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This paper presents a novel labeling scheme for dynamic XML trees. The
scheme employs history-offset encoding method for multidimensional datasets
and takes advantage of this method by embedding an XML tree into a mul-
tidimensional extendible array. Even if structural updates are made on the
XML tree, no relabeling of nodes is required under the support of extra data
structure for preserving the document order. The most significant advantage
of our scheme over other existing labeling schemes is that the storage cost for
generated labels is very small irrespective of the order and the position of node
insertions; in most of our competing schemes, the generated label size would
become very large if the insertions occur around the same position. After de-
scribing our labeling scheme, label size, total label storage cost and node access
performance are examined compared with other sophisticated schemes, such as
ORDPATH, QED, DLN and Prime Numbering, and proves that our scheme
outperforms these schemes in some criteria.

1. Introduction

Recently, XML 1) is observed as an efficient way to represent the semi-structured
data, and efficient storing and querying XML data have gained more attention.
In order to handle structure of XML data efficiently, it is important to pro-
vide a labeling scheme for XML nodes that can well capture the underlying tree
structure. Various labeling schemes, such as range based labeling scheme 2), pre-
fix scheme 3),4), prime number labeling scheme 5) and other several approaches 6)

have been proposed and analyzed. In these labeling schemes, for a given label of
an XML node, its axis node such as parent, child or sibling can be determined
based on the given label value.

†1 Graduate School of Engineering, University of Fukui
†2 Toshiba Solutions Corporation

Reference 8) takes an approach which maps an XML tree to a complete k-ary
tree, and some improved schemes of this approach can be found in Refs. 9), 10).
In these schemes, a query on an axis such as parent or sibling can be quickly
answered through simple arithmetic operation on label values. However, they are
mainly for static XML trees; when new nodes are dynamically inserted, almost
all of the node label values are necessary to be recomputed to preserve document
order. Moreover, they are not efficient in consumption of label value space and
the space can be quickly saturated by the dynamic node insertions.

There exist some sophisticated labeling schemes with their encoding methods
which support dynamic structural updates such as node insertions and deletions.
These schemes include ORDPATH 11), QED 12) and DLN 13) etc. The advantage
of such schemes is that they can preserve document order without relabeling any
existing nodes even if dynamic structural updates are made. But the important
disadvantage of them is that their label size and encoded label value size can
increase rapidly when concentrated insertions of new nodes occur around the
same position in the XML tree.

This paper proposes a new labeling scheme based on history-offset encoding
method for multidimensional datasets presented in Refs. 14), 15). The scheme
takes advantage of the history-offset encoding method by embedding an XML
tree into a multidimensional dynamically extendible array. It can preserve the
advantage of the k-ary tree scheme while resolving or alleviating its drawbacks.
Namely, in our new labeling scheme, like in Refs. 8)–10), a query on an axis
can be quickly answered through simple arithmetic operation on label values,
and the scheme also preserves the advantage of the flexible extendibility of the
history-offset encoding method, which is appropriate for handling dynamic XML
trees. Moreover, the most significant advantage of our scheme over ORDPATH,
QED and DLN labeling schemes is that the storage cost for label values is small
irrespective of the node insertion order and places.

On the other hand, the important drawback of our scheme is that separate
data structures are necessary to preserve the document order among siblings for
dynamic node insertions or deletions, and the size of these data structures is
fairly large. But, practically, this drawback can be compensated by the direct
accessibility to the sibling nodes. Note that this drawback is not shared in the
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2 A Labeling Scheme for Dynamic XML Trees Based on History-offset Encoding

labeling schemes satisfying the above specified requirement, but the length of
labels tends to be long in order to include the document order information in the
label value itself depending on the node insertion order and places.

In general, the purpose of labeling XML tree nodes is to use the node labels for
retrieving nodes, so that the label of a node is to carry the position information
of the node in the XML tree. It is required that the ordering between arbitrary
two elements in an XML document corresponding to their nodes can be directly
known by using only such position information kept in the labels.

In our history-offset labeling scheme presented in this paper, similar to the
prime number labeling scheme presented in Ref. 5), is not possible to determine
the document order only by label values themselves, and some extra information
or data structures are necessary. So the scheme is not classified into a labeling
scheme in the strict sense specified above, but in the following we say the scheme
as a labeling scheme and an encoded value by the scheme as a label or label
value under such restriction. Both of our scheme and the prime number labeling
scheme employ a table in order to determine the document order among nodes.

After describing our labeling scheme, label size, total label storage cost and
node access performance are examined compared with DLN, ORDPATH, QED,
then proves that our scheme outperforms these schemes in some criteria. Then,
the prime number labeling scheme is also evaluated and compared with our
scheme. The rest of the paper is organized as follows. Section 2 introduces
the background of our new labeling scheme and Section 3 presents the new la-
beling scheme. In Section 4, we provide the way to compute label value of an
axis node of a context node. After discussing related work in Section 5, we give
experimental results of our scheme compared with other competing schemes in
Section 6. The last section concludes the paper.

2. History-offset Encoding Method

In this section, we briefly describe history-offset method 14),15) for encoding mul-
tidimensional datasets as the basis of our labeling scheme. Here we discuss on
implementation of a relational table, which is a typical example of a multidimen-
sional dataset.

2.1 Extendible Array
In the conventional implementation of relational tables, each tuple is placed on

secondary storage one by one in the input order. This arrangement suffers from
some shortcomings.
(1) The same column values in different tuples will have to be stored many times

and hence the volume of the database increases rapidly. Such a situation is
typical in the columns of categorized value like “blood group”, “sex” etc.

(2) In the retrieval process of tuples of a specified column value, unless some
indexes are prepared, it is necessary to load tuples in the table sequentially
in main memory and check the column value. In consequence, the whole
table should be fetched into memory. Therefore retrieval time tends to be
long.
The implementation using multidimensional arrays can be used to overcome
problem (2) above and can perform retrieval not in the sequential manner.
Each column of a relational table is mapped to a distinct dimension of the
corresponding array. Nevertheless, such an implementation causes further
problems:

(3) Conventional schemes for storing arrays do not support dynamic extension
of an array and hence addition of a new column value is impossible if the size
of the dimension overflows.

(4) In ordinary situation, implemented arrays are very sparse.
The concept of extendible array we will employ is based upon the index array

model presented in Ref. 16). An n dimensional extendible array A has a history
counter h and three kinds of auxiliary table for each extendible dimension i(i =
1, . . . , n). See Fig. 1. These tables are history table Hi, address table Li, and
coefficient table Ci. The history tables memorize extension history. If the size of
A is [s1, s2, . . . , sn] and the extended dimension is i, for an extension of A along
dimension i, contiguous memory area that forms an n − 1 dimensional subarray
S of size [s1, s2, . . . , si−1, si+1, . . . , sn−1, sn] is dynamically allocated. Then the
current history counter value is incremented by one, and it is memorized on Hi,
also the first address of S is held on Li. Since h increases monotonously, Hi is
an ordered set of history values. Note that an extended subarray is one to one
corresponding with its history value, so the subarray is uniquely identified by its

IPSJ Transactions on Databases Vol. 3 No. 1 1–17 (Mar. 2010) c© 2010 Information Processing Society of Japan
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Fig. 1 An extendible array.

history value.
As is well known, element (i1, i2, . . . , in−1) in an n-1 dimensional fixed size

array of size [s1, s2, . . . , sn−1] is allocated on memory using addressing function
like:

f(i1, . . . , in−1) = s2s3 . . . sn−1i1 +s3s4 . . . sn−1i2 + . . .+sn−1in−2 + in−1 (1)

We call < s2s3 . . . sn−1, s3s4 . . . sn−1, . . . , sn−1 > as a coefficient vector. Such a
coefficient vector is computed at array extension and held in a coefficient table.
Using these three kinds of auxiliary tables, the address of element (i1, i2, . . . , in)
can be computed as:
(a) Compare H1[i1],H2[i2], . . . , Hn−1[in]. If the largest value is Hk[ik], the sub-

array corresponding to the history value Hk[ik], which was extended along
dimension k, is known to include the element.

(b) Using the coefficient vector memorized at Ck[ik], the offset of the element
(i1, . . . , ik−1, ik+1, . . . , in) in the subarray is computed according to its ad-
dressing function in Eq. (1).

(c) Lk[ik]+(the offset in (b)) is the address of the element.
For example, consider the element 〈2, 2〉 in Fig. 1. Since, H1[2] < H2[2], it can

be known that the element is involved in the extended subarray S of history value
H2[2] = 4. So the first address of S is known to be L2[2] = 56. Since the offset
of the element 〈2, 2〉 from the first address of S is 2, the address of the element

Fig. 2 Relational table implementation using an extendible array.

is determined as 58.
Note that we can use such a simple computational scheme to access an ex-

tendible array element only at the cost of small auxiliary tables.
2.2 History-offset Encoding Method and HOMD Implementation

Model
Figure 2 shows a realization of a two column relational table using a two

dimensional extendible array. In general, for a relational table R of n columns,
each column can be mapped to a dimension of an n dimensional extendible array
A and each column value of a tuple in R can be uniquely mapped to a subscript
of the dimension. Hence, each tuple in R can be mapped to an n dimensional
coordinate of an element in A. Moreover each coordinate of an element in A can
be mapped to the history value of the subarray S including the element and the
offset value in S as was stated in Section 2.1. In consequence, each tuple in R

can be encoded to its corresponding pair of <history value, offset value> . We
call this tuple encoding method as history-offset encoding.

This encoding method is the basis of our XML node labeling scheme which will
be presented in the later sections. In the coordinate representation (i1, i2, . . . , in)
of an array element location, if the number of the dimensions of the extendible
array becomes larger, the length of the coordinate becomes longer proportionally
and the storage to hold tuples become larger. On the contrary, in our history-
offset encoding, even if the number of dimensions becomes larger, the size of the
encoded tuple is fixed in short; i.e., only the two kinds of scalar value. It should
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Fig. 3 Relational table implemented by HOMD.

be noted that this encoded tuple also can be easily decoded to the corresponding
coordinate. This saves over all storage for a relational table or label storage
for XML tree nodes encoded by our history-offset method. Moreover, internal
handling of table tuples or XML nodes in DBMS becomes simple and efficient
owing to the fixed size reference.

HOMD (History Offset implementation for Multidimensional Datasets) is an
implementation scheme of multidimensional datasets using history-offset encod-
ing method. Figure 3 is the HOMD implementation of the relational table in
Fig. 2. HOMD is a pair (M,A) where A is an n dimensional extendible array
created for R and M is a set of mappings. Each mi(1 ≤ i ≤ n) in M maps
the i-th attribute values of R to subscripts of the dimension i of A. A will be
often called as a logical extendible array. mi is implemented using a single B+

tree called CVT (key subscript ConVersion Tree), and A is implemented using a
single B+ tree called RDT (Real Data Tree) and n HTs (HOMD tables), each of
which is defined in the following.

Definition 1 CVT: CV Tk for the k-th attribute of an n dimensional datasets
is defined as a structure of B+ tree with each distinct attribute value v as a key
value and its associated data value is subscript i of the k-th dimension of the
logical extendible array A. Hence the entry of the sequence set of the B+ tree is
the pair (v, i). Subscript i references to the corresponding entry of the HOMD

table in the next definition.
Definition 2 HT: HT (HOMD Table) corresponds to the auxiliary tables

explained in Section 2.1. It includes the history table and the coefficient table.
Note that the address table can be void in our HOMD physical implementation.

Definition 3 RDT: The set of the pairs <history value, offset value> for all
of the effective elements in the extendible array are housed as the keys in a B+

tree called RDT. Here, the effective elements mean the ones that correspond to
the tuples in the relational table.

Note that RDT together with HTs implements the logical extendible array on
the physical storage. A key <history value, offset value> occupies fixed size stor-
age and we assume that the history value is arranged in front of the offset value.
Hence the keys are arranged in the order of their history values and keys that
have the same history value are arranged consecutively in the sequence set of
RDT. Note also that since only effective elements are stored in RDT, problem
(4) discussed in Section 2.1 can be resolved.

Definition 4 HOMD: For an n dimensional datasets, its HOMD implemen-
tation is the set of n CVTs, n HTs and RDT.

3. History-offset Labeling Scheme for Dynamic XML Trees

In this section, using history-offset encoding method described in Section 2.2,
we propose our labeling scheme for XML tree nodes. Our scheme takes advantage
of the history-offset method by embedding XML tree into HOMD data structure.

3.1 Labeling Scheme Based on Fixed Size Multidimensional Array
As is shown in Fig. 4, each depth level of an XML tree is mapped to a dimension

of a usual fixed size multidimensional array. The number that represents each
node’s relative position among its siblings is mapped to the subscript value of the
corresponding array dimension. Therefore, each node can be uniquely specified
by its corresponding n dimensional coordinate in the multidimensional array. It
can be labeled with the value computed for the corresponding coordinate using
the addressing function of the multidimensional array. Note that each level of an
XML tree is mapped to the dimension number of the array in ascending order,
and in particular the root node of XML tree is labeled with 0.

In this approach, using the addressing function, the label value of a node can
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Fig. 4 Labeling XML tree using fixed size multidimensional array.

be easily computed from the coordinate of the node. Conversely, the label value
can be decoded to the corresponding coordinate using the coefficient vector of
the addressing function. Moreover, given the label value of a node, labels of its
parent, siblings, and children can be directly known through simple arithmetic
operations.

But this approach assumes that the array size is fixed in every dimension.
It cannot handle dynamical structural updates on an XML tree, such as new
node insertions or existing node deletions that affect the dimension size. For
such updates, extension or reduction of the multidimensional array is required.
But this results in modification of the addressing function, which triggers re-
computation of all node label values. Moreover, when height of an XML tree
increases, re-computation of all label values is also caused, since a new dimension
of the multidimensional array needs to be created.

Although there are many advantages in the multidimensional array based la-
beling scheme, it can only handle static XML trees. Similar approaches such as
described in Refs. 8)–10) which embed an XML tree into an k-ary tree share the
same advantages and disadvantages described above.

3.2 Labeling Scheme Based on History-offset Encoding
To overcome the problem of the fixed size multidimensional array based labeling

scheme, we employ the history-offset encoding method described in Section 2.2.
An XML tree can be embedded in HOMD data structure described in Section 2.2.

Fig. 5 Labeling XML tree using history-offset encoding.

An example of an XML tree embedded in HOMD is shown in Fig. 5. As described
in Section 3.1, also in HOMD, each level of XML tree is mapped to a dimension of
HOMD, and each node’s relative position among its siblings is uniquely mapped
to a subscript of the dimension. Thus, the coordinate of a node can be obtained.
Note that for the path expression from the root node to the specified node,
each element name in the path expression can be converted to the subscript
of the corresponding dimension of HOMD by using its CVT. It is assumed
that the element name conversions have already been done as other XML tree
node labeling schemes, so the CVTs in HOMD do not matter in the succeeding
discussions.

Using our history-offset encoding, a node can be labeled with the pair of history
value and offset value which will be stored in RDT of HOMD. A coefficient vector
is prepared for each subarray in HOMD, while in a fixed size multidimensional
array a single coefficient vector is prepared as a whole. A coefficient vector
can be used for computing labels of parent, child and sibling axis nodes. In
Fig. 5, assuming that an XML tree grows in pre-order node sequence, extension
of subarrays and <history value, offset value> labels of the tree nodes are shown.

Note that in our history-offset encoding based labeling, the extendibility of
HOMD makes the relabeling and reorganization of existing nodes unnecessary
even if any new nodes are dynamically inserted. Moreover, even if an XML tree
grows high, namely the dimensionality of HOMD increases, the size of node’s
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label value is being fixed in short.
3.3 Handling Insertion and Deletion of an XML Tree Node
XML tree node insertion can be accommodated by an extended subarray in

HOMD. The extension would occur when a new node insertion causes the max-
imum fan out of the level to increase. For example, see the XML tree in Fig. 5.
If a new node is inserted on the first level of the XML tree, the first dimension
of HOMD would be extended and a subarray of history value 6 is dynamically
allocated and attached along the first dimension. The node of label < 6, 0 > can
be placed at the position of coordinate (3, 0). On the contrary, node deletion
can be accommodated by reduction of a subarray. For example, deletion of all
nodes in the subtree rooted at node labeled < 5, 0 > would cause the subarray
of history value 5 to be deleted and the first dimension of HOMD would shrink
by one.

3.4 Handling Dynamic Changes of XML Tree Height
When XML tree height increases by one, number of dimensions of HOMD

also increases by one. Dimensional extension of HOMD can be very efficiently
handled. Figure 6 shows addition of a new dimension against a two dimensional
HOMD. When a new dimension is added to an n dimensional HOMD, HOMD
table of the new dimension would be created and initialized. For all the existing
elements in the original HOMD the subscript of the newly added dimension
becomes 0. It should be noted that relabeling of the nodes in the original HOMD
is not necessary, since <history value, offset value> labels of any nodes are not
necessary to be modified. Conversely, for the case that the height of an XML tree
decreases by the deletion of all the nodes on maximum level of the XML tree,
dimension of HOMD decreases by one. Note also that relabeling of the nodes in
the original HOMD is not necessary.

On the contrary when drop column or add column command for a relational
table is performed, great overhead is required since reorganization of all the
existing tuples would be necessary.

3.5 Preserving Order among Siblings in Dynamic Environment
HOMD cannot preserve the logical order (i.e., document order) among siblings

in dynamic environment, because the subscript value for each child node of the
same parent node are assigned in ascending order of insertion time irrespective of

Fig. 6 Dimensional extension in HOMD.

the logical order among them. In order to preserve the logical order among sibling
nodes, an additional table called os table (order of siblings table) is maintained
in each parent node. os table is a one dimensional array and serves to keep the
subscripts in the sibling order. It keeps the subscript of the first child. See Fig. 7.

4. Axis Computation

For the labeling schemes presented in Section 3, this section describes compu-
tation of axes defined in XPath language18).

4.1 Labeling Scheme Based on Fixed Size Multidimensional Array
Using the addressing function, address of a node can be computed based on its

coordinate as described in Section 3.1, and the computed address can serve as
the label of the node. The label of its parent, siblings can be computed based on
the label. We call the node labeled with m simply as node m and denote l(m)
for the level of the XML tree on which node m is located. Let Cl be the l-th
value of the coefficient vector. For node m, the labels of its parent, children, and
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Fig. 7 os table.

next sibling can be computed using the below simple formulae:
parent: 0 (l(m) = 1)

m − m% Cl(m)−1 (l(m) ≥ 2),
k-th child: m + k ∗ Cl(m)+1 (l(m) + 1 < max level)

m + k (l(m) + 1 = max level)
next sibling: m + Cl(m) (l(m) < max level)

m + 1 (l(m) = max level)
Here a%b denotes the remainder of m divided by b. Figure 8 shows several

axes of node (2, 2, 0, 0) as being the context node. Note that the level of this
context node is 2.

4.2 Labeling Scheme Based on History-offset Encoding
In our history-offset encoding method, if the history values of the labels of the

context node and its query node along an axis are the same (e.g., nodes < 5, 1 >

and < 5, 2 > in Fig. 5), both nodes can be known to belong to the same subarray.
In this case, the label of a query node can be computed based on the similar
way as described in Section 4.1, since the size of the subarray is fixed in each
dimension.

However, if the history values of the both nodes’ labels are different (e.g., nodes
< 2, 1 > and < 3, 1 > in Fig. 5), these two nodes are known to belong to different
subarrays. In this case, we cannot compute the label of the query node based
on the formulae described in Section 4.1. Instead, the label should be calculated
based on its corresponding coordinate in the logical extendible array in HOMD.

Fig. 8 XML tree axes.

For example, consider the context node (2, 2, 0, 0) in Fig. 8, the coordinate of
the parent, namely (2, 0, 0, 0) can be known by replacing coordinate value at the
position of the context node level with 0. Then coordinate (2, 0, 0, 0) is encoded
to the label <history value, offset value> of the parent node.

Decoding of the label <history value, offset value> of a node to its correspond-
ing coordinate (i1, i2, . . . , in) can be performed as:
(i) The dimension p and the subscript ip corresponding to the subarray including

the node can be known from the history value by referring to the history table.
(ii) Let o(o > 0) be the offset value of the label and let (c1, c2, . . . , cn−2) be the

coefficient vector of the subarray determined in (i), then o can be computed
as:

o = c1i1 + c2i2 + . . . + cp−1 ∗ ip−1 + cp ∗ ip+1 + . . . + cn−2 ∗ in−1 + in
Therefore, the coordinate ik can be computed as:

i1 = o/c1, in = o%cn−2,

ik = (o%ck−1)/ck (k < p),
ik = (o%ck−2)/ck−1 (k > p)

Conversely, encoding of the coordinate of a node into its label <history value,
offset value> can be performed as in the element address computation of an
extendible array explained in Section 2.1; the largest history value in step (a)
gives history value and the offset in step (b) gives offset value.
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4.3 Determining Document Order Between Two Node Labels
Owing to the os table introduced in Section 3.5, the labeling scheme described

in Section 4.2 can output the computed labels in document order for the axes
shown in Fig. 8 with no additional cost. But, for the two arbitrary node labels
l1 and l2 in the XML tree, the following separate computation is necessary to
determine the order between them. It begins with the computation of the least
common ancestor node label of l1 and l2. Let (i1, i2, . . . , in) and (j1, j2, . . . , jn)
be the decoded coordinates of l1 and l2 computed according to the computations
described in Section 4.2.
(1) Let k = 1, and compute ik and jk

(2) while (ik == jk) { k + +; compute ik and jk}
/* finding the least common ancestor */

(3) from the first subscript of the os table kept in the node (i1, . . . , ik−1, 0, . . . , 0),
traverse the os table until the subscript ik or jk is found.

(4) if ik is found, l1 < l2, otherwise l2 < l1.

5. Related Work

First we overview two kinds of approach related to our labeling schemes. One
is similar to our approach, in which the label of a query node can be obtained
by simple computation on the context node label. In Ref. 7), a labeling scheme
employing a k-ary complete tree is proposed. An XML tree can be embedded
into a k-ary complete tree, in which simple arithmetic operation can afford the
label of a query node along an axis like in Section 4.1. But as was stated in the
introductory section, this scheme is only for static XML trees, since overall rela-
beling of XML nodes would be caused by dynamic insertion of a node. Moreover,
the complete tree is so sparse in general and the label space would be wastefully
consumed. In Refs. 8) and 9) this deficiency of label space consumption is alle-
viated by setting the least arity on each level of the XML tree instead of using
a complete tree, in which the arity is the same in every level. For the same
deficiency, Ref. 10) discusses another approach which is essentially the same as
Refs. 8), 9).

These improved approaches can delay the saturation of label space, but the
saturation is unavoidable for large or irregular shaped XML trees. In contrast

with these approaches, our history-offset labeling scheme can flexibly handle
dynamic XML trees, and the label space saturation can be significantly delayed
than the above schemes. In our labeling scheme, the scheme proposed in Ref. 15)
can be applied for the label space saturation problem.

The other approaches concern to handling structural updates efficiently. Node
label encoding schemes for dynamic XML trees such as ORDPATH 11) and
DLN 13) have been proposed. In QED 12) structural updates can be efficiently
supported based on lexicographical order. Moreover, we can replace the decimal
numbers in the prefix labeling scheme for a hierarchical structure represented by
a tree with QED codes (called as QED-PREFIX later on). The main benefit of
these labeling schemes is that they can maintain document order without rela-
beling even if structural updates are made against the XML tree. For example in
ORDPATH, a new label ‘1.4.1’ can be inserted between two existing labels ‘1.3’
and ‘1.5’. For DLN, a new label ‘1.2/1’ can be inserted between two existing
labels ‘1.2’ and ‘1.3’. In QED-PREFIX, a new binary string label ‘10.1010’ can
be inserted between two existing labels ‘10.10’ and ‘10.11’. Note that they are
based on prefix labeling schemes and the document order among nodes can be
determined by comparing their labels in lexicographical order.

Although the approaches of these labeling schemes can flexibly handle struc-
tural updates while keeping the document order, the label sizes in them can be
easily increased when node insertions are made. Specifically, the label sizes can
be extremely increased in the cases of concentrated insertions around the same
position. In Fig. 9, choosing ORDPATH scheme as an example, we can observe
that concentrated node insertions increase label sizes extremely fast. In the pres-
ence of such concentrated node insertion sequence, the label size in DLN and

Fig. 9 Concentrated insertions in ORDPATH labeling.

IPSJ Transactions on Databases Vol. 3 No. 1 1–17 (Mar. 2010) c© 2010 Information Processing Society of Japan
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QED code in QED-PREFIX will also be much increased.
Prime number labeling scheme 5) takes an approach similar to our history-offset

scheme, where an extra data structure is supplied to know the document order
of labels. The scheme will be discussed and evaluated in Section 6.5.

6. Experimental Evaluation

We evaluate and compare the performance of our scheme based on the history-
offset encoding described in Section 3, with ORDPATH, QED (QED-PREFIX),
and DLN labeling schemes. The experiments were performed on Sun Blade 1000
Workstation of 64 bits (CPU: UltraSparc III (750 MHz), memory size: 512 MB,
disk storage: 208 GB, OS: Solaris 8).

6.1 Setup of Experiments
6.1.1 XML Datasets and Storing Node Labels
We used an XML document produced by XMark document generator 19). Size

of the produced XML document is 15,214,640 bytes. From the XML document,
we extracted and generated four kinds of XML dataset shown in Table 1, which
describes the height of the corresponding XML tree, total number of nodes,
average level of nodes in the tree.

For each kind of XML dataset, we used SAX 20) to produce file XF for storing
the corresponding XML tree shape (i.e., topology). In order to handle dynamic
insertions of XML tree nodes and to enable both random and range access of node
labels efficiently, we used B+ trees to store node labels on secondary storage. For
history-offset scheme this B+ tree is RDT and for the other schemes this B+ tree
is called LT (Label Tree). Being XF file as input, the label generator computes
the labels for the four kinds of labeling scheme according to the two kinds of
node insertion order described in the next subsection. An XML tree grows from
empty and the final shape of an XML tree after insertion of all nodes is the same
irrespective of the node insertion order; i.e., same as specified in XF file. In our
experiment however, it should be noted that instead of actually inserting new
nodes and constructing an XML tree, the label values of the nodes are computed
and inserted into RDT or LT . In the following for the ease of understanding, we
often say as if an XML tree is actually constructed.

Table 1 Tested XML trees.

tree height total num. of nodes average node level
tree1 3 62,474 2.89
tree2 5 261,048 4.00
tree3 6 297,163 4.24
tree4 7 334,176 4.55

6.1.2 Node Insertion Order
In the labeling schemes other than history-offset scheme, the label size depends

on the order of node insertions. In order to evaluate the required label size and
total label storage cost, labels for XML tree nodes are generated according to the
following two kinds of depth-first node insertion order. One is random insertion
order and the other is concentrated insertion order. At a new node insertion, for
the context node, the random insertion order randomly selects one of the child
nodes in XF and the concentrated insertion order selects the child node around
the same position as is shown in Fig. 9.

6.1.3 Handling Large Size Labels and os Tables
As was stated in Section 5, in the labeling schemes other than our history-offset

scheme, size of labels becomes very large depending on the node insertion order.
In this situation, it is inappropriate to insert large label values of variable size
into B+ tree as keys. Here, if the size of a label is sufficiently small (e.g., within
64 bits), the label value itself is kept in the data part of a B+ tree called LT,
which is stored on the secondary storage. Otherwise, it is stored in a separate
disk file called LF and its reference in LF is kept in the data part of LT . An
identifier reflecting the document order is provided to each generated label. The
identifier is stored on LT as a key with its associated label value or reference to
the label value in the data part; the identifiers are arranged in document order on
the sequence set of LT . When a large size label is retrieved, being the specified
identifier as a key, LT is searched to find the reference to it.

On the other hand, in our history-offset scheme, although label size is always
kept fixed in short, os table occupies considerably large storage if the number of
children is large as will be stated in Section 6.2.1. Therefore similar to the label
handling of the other schemes, if the size of os table is large, it is stored in the
separate disk file called OSF and its reference is held in the data part of RDT .
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Fig. 10 Relationship among XF , LT , LF and OSF .

If the size is sufficiently small, the os table itself is held in the data part.
The relationship among XF , LT , LF and OSF is shown in Fig. 10.
6.2 Label Size Evaluation
In this section, storage costs in both random insertion, in which nodes are

inserted at randomly chosen positions, and concentrated insertion stated in Sec-
tion 6.1.2 are evaluated.

6.2.1 Random Insertion
In random insertion, XML tree continues to grow by selecting randomly one of

the child nodes of a context node as described in Section 6.1.2.
The maximum label size, average label size and total label size in each labeling

scheme are shown in Fig. 11. Note that in our history-offset method, the max-
imum and average label size are the same since the length of a label <history
value, offset value> should be fixed. We can observe that the label size in our
scheme is less than the maximum size in the other schemes in every XML tree,
and ORDPATH and our scheme are superior to the other schemes in the average
and total label storage size.

In our history-offset labeling scheme, each non-leaf node maintains a list of

Fig. 11 Label size in random insertion.

subscripts in os table to preserve the document order among its children. If the
number of the children of a node is n, the storage cost of the os table including
the subscript of the first child is:

�(n + 1)log2(n + 1)�.
The total storage cost of the os tables for all non-leaf nodes in the XML tree is
dependent only on the final topology of the XML tree after node insertions and
not dependent on the order of the node insertions.

For our history-offset labeling scheme, in addition to the total label storage cost
in Fig. 11, extra storage for os tables and HOMD tables including history tables
and coefficient tables described in Section 2.1 would be included. Figure 12
shows the overall storage cost including these kinds of extra storage cost. We
can observe that the cost of HOMD tables is very small, the cost of os tables
is lower than that of the total label storage cost, and the overall storage cost is
significantly higher than those of the other schemes shown in Fig. 11.

6.2.2 Concentrated Insertion
In concentrated insertion, XML tree continues to grow by selecting one of the

child nodes of a context node in concentrated order.
Figure 13 shows the storage size in the labeling schemes other than our
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Fig. 12 Overall storage cost for history-offset scheme.

Fig. 13 Label size in concentrated insertion.

history-offset scheme after concentrated insertion. The size in our scheme is
almost the same as those of the random insertion shown in Fig. 11. In general
the storage cost for generated labels in history-offset scheme is constantly small
irrespective of the order and the positions of node insertions. In the labeling
schemes other than the history-offset scheme, as can be observed in Fig. 13, the
three kinds of label size in concentrated insertion is extremely increased com-

Fig. 14 Construction time.

pared with those of random insertion shown in Fig. 11. On the contrary, those
in our scheme do not increase and are nearly constant, because the label size in
our scheme is heavily dependent on the shape of XML tree regardless of the dy-
namic insertion order. Moreover, size of the os table of a node is also unchanged
since its size depends only on the number of its children rather than the insertion
order.

6.3 Construction Time
For each labeling scheme, Fig. 14 shows construction time of XML trees con-

structed by concentrated insertion using XF file described in Section 6.1.1.
As can be seen, our scheme is better than DLN and ORDPATH, and a little

worse than QED-PREFIX. DLN and ORDPATH have much larger construction
time, because the number of components in a node label delimited by separators
(such as ‘.’ and ‘/’ in case of DLN) becomes large, so the number of bit operations
required in encoding to binary bit string label value would increase.

On the contrary, QED-PREFIX has smaller construction time. In QED-
PREFIX, although size of QED code encoded for each component of a node label
would increase, the number of components in a node label is constant irrespective
of the insertion order. So the number of bit operations required in encoding to
binary bit string label value would be smaller than DLN and ORDPATH.
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Fig. 15 Query performance of child and descendant axis (concentrated order).

Fig. 16 Query performance of sibling axis (concentrated order).

6.4 Query Performance
For each tree in Table 1, 10% of nodes in the tree are randomly selected

as context nodes, and for these context nodes the total sum of the retrieval
times are measured for four kinds of axis (child, descendant, preceding-sibling
and following-sibling) respectively. For the concentrated insertion order, Fig. 15
shows the total sum of the retrieval times for child and descendant respectively,
and Fig. 16 shows the sum for preceding-sibling and following-sibling respec-

Fig. 17 Query performance of child and descendant axis (random order).

tively.
As can be seen, our scheme outperforms the other ones in these axes, especially

in sibling axes. This is because retrieval along sibling axis in the other schemes
needs to traverse the sequence set of LT B+ tree explained in Section 6.1.1, which
is arranged in document order, to find the label of the next sibling. On the other
hand in the history-offset scheme, labels can be directly computed by referring
to os table. To eliminate this disadvantage of the other schemes, an appropriate
index should be created with additional space cost.

Figures 17 and 18 show the query performance in the case of trees constructed
by random insertion order. From Fig. 18 we can see that the retrieval times
of ORDPATH are much less than those of DLN and QED-PREFIX.In random
insertion order, as can be seen from Fig. 11, label sizes of ORDPATH are rather
less than those of the other schemes; even in the tree of height 7, the average
label size is within 40 bits. The reason of the superiority of ORDPATH is in that
most of the labels in ORDPATH are kept on the data part of the label tree LT

and the external file LF is scarcely referenced. Actually, the frequency of the
references to LF in ORDPATH is under 0.12% of those in DLN and QED. In
the history-offset scheme, the label size in the same tree is always 53 bits and
smaller than 64 bits, so every label is on the key part of RDT , but os tables in
the external file OSF are often referenced.
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Fig. 18 Query performance of sibling axis (random order).

Fig. 19 Top-down labeling with PRIME.

6.5 Comparison with Prime Number Labeling Scheme
As was mentioned in the introductory section, like os tables of our history-offset

scheme, the prime number labeling scheme (abbreviated as PRIME hereafter) in
Ref. 5) employs an auxiliary table named SC table in order to determine the
document order among XML tree nodes. PRIME takes advantage of the unique
property of prime numbers to support order-sensitive queries for dynamic XML
trees.

Figure 19 illustrates an example of top-down node labeling with PRIME. Each
node is given a unique prime number and the label of each node is the product
of its parent node label and its own prime number named self label, which is
the next prime number supplied by the prime number generator at new node

Fig. 20 Labeling in preorder with PRIME.

Fig. 21 Label storage costs in PRIME and History-offset (tree4).

insertion. In the figure, the number inside a node represents the node label with
its self label in parentheses. The number outside a node represents the insertion
order. As can be observed in Fig. 19,
(a) When the XML tree becomes taller and the path length of the inserted node

from the root node becomes longer, the label size of the inserted node would
become large.

(b) Label itself of a node does not carry the document order information of the
node like in the history-offset scheme.

6.5.1 Label Storage Size
In PRIME scheme, assume that for a newly inserted node, a prime number is

generated and assigned as its self label in ascending order. If an XML tree grows
in preorder as in Fig. 20, larger prime numbers are assigned to the nodes on the
lower level of the XML tree. In this situation, both of the average label size and
total label storage size of the inserted nodes tend to be large. On “tree 4” shown
in Table 1, Fig. 21 shows the maximum and average label size, and total label
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storage size in the following three kinds of node labeling. Note again that the
storage cost for generated labels in the history-offset scheme remains constant
irrespective of the node insertion order.
(1) Labeling in preorder insertion with PRIME scheme
(2) Labeling in random insertion order described in Section 6.1.2 with PRIME

scheme
(3) Labeling with the history-offset scheme.
From Fig. 21, we can see that the label size and the total label storage cost in

PRIME are worse than our history offset scheme. It is noted that the label size in
PRIME is greater than 128 bits, which means that the arithmetic operation such
as multiplication or division on label values should be performed by software.

6.5.2 Auxiliary Storage Size
In order to overcome the drawback of PRIME scheme stated in (b) above, the

scheme provides an auxiliary data structure, which retains the document ordering
number of a node. This data structure consists of SC table and order number
table. Using both of the tables, the document order of an arbitrary node can be
known. Reference 5) should be referred to for the detail. On “tree4” shown in
Table 1, Fig. 22 shows the overall storage cost in each labeling described in the
previous subsection. Note that the size of both SC table and order number table
is proportional to the total number of nodes in the XML tree.

Fig. 22 Overall storage costs in PRIME and History-offset (tree4).

6.5.3 Query Performance
In PRIME, cost of a new node insertion is considerably high. If a new node

of document order number n is inserted into an XML tree with total N nodes,
the following should be performed. First, by searching order number table, or-
der numbers greater than or equal to n are incremented by one. Then the SC
values corresponding to the incremented order numbers are recalculated. On the
other hand, in our history-offset scheme, the update of os table is limited to
that of the parent node. As for query performance, in the context of our exper-
iment described in Section 6.4, the following situation in PRIME scheme would
considerably deteriorate the query performance:
(1) Label size tends to be larger than that of the history offset scheme, and the

arithmetic operations on label values should often be performed by software
for a large scale XML document.

(2) Range of the labels to be searched on the sequence set of the label tree is larger
than the other schemes, since the label value itself doesn’t carry document
order information.

In respect to (2) above, for example, in retrieval of the sibling axis of the context
node’s label lc, first the label of the parent’s node has to be found in the label
tree, then a label value l on the sequence set is checked to see whether it is a
sibling node’s label of the context node. The checking is repeated until the end
of the sequence set. If l is divisible by the parent node’s label value and the
quotient is a prime number, l can be judged as a sibling node’s label. If l is
judged as a sibling node’s label, the judgment whether it is a preceding sibling
or a following sibling can be done by knowing the document order number which
is the remainder of SC value divided by the self label of the node.

In fact, the greater part of the retrieval time in PRIME is consumed by the
multiple-precision arithmetic operations such as multiplication and division per-
formed by software. If the total number of nodes N becomes larger, label values
also become larger and the arithmetic operations consume much time. In our ex-
periment, even in the tree1 in Table 1 whose height is only 3, the retrieval time for
any axis is prohibitively larger than the other schemes due to the multi-precision
arithmetic operations with SC value exceeding 64 bits.
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6.6 Discussion
In our history-offset labeling scheme, each non-leaf node maintains a list of

subscripts named os table to preserve the document order among its children.
Actually, the overall storage cost including those of the total label storage, os

tables and HOMD tables is dependent heavily on the topology of the XML tree
and is not dependent on the order of node insertions due to the existence of the
os tables. The experimental results shown in Fig. 11, Fig. 13 and Fig. 12 indicate
that in the random insertion order the overall storage cost is greater than those
of the other three kinds of labeling scheme, but the cost is far less than them in
the concentrated insertion order.

On the other hand, in ORDPATH, DLN and QED-PREFIX, the label value
itself represents its relative position in the document order, and for two arbitrary
nodes in an XML tree, their ordering in the XML document can be determined
by directly comparing the binary string label values in the lexicographical order
with no additional information like os table in our scheme. But, in these schemes,
if new nodes are repeatedly inserted around the same position as in Fig. 9 for
example, the label value length of the inserted nodes will become very long as is
shown in Fig. 13. This means that the direct comparability of the document order
without additional information in these schemes can be achieved by the penalty
of label size increase to carry the ordering information in the label themselves.
On the contrary, in our history-offset scheme, as was described in Section 4.3,
traversing the related os tables is necessary to determine the order between two
arbitrary node labels.

As for time cost, our scheme can retrieve the sibling node labels quickly by
traversing os table. On the contrary, the other schemes like ORDPATH, in
which labels on the sequence set of LT are arranged in document order, should
check through all the node labels in the range of descendant of its parent node
on the sequence set. Hence, the retrieval of the sibling node labels is much more
time consuming than our scheme as is shown in Fig. 16.

Another important limitation of our scheme includes the saturation of the
history-offset space caused by excessive node insertions. Table 2 shows the
growing history value and offset value sizes for the trees in Table 1. In fact, when
the maximum level of the XML tree exceeds 9, the history-offset space would

Table 2 History value and offset value sizes in the history-offset encoding.

tree height history value offset value label size
size H(bits) size O(bits) H+O (bits)

tree1 3 13 18 31
tree2 5 13 30 43
tree3 6 13 35 48
tree4 7 13 40 53

be saturated if the space is the 64 bit machine word size. PRIME scheme also
shares this kind of limitation. The situation of the scheme is more severe than
our scheme. In the scheme, the label value is a product of prime numbers and
should be compared as a numerical value, not as a bit string like in ORDPATH.
But, if the XML tree grows higher, the maximum label size would quickly exceed
the machine word size. Of course if we employ multiple-precision arithmetic
operations performed by software, the saturation problem can be resolved, but
the query performance would be significantly degraded.

One of the countermeasures against the label space saturation problem in our
history-offset scheme is to divide the HOMD data structures into a set of lower
dimensional HOMDs 15), and in PRIME scheme is to divide the XML tree into a
set of smaller subtrees 5).

7. Conclusion

In this paper, we proposed a novel labeling scheme for dynamic XML trees by
using history-offset encoding which is used for encoding multidimensional data.
The scheme takes advantage from the encoding method by embedding an XML
tree into a dynamically extendible multidimensional array. After describing our
labeling scheme, label size, label storage cost and node query performance are
examined compared with other competing schemes, and proves that our scheme
outperforms these schemes in some criteria. Furture work includes the application
of the technique proposed in Ref. 15) for the label space saturation problem in
our history-offset labeling scheme.
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