goooooooog
IPSJ SIG Technical Report

Oooooobooobooooooo HMM O O
ooooobuooooooon

0 0O ot o o o o o o oo oft
O o o ot o o o oft

000000000000000000000000b00O00000O00O000
0000000000000 HMM(@ODOODO0OOOO0)0b000O0O0o00oo0oD0oo
oooooooooo HEMMOO0OO0O0O0O0OOO0OO0O0O0O0O VLSIOOOooooao
00000000000 00b00000000000bO00bO0000O00O000O0
0000 HMM OO00O00000000D00000000000000000000
000000000 HMMOOODOOOOODDO0O0O0OO0000000O000000
00000000000000000000000000 PE(Processing Element)
0000000000000 0000 PEOOODOODOODOOHMMOODOOOO
00D0ob00oo0oooooo

A Fast VLSI Architecture of Output Probability
Computations and Viterbi Scorer for HMM-
Based Recognition Systems with Store-Based
Block Parallel Processing

RyO SHIMAZAKI, KAZUHIRO NAKAMURA,
MASATOSHI YAMAMOTO, KAZUYOSHI TAKAGI
and NAOFUMI TAKAGI

In this paper, We present a fast VLSI architecture for output probability
computations of continuous Hidden Markov Models (HMMs) and Viterbi scorer
with store-based block parallel processing (StoreBPP). We also demonstrate fast
store-based block parallel processing (FastStore BPP) which exploits full perfor-
mance of the StoreBPP.

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

1. Introduction

Due to their effectiveness and efficiency for user-independent recognition, hidden
Markov models (HMMs) are widely used in applications such as speech recognition
(word recognition, connected word recognition, continuous speech recognition), lip-
reading, and gesture recognition. Output probability computations and Viterbi scorer
are the most time-consuming part of HMM-based recognition systems.

High-speed VLSI architectures optimized for recognition tasks have been devel-
opedl)’7> for the development of well-optimized HMM-based recognition systems.
Mathew et al. developed accelerators for the SPHINX 3% speech recognition system6)
and perception accelerators for embedded systems7). Yoshizawa et al. investigated a
block-wise parallel processing for output probability computations of continuous HMMs
and Viterbi scorer, and proposed a high-speed VLSI architecture” . Nakamura et al.
also investigated a block-wise parallel processing method, store-based block parallel pro-
cessing (StoreBPP), for output probability computations of continuous HMMs, and
proposed a high-speed VLSI architecture without Viterbi scorer® . Different block par-
allel processing methods require different architectures of Viterbi scorer. Viterbi scorer
which is suitable for the StoreBPP architecture is required for the development of well-
optimized future HMM-based recognition systems.

In this paper, a pipelined VLSI architecture of Viterbi scorer for StoreBPP is pre-
sented. We also demonstrate fast store-based block parallel processing (FastStore BPP)
for output probability computations of HMMs and Viterbi scorer, and present a VLSI
architecture that supports it, which exploits full performance of the StoreBPP.

Compared with the conventional StoreBPP® and StreamBPPY, the proposed ar-
chitecture requires fewer registers and processing elements and less processing time.
A comparison demonstrates the efficiency of the proposed architecture. The results
show that full performance of the StoreBPP has been exploited by the FastStoreBPP
architecture which extends the bit length of the input bus (e.g. 8-bit to 16-bit).

f100000
Nagoya University

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

extracted from speech signal,
etc.

v
Feature vectors HMM parameters
(stored in RAM) (stored in ROM)

! .

l Input Bus

Output probability .
computation circuit I Register arrays PEs I

l ‘ ‘ i ‘ ‘Output probability of HMMs

Viterbi SCC”e'I Register arrays]<—>I PEs I

words,
etc.

&

l Score

Fig.1 Basic structure of HMM-based recognition hardware.

2. HMM-based Recognition Systems

2.1 HMM-based Recognition Hardware
Figure 1 shows the basic structure of HMM-based recognition hardware’)~"). The out-
put probability computation circuit and Viterbi scorer work together as a recognition
engine. The inputs to the output probability computation circuit are feature vectors of
several dimensions and model parameters of HMMs. These values are stored in RAM
and ROM respectively. The RAM, ROM, output probability computation circuit and
Viterbi scorer interconnect via a single bus, and memory accesses are exclusive. The
output probability computation circuit outputs the results of the output probability
computation of HMMs. The Viterbi scorer outputs likelihood score using the Viterbi
algorithm. In HMM-based recognition systems, the most time-consuming task is output
probability computations and likelihood score computations, and the output probability
computation circuit and the Viterbi scorer accelerate these computations. The output
probability computation circuit and the Viterbi scorer have several register arrays and
processing elements (PE's) for efficient high-speed parallel processing.
2.2 Output Probability Computation of HMMs and Likelihood Score
Computation with Viterbi Algorithm

Let Oy, O2, ..., and Or be a sequence of P-dimensional input feature vectors to

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

HMMs, where O; = (041, 012, ..., otp), 1 < ¢ < T. T is the number of input feature
vectors, and P is the dimension of the input feature vector. For an O, the output
probability of N-state left-to-right continuous HMM at the j-th state is given by
P
10g b;(04) = wj + Y 05p(00p — 1),

p=1
where wj;, ojp, and pjp are the factors of the Gaussian probability density function.

1<j<N,1<t<T, (1

The output probability computation circuit (Fig. 1) computes logb;(O¢) based on
Eq. (1), where all HMM parameters wj, o;p, and i, are stored in ROM, and the input
feature vectors are stored in RAM. The values of T, N, P, and the number of HMMs
V differ for each recognition system. For a recent isolated word recognition system+?),
T, N, P, and V are 86, 32, 38, and 800, respectively, and for another word recognition
system3>7 T, N, P, and V are 89, 12, 16 and 100.

For output probabilities logb;(0¢), 1 < j < N,1 <t < T, log-likelihood score log P*

is is given by

log 01(j) = log m; + log b;(O1) (2)
log 6:(j) = min[log 6:—1(j — 1) +log a;—1,;,log 6:—1(j) + log a;,;] + log b;(O+) (3)
log P = min_ [log 67 (j)] (4)

using Viterbi algorithm in HMM-based recognition hardware.’) #. A flowchart of out-
put probability computation and likelifood score computations is also shown in Fig. 2.
Likelifood scores are obtained by N - T -V times the partial computation of log d:(j)
calls. Partial computation of logb;(O¢) performs 4 arithmetic operations, an addition,
a subtraction and two multiplications for Eq. (1) and computes logb;(O¢). Partial
computation of log d:(j) performs 3 arithmetic operations, three additions for Eq. (2),

(3), (4), and computes log o7 (7).

3. Fast VLSI Architecture of Output Probability Computations and
Viterbi Scorer with Fast Store-Based Block Parallel Processing

3.1 VLSI Architecture of Viterbi Scorer for StoreBPP
Block parallel processing (BPP) for output probability computations and Viterbi
scorer was proposed as an efficient parallel processing method for word HMM-based

1)-3)

speech recognition by Yoshizawa et al. In this method, the set of input feature

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

[Partial computation of Iogb, @]

[Partial computatlon of Togd:())]

Fig.2 Flowchart of output probability computation and likelihood score computation.

vectors is called a block, and HMM parameters are effectively shared between differ-
ent input feature vectors in the computation. N-parallel computation is performed
by their BPP, and in recent years, two types of BPP are classified according to in-
put data flow: stream-based block parallel processing (StreamBPP) and store-based
A block can be seen as

a set of M(< T) input feature vectors, whose elements are Oy’s, 1 < t' < M. M

block parallel processing (StoreBPP) by Nakamura et al.”

vectors in T' input feature vectors are processed in block. StoreBPP performs arith-
metic operations to locally stored input feature vectors, which are Oi, Oz, ..., and
Oys. On the other hand, a block can also be seen as a M x P matrix whose elements
are oy, 1 < ' < M, 1< p< P. StreamBPP performs arithmetic operations to an
input stream, which is o011, ..., o1p, 021 ..., 02pP, ..., OMm1 ...,ommp. The BPP proposed
by Yoshizawa et al.V® is classified as a StreamBPP for output probability compu-
tations and Viterbi scorer. The BPP proposed by by Nakamura et al.”) is classified
as a StoreBPP for output probability computations. M /2-parallel computations are
performed by the StoreBPP.

A flowchart of the output probability computations and Viterbi scorer with the
StreamBPPY) is shown in Fig. 3. PE1j represents the j-th processing element, which
computes log b;(O¢) based on Eq. (1). PE2j represents the j-th processing element,

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

v=_0

Loop D
v=v+1 P

Load pj ,and o;,, of HMM v to Regu and Rego
(=1,2,..,N,p=1, 2, ..., P, NP cycles)

]
((Load m;to Regd (=1, 2, .., N, Ni2 cycles))
[Load a; to Rega, ; (=1, 2, ..., N, N/2 cycles)]

[Load a4 to Rega,, (=2 3, .., N, N2 cycles)]

(‘Load o; to Regw (j=1, 2, ..., N, Nl2 cycles))

Loop C
Loop A
lPEll,jzl lPElg,j:Z I =N
(Loado) [logh:(@)] [Togke(Q)] N-Parallel foghi(q)
i P i i computation
<>“°
PE21] 1 PE22 Noarsiia PE2N =N
[logd:(1)] Iog&(Z conp'padtatl on! [log& (N)]
1>T >0
YES
S
YES

Fig.3 Flowchart of output probability computation and Viterbi scorer using StreamBPP.
which computes log P* by three additions for Eq. (2), (3) and (4). Loop B (Fig. 2) is
expanded as shown in Fig. 3, and log b1 (O;), logb2(0O¢), ..., and log by (O¢) are com-
puted simultaneously with N PFE1ls. In addition to the N-state parallel computation,
the same HMM parameters p;;,’s, 0jp’s, and w;’s, 1 < j < N, 1 < p < P, are used
repeatedly during Loop C in Fig. 3.

A flowchart of the output probability computation with StoreBPP® is shown in Fig. 4.
The PE1s and PE2s in Figs. 4 and 3 are identical. Loop C in Fig. 2 is partially ex-
panded in Fig. 4, and log b;(Oy/41), log b; (O 42), ..., and log b;(Oy 4 a7/2) are computed
simultaneously with M/2 PFE1s in Loop Cl. In addition to the M /2-parallel computa-
tions, log b; (O yar/2+41),
PFE1ls. In this double M /2-parallel computation, the same HMM parameters pj, and

..., and log b;(Oy/ 4 5r) are also computed with the same M /2

ojp are used twice, because the parameters are independent of ¢. In addition to the

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

Viex = 0 Loon D2
Vimex = Vimex + L 0
tree = 0
[t = Come, U = G + M,V = Vi —L]<22E

lv=v+1j=1p=1
Load O to RegO (t=t'+1,t'+2, ..., t'+M, M P cycles)
Load p11, o121 to Regu, Rego, respectively (2 cycles)

V=V F Loop D1
j=0v=V LoopB
(=1+1}
(Load w; to Regw (1 cycle))
p=0
p=p+ 1 Loop A
PEL]t=t +1 PEL) t=t'+2 PELyz, t=t +M/2

|
(Load pi.p+1to Regw) [logbi (Or.9)] [logbi (Op.g)] " "

10gb; (Ov i)

PEL] =t +Mi2+ 1 PEL] 1=t +mi2+2 2times PEly2, =t +M
10gb; (Or+m)

(Load Oij.p+1 tlo Reg@ [logbil (ot'+MM lloglbi (O"*M@MCD/FZH-[’)JL?[;%'(')?

Fig.4 Flowchart of output probability computations using StoreBPP.
M /2-parallel computations, Loop D (Fig. 2) is divided into Loops D1 and D2 (Fig. 4).

The same feature vectors Oy 41, ..., and Oy)y are used repeatedly during Loop DI.

For j-th HMM state, M output probabilities logb;(O:), t = t' + 1,---,t' + M, are
simultaneously obtained by Loop A. Different block parallel processing methods re-
quire different architectures of Viterbi scorer. Viterbi scorer which is suitable for the
StoreBPP architecture is required for the development of well-optimized future HMM-
based recognition systems.

We present a pipelined VLSI architecture of Viterbi scorer for the StoreBPP. A
flowchart of the output probability computation and Viterbi scorer with the StoreBPP
is shown in Fig. 5. The PEls and PE2s in Figs. 5, 4 and 3 are identical. Loop A
in Figs. 4 and Figs. 3 are also identical. Likelihood scores are computed by [M/P]
Loop A’ with pipelined [M/P] PE2s based on Eq. (2), (3) and (4). For (j — 1)-th

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8

2010/3/26
Viex = 0
Vimex = Vimex+ L Loop D2
thax = 0 Loon 1
(€= tome, e = tom + M,V = Vi —LJ b
[v=v+1j=1p=1
Load O to RegO (t=t'+1,t'+2, ..., t'+M, M P cycles)
Load p11, 611 to Regu, Rego, respectively (2 cycles)
V=V +1 Loop D1
j=0,v=V Loon B
L=1+1} =2
(Load w; to Regw (1 cycle))
((Load rr; to Reg; (1 cycle), whent == 1)
[Load a;; to Rega, ; (1 cycle)]
[Load a;to Rega,, ; (1 cycle), when | # 1]
t'VlM/P'\ rrax:t'+M
- thiwe = t'+ M —mP1
PEIM2] t=t +1 Loop A

[
(Load pi,p1to Regy) [logbi (Oa] =7
PEIw] =t mizen 2 times

M/2-parallel
(Load Gj.p1 tlo Rego) [Iogb.l (Ocamzd)] mm;gation

IM/Pl-parallel
computation

Fig.5 Flowchart of output probability computations and Viterbi scorer using StoreBPP.

HMM state, log d;/(j — 1) is computed with logdy_1(j —2) and logdy_1(5 — 1) dur-
ing in Loop A’. The intermediate result score log §;/(j — 1) has to be computed during
M /2-parallel computation of Loop A.

3.2 Fast Store-based Block Parallel Processing (FastStoreBPP) and a

VLSI Architecture that Supports It
We demonstrate fast store-based block parallel processing (FastStoreBPP) for output

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

probability computations of HMMs and Viterbi scorer, and present a VLSI architecture
that supports it. A flowchart of the output probability computation and Viterbi scorer
with FastStoreBPP is shown in Fig. 6. Output probabilities are computed by Loop
A with M PE1ls. Likelihood scores are computed by [M/P] Loop A’ with pipelined
[M/P] PE2s based on Eq. (2), (3) and (4). In the StoreBPP(Fig. 5), the M cal-
culations of logb;(0:), t' +1 <t < t' + M, were performed with 2 cycles, because it
requires 1 cycle to read parameters which will be needed for the next calculation. In
Loop A(Fig. 5), the M calculations ware proceeded with M/2 PE1ls, where M /2 was
adequate number for the calcuations. The objective of the FastStoreBPP is efficient
high-speed parallel processing of StoreBPP by a little extention of the bit length of the
input bus(Fig. 2). By extending the input bus, it can read two parameters at once,
therefore M calculations of logh;(0:), t' +1 < t < t' + M, were performed with 1
cycles, and the M calculations are proceeded with M PFEls. where M is adequate
number for the calcuations.

Our FastStoreBPP VLSI architecture for output probability computations and
Viterbi scorer is shown in Fig. 7, where the number of PE1ls M < P. The architecture
has two register arrays, two registers and M P E1s for output probability computations.
The architecture has four register arrays, two registers and one PFE2s for likelihood
score computations based on Eq. (2), (3) and (4). RegO stores M input feature vectors
Oy 41, Opgo, ..., and Oy 4. Regu and Rego store HMM parameters —;p, and ojp,
respectively. Regw stores HMM parameter w; and intermediate results. Regd stores
computed output probabilities for a Viterbi scorer. Regd, stores intermediate results
log 421(j), 1 < j < N, of L HMMs.
log 8:(j) and logé+(5 — 1), t' +1 < t < t' + M, of v-th HMM. Rega;,; and Rega;_1,;
Each PE1
The
computation starts by reading M input feature vectors from RAM and storing them
to RegO in Loop C1 (Fig. 6). The HMM parameters of v-th HMM are read from
ROM and stored in Regu, Rego, Regw, Regd; and Rega; ;j, which are pi1, o011, wi,

Regé; and Regd;—1 store intermediate results

store HMM parameters loga; ; and logaj;—1,; of an HMM, respectively.

consists of two adders and two multipliers, which are used for computing Eq. (1).

m and ai1. For the M stored input feature vectors Oy 41, Opya, ..., and Oy,

M intermediate results are simultaneously computed with the stored @11 and o11 by

ot

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

Viex = 0
Vimex = Vimax+ L
thmex = 0
[t = toa, trex = trx + M,V = Vinex
lV: V+1j=1p=1
Load O to RegO (t=t'+1,t'+2, ..., t'+M, MP / 2cycles)
Load p11, 011 to Regu, Rego, respectively (1 cycle)
Loop D1

Loop D2

Loop C1
L]

V=v+1
j=0v=V
(=1+1]
(Load w; to Regw (1 cycle))
(Load ; to Regd;(1 cycle), whent ==1)
[Load &; to Rega, ; (1 cycle)]

[Load aj;to Rega,, ; (1 cycle), when | # 1]
J

Loop B

¥

Uier e £ +M
thwe = t'+M—wPl
Loop A

Load 1 pr1 t0 Regy) PEL =0 +L ceie e APELM EUAM
Load o 10 Reo| (1091 (Orsd] M-paralél (109D Orens)
(]l C}’C?g computation

computation

Fig.6 Flowchart of output probability computations and Viterbi scorer using FastStoreBPP
architecture.

M PFE1s, where the HMM parameters are shared by all PE1s. At the same time, an
HMM parameter fij,4+1 and ojp+1 of v-th HMM are read from ROM and stored in Regu
and Rego. In this M-parallel computation, the stored HMM parameters p11 and o011
are used once. In the next M-parallel computation, the stored HMM parameters fijp41
and ojp+1 are used. M output probabilities log b;(Oys 1), ..., and log b; (O 4 pr) of v-th
HMM are obtained by Loop A (Fig. 6). The obtained results are copied from Regw to
Regd for starting the next computation, logb;+1(O¢11), ..., and log b;j+1(O¢ 4). The

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

ROM |[RAM
U, o, || O

Output probability computation circuit

&
g ___

<

: ;r;ﬂ

Fig.7 FastStoreBPP VLSI architecture ([M/P] = 1).

results are fed to the Viterbi scorer. The M - N output probabilities of v-th HMM are
obtained by Loop B (Fig. 6). M - N - L output probabilities of HMM o', v" + 1, ...,and
v’ + L — 1 are obtained by Loop D1 (Fig. 6) with the same M input feature vectors
Oy 41, ..., and Oy 4. L is the number of HMMs whose output probabilities are
computed with the same input feature vectors during Loop D1. The M- N -L-[T/M]
output probabilities of HMM ', ..., and v’ + L — 1 are obtained by Loop C1, and
finally the M - N - L-[T/M] - [V/L] output probabilities of all HMMs are obtained by
Loop D2 (Fig. 6). The intermediate score log &;,, ,(j — 1) has to be computed during
one M-parellel computation of Loop A. Consequently, we introduce pipelined Viterbi
scorer for the FastStoreBPP and StoreBPP. Our pipelined Viterbi scorer for the Fast-
StoreBPP (M > P) and StoreBPP (M/2 > P) is shown in Fig. 8. This viterbi scorer

consists of [M/P]-set of PE2s and register arrays for pipelined computation.
4. Evaluation

We compared the proposed FastStoreBPP, StoreBPP (Fig. 9) and StreamBPP

Viterbi scorer

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

Viterbi scorer

M/ e Re9d 111 M/ e
AL T 1]
/1/}/ M/ et \'\LREQS i

ﬁl\\ T T Jle— ﬁlu

(= —
A I
/I/]—/M/rwm\-];t\

(= 1 (=]
4’# Regan/P'\ I]

Fig. 8 Pipelined Viterbi scorer for FastStoreBPP architecture ([M/P] > 2).

(Fig. 10) VLSI architecture® .
ity computations and Viterbi scorer is shown in Fig. 9, where the number of PE1ls

M/2 < P. The architecture has three register arrays, one register and M/2 PFE1ls for

StoreBPP VLSI architecture for output probabil-

output probability computations, and has four register arrays, two registers, and one
PE2 for likelihood score computations based on Eq. (2), (3) and (4).
M input feature vectors Oy 11, ..., and Oy . Regu and Rego store HMM param-

RegO stores

eters —ujp, and ojp, respectively. Regu has space for storing —puj, and for prestoring
—j p+1 before the computation with p;p4+1 during the computation using pj,. Regu is
two times larger than Rego. Regw stores HMM parameter w; and intermediate results.
Regd stores computed output probabilities for a Viterbi scorer. Each PFE1 consists of
two adders and two multipliers, which are used for computing Eq. (1). The architecture
works as shown in the flowchart Fig. 5.

The StreamBPP (Fig. 10) architecture has two register arrays and N PFE1s for output
probability computations. The architecture has four register arrays and N PE2s for
likelihood score computations based on Eq. (2), (3) and (4), where PE2] is optimized
for Eq. (2). The PE1s in Figs. 10, 9 and 7 are identical. The PFE2s in Figs. 10, 9, 8 and

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

7 are identical. The StreamBPP architecture works as shown in the flowchart Fig. 3.
Regu and Rego store HMM parameters —uj, and ojp, respectively, and Regw stores
HMM parameter w; and intermediate results. The computation starts by reading all
2-N-P+4-N HMM parameters of v-th HMM from ROM and storing them to Regpu,
Rego, Regw, Regd, Rega; ; and Rega;_1,; in Loop D (Fig. 10). For stream input oy,
the intermediate results are computed with stored HMM parameters by N PEls. N
output probabilities log b1 (O¢), ..., logbn(O¢) of the HMM are obtained by Loop A
(Fig. 10). The obtained results are fed to a Viterbi scorer. N - T output probabilities
of v-th HMM are obtained by Loop C (Fig. 10) with the same HMM parameters. The
N - T -V output probabilities of all HMMs are obtained by Loop D (Fig. 10).

Table 1 shows the register size of the FastStoreBPP, StoreBPP and StreamBPP ar-
chitectures, where z,, s, o , Za , and xs represent the bit length of pjp, 0jp, Otp, ajj,
and the output of PE1, respectively. N, P, and M are the number of HMM states,
the dimension of input feature vector, and the number of input feature vectors in a
block, respectively.

Table 2 shows the processing time for computing output probabilities of V' HMMs
and likelihood scores with the FastStoreBPP, StoreBPP and StreamBPP architectures,
where T and L are the number of input feature vectors and the number of HMMs whose
output probabilities are computed with the same input feature vectors during Loop D1
of Figs. 5 and 6, respectively.

Table 3 shows the register size, the processing time, and the number of PFEs for
computing output probabilities of 800 HMMs, where we assume that N = 32, P = 38,
T =286z, =8, 20 =8, 2y =24, 2o = 8x4 = 8§, and V = 800—the same values used
in a recent circuit design for isolated word recognition?? and StoreBPP architecture
without Viterbi scorer®. We also assume that M = 44, M = 29 and M = 44 for one
FastStoreBPP, the other FastStoreBPP and one StoreBPP architectures, respectively,
where L = 5 for the FastStoreBPP and StoreBPP architectures. The PE1ls and PE2s
used in the FastStoreBPP, StoreBPP and StreamBPP architectures are identical. Com-
pared with the StreamBPP and StoreBPP architectures, the FastStoreBPP has fewer
registers and requires less processing time.

Compared with the FastStoreBPP (M = 29), the FastStoreBPP (M = 44) requires

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

Output probability computation circuit

Viterbi scorer

Fig.9 StoreBPP VLSI architecture ([M/P] = 2).

Viterbi scorer

Fig.10 StreamBPP VLSI architecture.

(© 2010 Information Processing Society of Japan

goooooooog
IPSJ SIG Technical Report

0 1 Register size.
Register size (bit)
(P-M-zo+ayu+20 +M-zp) 000DODO
F(N-L+2-M+(M-([M/P1+1))/2) 27 +2- 4
(P-M-20+2-zy +a,+M-2;,) 00000
+(N-L+2-M+(M-([M/P]1+1))/2) -y +2 24
(NP2, +N-P-25) +(3-N—1)-20 + N - 2;

FastStoreBPP (ours)

StoreBPP (ours)

StreamBPP

0 2 Processing times.

Processing time (cycles)
[V/L]-{P-[M/2]+(2+P)-L-N}-[T/M]
[V/L] - {P-M+(4+42-P)-L-N}-[T/M)]
V. (N-P+2-N+P-T)

FastStoreBPP (ours)
StoreBPP (ours)
StreamBPP

0 3 Evaluation of the FastStoreBPP, StoreBPP and StreamBPP performance.

Register Processing #PFEls #PE2s
size (bit) | time (cycles)
FastStoreBPP (ours) 22,000 2,315,520 44 (M=44)
FastStoreBPP (ours) 15,808 3,345,600 29 (M=29)
StoreBPP (ours) 22,008 4,631,040 22 (M=44) 1
StreamBPP 21,288 3,638,400 32 32

less processing time. Compared with the FastStoreBPP (M = 44), the FastStoreBPP
(M = 29) has fewer registers and PEs. Compared with StreamBPP (Fig. 3) which
requires N PE2s, the proposed architecture requires fewer PFE2s because the value of
[M/P] is at most 2 when using StoreBPP®. From a VLSI architectural viewpoint,
the evaluation results show that full performance of the StoreBPP architecture has
been exploited by a little extention of the bit length of the bus in the FastStoreBPP.

From a logic design viewpoint, the register arrays of the FastStoreBPP, StoreBPP and
StreamBPP architectures are designed with Flip-Flops or on-chip multi-port memories
of different sizes. Data paths are designed with identical PEs, but in a different num-
ber. The control paths of these architectures are designed, as shown in the flowcharts
Figs. 3, 5 and 6. The data path delay is the same for the FastStoreBPP, StoreBPP and
StreamBPP designs—equal to the delay time of one PE1. The delay times of control
paths differ between the three, but the control path delay is small compared with the

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8

Vol.2010-UBI-25 No.8
2010/3/26

data path delay.
5. Conclusions

We presented FastStoreBPP for output probability computations and Viterbi scorer
and presented a new VLSI architecture. A reconfigurable architecture for both the
StreamBPP and FastStoreBPP architectures are our future work.

Acknowledgment
The authors would like to thank to Assistant Professor Shingo Yoshizawa of Hokkaido

University.

g o 0 0O

1) S.Yoshizawa, N.Wada, N.Hayakawa and Y.Miyanaga : Scalable Architecture for
Word HMM-based Speech Recognition and VLSI Implementation in CompleteSys-
tem, IEEE TRANS. ON CIRCUITS AND SYST., Vol.53, No.1, pp.70-77 (2006).

2) S.Yoshizawa, N.Wada, N.Hayasaka and Y Miyanaga : Scalable Architecture for
Word HMM-Based Speech Recognition, Proc. of ISCAS’04, pp.417-420 (2004).

3) S.Yoshizawa, Y.Miyanaga and N.Yoshida, : On a High-Speed HMM VLSI Module
with Block Parallel Processing, IEICE TRANS. Fundamentals, Vol.J85-A, No.12,
pp.1440-1450 (2002).

4) Y.Kim and H.Jeong : A Systoric FPGA Architecture of Two-Level Dynamic
Programming for Connected Speech Recognition, IEICE TRANS.INF & SYST.,
Vol.E90-D, No.2, pp.562-568 (2007).

5) K.Nakamura, M.Yamamoto, K.Takagi and N.Takagi : A VLSI Architecture for
Output Probability Computations of HMM-Based Recognition Systems with Store-
Based Block Parallel Processing, IEICE TRANS.INF & SYST., Vol.E93-D, No.2,
pp-300-305 (2010).

6) B.Mathew, A.Davis and Z.Fang, A Low-Power Accelerator for the SPHINX 3
Speech Recognition System, Proc. of Int’l Conf. on Compilers, Architecture and
Synthesis for Embedded Systems, pp.210-219, 2003.

7) B.Mathew, A.Davis and A.Ibrahim, Perception Coprocessors for Embedded Sys-
tems, Proc. of ESTIMedia, pp.109-116, 2003.

8) X.Huang, F.Alleva, H.W. Hon, M.Y. Hwang, K.f. Lee and R.Rosenfeld, The
SPHINX-II speech recognition system: an overview, Computer Speech and Lan-
guage, vol.7(2), pp.137-148, 1992.

(© 2010 Information Processing Society of Japan

