′ is a corner in Φ′, and l is
cut by α′ into two crosses in Φ′′. Hence,

Io(Φ′) + C(Φ′) = Io(Φ′′) + C(Φ′′),
where Io(Φ′) [Io(Φ′′)] denotes the number of crosses perpendicular to α′ in
Φ′[Φ′′].
Since I(Φ′) = Ip(Φ′) + Io(Φ′) and I(Φ′′) = Ip(Φ′′) + Io(Φ′′), we conclude that

W(Φ′) −H(Φ′) + I(Φ′) + C(Φ′)

= W(Φ′′) −H(Φ′′) + I(Φ′′) + C(Φ′′).

�
Consider two rectangular solid dissections Ψ1 and Ψ2 obtained from Φ′′ by cutting
the entire rectangular solid into two rectangular solids by α′ (Fig. 12 (d)). Since
R(Ψ1) + R(Ψ2) = R(Φ) + r, r < R(Ψ1) < R(Φ), and r < R(Ψ2) < R(Φ), we
obtain by the inductive hypothesis that

R(Ψ1) = W(Ψ1) −H(Ψ1) + I(Ψ1)

+ C(Ψ1) + T (Ψ1) + 1 and

R(Ψ2) = W(Ψ2) −H(Ψ2) + I(Ψ2)

+ C(Ψ2) + T (Ψ2) + 1,

that is
R(Φ) + r = R(Ψ1) + R(Ψ2)

= (W(Ψ1) + W(Ψ2)) − (H(Ψ1) + H(Ψ2))

+ (I(Ψ1) + I(Ψ2)) + (C(Ψ1) + C(Ψ2))

+ (T (Ψ1) + T (Ψ2)) + 2. (6)

Notice that W(Ψ1) +W(Ψ2) = W(Φ′′)− 1 since α′ is an internal wall in Φ′′ but
not in Ψ1 or Ψ2. By Lemma 2,

(W(Φ) − 1) − (H(Φ) − h) + (I(Φ) + s) + (C(Φ) + c)

= (W(Ψ1) + W(Ψ2)) − (H(Ψ1) + H(Ψ2))

+(I(Ψ1) + I(Ψ2)) + (C(Ψ1) + C(Ψ2)), (7)

and
T (Φ) − t = T (Ψ1) + T (Ψ2). (8)

By Lemma 1 and Eqs. (6)–(8), we conclude that

R(Φ) = (W(Φ) − 1) − (H(Φ) − h) + (I(Φ) + s)

+ (C(Φ) + c) + (T (Φ) − t) − r + 2

= W(Φ) −H(Φ) + I(Φ) + C(Φ) + T (Φ)

− (r − h − s − c + t) + 1

= W(Φ) −H(Φ) + I(Φ) + C(Φ) + T (Φ) + 1.

�

4. Conclusion

In this paper, we estimated the number of rooms in a rectangular solid dissec-
tion, and clarified the relation between “the number of rooms” and “the number
of walls, the shape of walls and the structure of walls.”Our future work is an
invention of a representation method of any rectangular solid dissection, which
will be based on the above property.
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