
情報処理学会研究報告
IPSJ SIG Technical Report

保存型一括並列処理による高速なHMM出力
確率計算・最尤推定回路の構成法

島 崎 亮†1 中 村 一 博†1 山 本 正 俊†1

高 木 一 義†1 高 木 直 史†1

本稿では、保存型一括並列処理に適した最尤推定のハードウェアアルゴリズムと、
保存型一括並列処理における HMM(隠れマルコフモデル)出力確率計算の高速化法、
それらに基づく高速な HMM 出力確率計算・最尤推定回路の VLSI アーキテクチャを
提案する。提案する最尤推定のハードウェアアルゴリズムにより、保存型一括並列処
理による HMM 出力確率計算と、その結果を用いる最尤推定のパイプライン処理が可
能になる。提案する HMM出力確率計算の高速化手法により、従来の保存型一括並列
処理では導入しても並列に動作させることができなかった PE(Processing Element)

の並列動作が可能になり、より多くの PE を動かすことによる HMM を用いた認識
処理の高速化が期待できる。

A Fast VLSI Architecture of Output Probability
Computations and Viterbi Scorer for HMM-
Based Recognition Systems with Store-Based
Block Parallel Processing

Ryo Shimazaki, Kazuhiro Nakamura,

Masatoshi Yamamoto, Kazuyoshi Takagi

and Naofumi Takagi

In this paper, We present a fast VLSI architecture for output probability
computations of continuous Hidden Markov Models (HMMs) and Viterbi scorer
with store-based block parallel processing (StoreBPP). We also demonstrate fast
store-based block parallel processing (FastStoreBPP) which exploits full perfor-
mance of the StoreBPP.

1. Introduction

Due to their effectiveness and efficiency for user-independent recognition, hidden

Markov models (HMMs) are widely used in applications such as speech recognition

(word recognition, connected word recognition, continuous speech recognition), lip-

reading, and gesture recognition. Output probability computations and Viterbi scorer

are the most time-consuming part of HMM-based recognition systems.

High-speed VLSI architectures optimized for recognition tasks have been devel-

oped1)–7) for the development of well-optimized HMM-based recognition systems.

Mathew et al. developed accelerators for the SPHINX 38) speech recognition system6)

and perception accelerators for embedded systems7). Yoshizawa et al. investigated a

block-wise parallel processing for output probability computations of continuous HMMs

and Viterbi scorer, and proposed a high-speed VLSI architecture1)–3). Nakamura et al.

also investigated a block-wise parallel processing method, store-based block parallel pro-

cessing (StoreBPP), for output probability computations of continuous HMMs, and

proposed a high-speed VLSI architecture without Viterbi scorer5). Different block par-

allel processing methods require different architectures of Viterbi scorer. Viterbi scorer

which is suitable for the StoreBPP architecture is required for the development of well-

optimized future HMM-based recognition systems.

In this paper, a pipelined VLSI architecture of Viterbi scorer for StoreBPP is pre-

sented. We also demonstrate fast store-based block parallel processing (FastStoreBPP)

for output probability computations of HMMs and Viterbi scorer, and present a VLSI

architecture that supports it, which exploits full performance of the StoreBPP.

Compared with the conventional StoreBPP5) and StreamBPP1), the proposed ar-

chitecture requires fewer registers and processing elements and less processing time.

A comparison demonstrates the efficiency of the proposed architecture. The results

show that full performance of the StoreBPP has been exploited by the FastStoreBPP

architecture which extends the bit length of the input bus (e.g. 8-bit to 16-bit).

†1 名古屋大学
Nagoya University

1 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

Output probability
 computation circuit Register arrays

Output probability of HMMs......

Feature vectors
 (stored in RAM)

HMM parameters
 (stored in ROM)

Viterbi scorer

Score

PEs

words,
etc.

extracted from speech signal,
etc.

Register arrays PEs

Input Bus

Fig. 1 Basic structure of HMM-based recognition hardware.

2. HMM-based Recognition Systems

2.1 HMM-based Recognition Hardware

Figure 1 shows the basic structure of HMM-based recognition hardware1)–7). The out-

put probability computation circuit and Viterbi scorer work together as a recognition

engine. The inputs to the output probability computation circuit are feature vectors of

several dimensions and model parameters of HMMs. These values are stored in RAM

and ROM respectively. The RAM, ROM, output probability computation circuit and

Viterbi scorer interconnect via a single bus, and memory accesses are exclusive. The

output probability computation circuit outputs the results of the output probability

computation of HMMs. The Viterbi scorer outputs likelihood score using the Viterbi

algorithm. In HMM-based recognition systems, the most time-consuming task is output

probability computations and likelihood score computations, and the output probability

computation circuit and the Viterbi scorer accelerate these computations. The output

probability computation circuit and the Viterbi scorer have several register arrays and

processing elements (PEs) for efficient high-speed parallel processing.

2.2 Output Probability Computation of HMMs and Likelihood Score

Computation with Viterbi Algorithm

Let O1, O2, ..., and OT be a sequence of P -dimensional input feature vectors to

HMMs, where Ot = (ot1, ot2, ..., otP), 1 ≤ t ≤ T . T is the number of input feature

vectors, and P is the dimension of the input feature vector. For an Ot, the output

probability of N-state left-to-right continuous HMM at the j-th state is given by

log bj(Ot) = ωj +

P∑

p=1

σjp(otp − μjp)2, 1 ≤ j ≤ N, 1 ≤ t ≤ T, (1)

where ωj , σjp, and μjp are the factors of the Gaussian probability density function.

The output probability computation circuit (Fig. 1) computes log bj(Ot) based on

Eq. (1), where all HMM parameters ωj , σjp, and μjp are stored in ROM, and the input

feature vectors are stored in RAM. The values of T, N, P , and the number of HMMs

V differ for each recognition system. For a recent isolated word recognition system1),2),

T, N, P , and V are 86, 32, 38, and 800, respectively, and for another word recognition

system3), T, N, P , and V are 89, 12, 16 and 100.

For output probabilities log bj(Ot), 1 ≤ j ≤ N, 1 ≤ t ≤ T , log-likelihood score log P ∗

is is given by

log δ1(j) = log πj + log bj(O1) (2)

log δt(j) = min[log δt−1(j − 1) + log aj−1,j , log δt−1(j) + log aj,j] + log bj(Ot) (3)

log P ∗ = min
1≤j≤N

[log δT (j)] (4)

using Viterbi algorithm in HMM-based recognition hardware.1)–4). A flowchart of out-

put probability computation and likelifood score computations is also shown in Fig. 2.

Likelifood scores are obtained by N · T · V times the partial computation of log δt(j)

calls. Partial computation of log bj(Ot) performs 4 arithmetic operations, an addition,

a subtraction and two multiplications for Eq. (1) and computes log bj(Ot). Partial

computation of log δt(j) performs 3 arithmetic operations, three additions for Eq. (2),

(3), (4), and computes log δT (j).

3. Fast VLSI Architecture of Output Probability Computations and
Viterbi Scorer with Fast Store-Based Block Parallel Processing

3.1 VLSI Architecture of Viterbi Scorer for StoreBPP

Block parallel processing (BPP) for output probability computations and Viterbi

scorer was proposed as an efficient parallel processing method for word HMM-based

speech recognition by Yoshizawa et al.1)–3). In this method, the set of input feature

2 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

v = 0

j >N

t >T

NO

NO
YES

YES

Loop B

Loop C

v = v + 1

t = t + 1

v >V NO

YES

j = j + 1

Loop D

p = p + 1

p >P NO

YES

Loop A

Partial computation of logb (O) j t

t = 0

j = 0

p = 0

Partial computation of logδ (j) t

Fig. 2 Flowchart of output probability computation and likelihood score computation.

vectors is called a block, and HMM parameters are effectively shared between differ-

ent input feature vectors in the computation. N-parallel computation is performed

by their BPP, and in recent years, two types of BPP are classified according to in-

put data flow: stream-based block parallel processing (StreamBPP) and store-based

block parallel processing (StoreBPP) by Nakamura et al.5). A block can be seen as

a set of M(≤ T) input feature vectors, whose elements are Ot′ ’s, 1 ≤ t′ ≤ M . M

vectors in T input feature vectors are processed in block. StoreBPP performs arith-

metic operations to locally stored input feature vectors, which are O1, O2, ..., and

OM . On the other hand, a block can also be seen as a M × P matrix whose elements

are ot′p, 1 ≤ t′ ≤ M, 1 ≤ p ≤ P . StreamBPP performs arithmetic operations to an

input stream, which is o11, ..., o1P , o21 ..., o2P , ..., oM1 ..., oMP . The BPP proposed

by Yoshizawa et al.1)–3) is classified as a StreamBPP for output probability compu-

tations and Viterbi scorer. The BPP proposed by by Nakamura et al.5) is classified

as a StoreBPP for output probability computations. M/2-parallel computations are

performed by the StoreBPP.

A flowchart of the output probability computations and Viterbi scorer with the

StreamBPP1)–3) is shown in Fig. 3. PE1j represents the j-th processing element, which

computes log bj(Ot) based on Eq. (1). PE2j represents the j-th processing element,

 . . .

logb (O) 1 t

v = 0

p >P

t >T

NO

NO

YES

YES

Loop A

Loop C

v = v + 1

t = t + 1

logb (O) 2 t logb (O) N t

v >W
NO

YES

p = p + 1

Loop D

PE1 , j=NPE1 , j=2PE1 , j=1

Load o t, p

Load μ and σ of HMM v to Regμ and Regσ
 (j=1, 2, ..., N, p=1, 2, ..., P, N P cycles) .

N-parallel
computation

j, p j, p

Load π to Regδ (j=1, 2, ..., N, N/2 cycles) j

t = 0

p = 0

 . . .

logδ (1) t logδ (2) t logδ (N) j

PE2 , j=NPE2 , j=2PE2 , j=1 . . .
N-parallel

computation

 1 2 N

Load a to Reg (j=1, 2, ..., N, N/2 cycles) j,j

Load a to Reg (j=2, 3, ..., N, N/2 cycles) j-1,j

a j, j

a j-1, j

Load ω to Regω (j=1, 2, ..., N, N/2 cycles) j

 1 2 N

Fig. 3 Flowchart of output probability computation and Viterbi scorer using StreamBPP.

which computes log P ∗ by three additions for Eq. (2), (3) and (4). Loop B (Fig. 2) is

expanded as shown in Fig. 3, and log b1(Ot), log b2(Ot), ..., and log bN (Ot) are com-

puted simultaneously with N PE1s. In addition to the N-state parallel computation,

the same HMM parameters μjp’s, σjp’s, and ωj ’s, 1 ≤ j ≤ N, 1 ≤ p ≤ P , are used

repeatedly during Loop C in Fig. 3.

A flowchart of the output probability computation with StoreBPP5) is shown in Fig. 4.

The PE1s and PE2s in Figs. 4 and 3 are identical. Loop C in Fig. 2 is partially ex-

panded in Fig. 4, and log bj(Ot′+1), log bj(Ot′+2), ..., and log bj(Ot′+M/2) are computed

simultaneously with M/2 PE1s in Loop C1. In addition to the M/2-parallel computa-

tions, log bj(Ot′+M/2+1), ..., and log bj(Ot′+M) are also computed with the same M/2

PE1s. In this double M/2-parallel computation, the same HMM parameters μjp and

σjp are used twice, because the parameters are independent of t. In addition to the

3 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

logb (O) j t’+M/2+1

logb (O) j t’+2logb (O) j t’+1 logb (O) j t’+M/2

logb (O) j t’+M/2+2 logb (O) j t’+M

v’ = 0max

v’ = v’ + 1

j = j + 1

p >P

v’ >v’max

NO

NO

NO

NO

YES

YES

YES

YES

Loop B

Loop D1

Loop C1

Loop D2

v’ >Vmax
NO

YES

p = p + 1
Loop A

t’ >Tmax

j >N

Load O to RegO (t=t’+1,t’+2, ..., t’+M, M P cycles)t
.

t=t’+1 PE1 , t=t’+M/2

PE1 , t=t’+M

Load μ to Regμj, p+1

Load ω to Regω (1 cycle)j

Load σ to Regσj, p+1

2 times
M/2-parallel
computation

max

t=t’+M/2+1

t=t’+2

t=t’+M/2+2

Copy Regω to Regδ

1,1Load μ , σ to Regμ, Regσ, respectively (2 cycles)1,1

t’ = 0
v’ = v’ + Lmax max

j = 0,

p = 0

PE1

PE1

PE1

PE1

v = v’ + 1, j = 1, p = 1

v = v’

v’ = v’ Lmax
_t’ = t’ ,max t’ = t’ + M ,max max

 1

 1

 2

 2

 M/2

 M/2

Fig. 4 Flowchart of output probability computations using StoreBPP.

M/2-parallel computations, Loop D (Fig. 2) is divided into Loops D1 and D2 (Fig. 4).

The same feature vectors Ot′+1, ..., and Ot′+M are used repeatedly during Loop D1.

For j-th HMM state, M output probabilities log bj(Ot), t = t′ + 1, · · · , t′ + M , are

simultaneously obtained by Loop A. Different block parallel processing methods re-

quire different architectures of Viterbi scorer. Viterbi scorer which is suitable for the

StoreBPP architecture is required for the development of well-optimized future HMM-

based recognition systems.

We present a pipelined VLSI architecture of Viterbi scorer for the StoreBPP. A

flowchart of the output probability computation and Viterbi scorer with the StoreBPP

is shown in Fig. 5. The PE1s and PE2s in Figs. 5, 4 and 3 are identical. Loop A

in Figs. 4 and Figs. 3 are also identical. Likelihood scores are computed by �M/P �
Loop A’ with pipelined �M/P � PE2s based on Eq. (2), (3) and (4). For (j − 1)-th

logb (O) j t’+M/2+1

logb (O) j t’+1 logb (O) j t’+M/2

logb (O) j t’+M

v’ = 0max

v’ = v’ + 1

j = j + 1

p >P

v’ >v’max

NO

NO

NO

NO

YES

YES

YES

YES

Loop B

Loop D1

Loop C1

Loop D2

v’ >Vmax
NO

YES

p = p + 1
Loop A

t’ >Tmax

j >N

Load O to RegO (t=t’+1,t’+2, ..., t’+M, M P cycles)t
.

t=t’+1 PE1 , t=t’+M/2

PE1 , t=t’+M

Load μ to Regμj, p+1

Load ω to Regω (1 cycle)j

Load σ to Regσj, p+1

2 times
M/2-parallel
computation

max

t=t’+M/2+1

Copy Regω to Regδ

1,1Load μ , σ to Regμ, Regσ, respectively (2 cycles)1,1

t’ = 0
v’ = v’ + Lmax max

j = 0,

p = 0

PE1

PE1

v = v’ + 1, j = 1, p = 1

v = v’

v’ = v’ Lmax
_t’ = t’ ,max t’ = t’ + M ,max max

logδ (j 1) t’’

t’’ = t’’ + 1
t’’ = t’+M

t’’ >t’’ max
NO

YES

_
PE2

Loop A’

logδ (j 1) t’’

t’’ = t’’ + 1
t’’ = t’

t’’>t’’max
NO

YES

_
PE2 1

Loop A’

 . . .

 1

 1 1

 1

 M/P

 M/P

 M/P

 M/P

M/P -parallel
computation

 . . .

 . . .

 M/P

Load a to Reg (1 cycle) j,j a j, j

Load π to Regδ (1 cycle), when t’ == 1 j j

 M/2

 M/2

 M/2

 M/2

Load a to Reg (1 cycle), when j = 1 j-1,j a j-1, j

 1

 M/P_

 1
 M/P

t’’ =t’+Mmax M/Pt’’ =t’+max 1 M/P

Fig. 5 Flowchart of output probability computations and Viterbi scorer using StoreBPP.

HMM state, log δt′′(j − 1) is computed with log δt′′−1(j − 2) and log δt′−1(j − 1) dur-

ing in Loop A’. The intermediate result score log δt′(j − 1) has to be computed during

M/2-parallel computation of Loop A.

3.2 Fast Store-based Block Parallel Processing (FastStoreBPP) and a

VLSI Architecture that Supports It

We demonstrate fast store-based block parallel processing (FastStoreBPP) for output

4 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

probability computations of HMMs and Viterbi scorer, and present a VLSI architecture

that supports it. A flowchart of the output probability computation and Viterbi scorer

with FastStoreBPP is shown in Fig. 6. Output probabilities are computed by Loop

A with M PE1s. Likelihood scores are computed by �M/P � Loop A’ with pipelined

�M/P � PE2s based on Eq. (2), (3) and (4). In the StoreBPP(Fig. 5), the M cal-

culations of log bj(Ot), t′ + 1 ≤ t ≤ t′ + M, were performed with 2 cycles, because it

requires 1 cycle to read parameters which will be needed for the next calculation. In

Loop A(Fig. 5), the M calculations ware proceeded with M/2 PE1s, where M/2 was

adequate number for the calcuations. The objective of the FastStoreBPP is efficient

high-speed parallel processing of StoreBPP by a little extention of the bit length of the

input bus(Fig. 2). By extending the input bus, it can read two parameters at once,

therefore M calculations of log bj(Ot), t′ + 1 ≤ t ≤ t′ + M, were performed with 1

cycles, and the M calculations are proceeded with M PE1s. where M is adequate

number for the calcuations.

Our FastStoreBPP VLSI architecture for output probability computations and

Viterbi scorer is shown in Fig. 7, where the number of PE1s M ≤ P . The architecture

has two register arrays, two registers and M PE1s for output probability computations.

The architecture has four register arrays, two registers and one PE2s for likelihood

score computations based on Eq. (2), (3) and (4). RegO stores M input feature vectors

Ot′+1, Ot′+2, ..., and Ot′+M . Regμ and Regσ store HMM parameters −μjp, and σjp,

respectively. Regω stores HMM parameter ωj and intermediate results. Regδ stores

computed output probabilities for a Viterbi scorer. Regδl stores intermediate results

log δt′+M (j), 1 ≤ j ≤ N, of L HMMs. Regδj and Regδj−1 store intermediate results

log δt(j) and log δt(j − 1), t′ + 1 ≤ t ≤ t′ + M, of v-th HMM. Regaj,j and Regaj−1,j

store HMM parameters log aj,j and log aj−1,j of an HMM, respectively. Each PE1

consists of two adders and two multipliers, which are used for computing Eq. (1). The

computation starts by reading M input feature vectors from RAM and storing them

to RegO in Loop C1 (Fig. 6). The HMM parameters of v-th HMM are read from

ROM and stored in Regμ, Regσ, Regω, Regδj and Regaj,j , which are μ11, σ11, ω1,

π1 and a11. For the M stored input feature vectors Ot′+1, Ot′+2, ..., and Ot′+M ,

M intermediate results are simultaneously computed with the stored μ11 and σ11 by

logb (O) j t’+1 logb (O) j t’+M

v’ = 0max

v’ = v’ + 1

j = j + 1

p >P

v’ >v’max

NO

NO

NO

NO

YES

YES

YES

YES

Loop B

Loop D1

Loop C1

Loop D2

v’ >Vmax
NO

YES

p = p + 1
Loop A

t’ >Tmax

j >N

Load O to RegO (t=t’+1,t’+2, ..., t’+M, M P / 2cycles)t
.

t=t’+1 PE1 , t=t’+M
Load μ to Regμj, p+1

Load ω to Regω (1 cycle)j

Load σ to Regσj, p+1

M-parallel

computation

max

Copy Regω to Regδ

1,1Load μ , σ to Regμ, Regσ, respectively (1 cycle)1,1

t’ = 0
v’ = v’ + Lmax max

j = 0,

p = 0

PE1

v = v’ + 1, j = 1, p = 1

v = v’

v’ = v’ Lmax
_t’ = t’ ,max t’ = t’ + M ,max max

(1 cycle)
logδ (j 1) t’’

t’’ = t’’ + 1
t’’ = t’

NO

YES

_
PE2 1

Loop A’

 . . .

 1

 1 1

M/P -parallel
computation . . .

Load a to Reg (1 cycle) j,j

Load a to Reg (1 cycle), when j = 1 j-1,j

a j, j

a j-1, j

Load π to Regδ (1 cycle), when t’ ==1 j j

 M 1

 1

 . . .
t’’ =t’+max 1 M/P

t’’>t’’max 1 1

logδ (j 1) t’’

t’’ = t’’ + 1
t’’ = t’+M

t’’ >t’’ max
NO

YES

_
PE2

Loop A’
 M/P

 M/P

 M/P

 M/P

 M/P

 M/P_

 M/P

t’’ =t’+Mmax M/P

Fig. 6 Flowchart of output probability computations and Viterbi scorer using FastStoreBPP

architecture.

M PE1s, where the HMM parameters are shared by all PE1s. At the same time, an

HMM parameter μjp+1 and σjp+1 of v-th HMM are read from ROM and stored in Regμ

and Regσ. In this M -parallel computation, the stored HMM parameters μ11 and σ11

are used once. In the next M -parallel computation, the stored HMM parameters μjp+1

and σjp+1 are used. M output probabilities log bj(Ot′+1), ..., and log bj(Ot′+M) of v-th

HMM are obtained by Loop A (Fig. 6). The obtained results are copied from Regω to

Regδ for starting the next computation, log bj+1(Ot′+1), ..., and log bj+1(Ot′+M). The

5 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

μ

μ, σ, ω

Reg

ROM RAM
O

σReg Reg

Output probability computation circuit

. .
 .

. .
 .

. .
 .

. .
 .

. .

P

. .
 .

. .
 .

. .
 .

. .

+ +

. .
 .+ +

+ +

M-parallel
computation

Reg

. .
 .

. .
 .

ω

δ

RegO

o

PE 1

PE M

PE M-1

+ +
PE 2

. .
 .

. .
 .

t’,p . .
 . MM

Viterbi scorer

. . .

M

. . .

. . .

M

. . .

. . .

M

. . .

. .
 . N. .
 .

. .
 .

. .
 .

L

RegaRega j, j j-1, j

.

Regδ

Regδ

Regδ

 j-1

 j

 l

CMP

SEL+
PE2 1 +

+SEL
t’==1
CMP <

Fig. 7 FastStoreBPP VLSI architecture (�M/P� = 1).

results are fed to the Viterbi scorer. The M · N output probabilities of v-th HMM are

obtained by Loop B (Fig. 6). M · N · L output probabilities of HMM v′, v′ + 1, ...,and

v′ + L − 1 are obtained by Loop D1 (Fig. 6) with the same M input feature vectors

Ot′+1, ..., and Ot′+M . L is the number of HMMs whose output probabilities are

computed with the same input feature vectors during Loop D1. The M ·N ·L · �T/M�
output probabilities of HMM v′, ..., and v′ + L − 1 are obtained by Loop C1, and

finally the M ·N · L · �T/M� · �V/L� output probabilities of all HMMs are obtained by

Loop D2 (Fig. 6). The intermediate score log δ′t′+M (j − 1) has to be computed during

one M -parellel computation of Loop A. Consequently, we introduce pipelined Viterbi

scorer for the FastStoreBPP and StoreBPP. Our pipelined Viterbi scorer for the Fast-

StoreBPP (M > P) and StoreBPP (M/2 > P) is shown in Fig. 8. This viterbi scorer

consists of �M/P �-set of PE2s and register arrays for pipelined computation.

4. Evaluation

We compared the proposed FastStoreBPP, StoreBPP (Fig. 9) and StreamBPP

Regδ

. . .

M/

. . .

. . .

M/

. . .

.

RegaRega j, j j-1, j

. . .

Regδ

Regδ j-1

 j

CMP

SEL+
PE2 1 +

+SEL
t’==1
CMP <

Regδ

Viterbi scorer

.

.

.

. .
 . N. .
 .

. .
 .

. .
 .

L

RegaRega j, j j-1, j

. . .

Regδ

Regδ

Regδ

 j-1

 j

 l

CMP

SEL+
PE2 +

+SEL
t’==1
CMP <

.

M

. .
 .

. .
 .

 M/P. .
 .

. .
 .

. . .

. . .

. . .

 M/P

 M/P

M/ M/P

 M/P

M/

M/

 M/P

 M/P

M/ M/P

M/ M/P

 M/P

PEs

 M/P 1

 1

 1

 1 1 M/P M/P

 M/P

 M/P

Fig. 8 Pipelined Viterbi scorer for FastStoreBPP architecture (�M/P� ≥ 2).

(Fig. 10) VLSI architecture1)–3). StoreBPP VLSI architecture for output probabil-

ity computations and Viterbi scorer is shown in Fig. 9, where the number of PE1s

M/2 ≤ P . The architecture has three register arrays, one register and M/2 PE1s for

output probability computations, and has four register arrays, two registers, and one

PE2 for likelihood score computations based on Eq. (2), (3) and (4). RegO stores

M input feature vectors Ot′+1, ..., and Ot′+M . Regμ and Regσ store HMM param-

eters −μjp, and σjp, respectively. Regμ has space for storing −μjp and for prestoring

−μj p+1 before the computation with μj p+1 during the computation using μjp. Regμ is

two times larger than Regσ. Regω stores HMM parameter ωj and intermediate results.

Regδ stores computed output probabilities for a Viterbi scorer. Each PE1 consists of

two adders and two multipliers, which are used for computing Eq. (1). The architecture

works as shown in the flowchart Fig. 5.

The StreamBPP (Fig. 10) architecture has two register arrays and N PE1s for output

probability computations. The architecture has four register arrays and N PE2s for

likelihood score computations based on Eq. (2), (3) and (4), where PE2′
1 is optimized

for Eq. (2). The PE1s in Figs. 10, 9 and 7 are identical. The PE2s in Figs. 10, 9, 8 and

6 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

7 are identical. The StreamBPP architecture works as shown in the flowchart Fig. 3.

Regμ and Regσ store HMM parameters −μjp and σjp, respectively, and Regω stores

HMM parameter ωj and intermediate results. The computation starts by reading all

2 ·N · P + 4 ·N HMM parameters of v-th HMM from ROM and storing them to Regμ,

Regσ, Regω, Regδ, Regaj,j and Regaj−1,j in Loop D (Fig. 10). For stream input otp,

the intermediate results are computed with stored HMM parameters by N PE1s. N

output probabilities log b1(Ot), ..., log bN (Ot) of the HMM are obtained by Loop A

(Fig. 10). The obtained results are fed to a Viterbi scorer. N · T output probabilities

of v-th HMM are obtained by Loop C (Fig. 10) with the same HMM parameters. The

N · T · V output probabilities of all HMMs are obtained by Loop D (Fig. 10).

Table 1 shows the register size of the FastStoreBPP, StoreBPP and StreamBPP ar-

chitectures, where xμ, xσ, xo , xa , and xf represent the bit length of μjp, σjp, otp, ajj ,

and the output of PE1, respectively. N , P , and M are the number of HMM states,

the dimension of input feature vector, and the number of input feature vectors in a

block, respectively.

Table 2 shows the processing time for computing output probabilities of V HMMs

and likelihood scores with the FastStoreBPP, StoreBPP and StreamBPP architectures,

where T and L are the number of input feature vectors and the number of HMMs whose

output probabilities are computed with the same input feature vectors during Loop D1

of Figs. 5 and 6, respectively.

Table 3 shows the register size, the processing time, and the number of PEs for

computing output probabilities of 800 HMMs, where we assume that N = 32, P = 38,

T = 86, xμ = 8, xσ = 8, xf = 24, xo = 8,xa = 8, and V = 800—the same values used

in a recent circuit design for isolated word recognition1),2) and StoreBPP architecture

without Viterbi scorer5). We also assume that M = 44, M = 29 and M = 44 for one

FastStoreBPP, the other FastStoreBPP and one StoreBPP architectures, respectively,

where L = 5 for the FastStoreBPP and StoreBPP architectures. The PE1s and PE2s

used in the FastStoreBPP, StoreBPP and StreamBPP architectures are identical. Com-

pared with the StreamBPP and StoreBPP architectures, the FastStoreBPP has fewer

registers and requires less processing time.

Compared with the FastStoreBPP (M = 29), the FastStoreBPP (M = 44) requires

μ
Reg

σReg Reg

Output probability computation circuit

. .
 .

. .
 .

. .
 .

. .
 .

. .

P

M/2

. .
 .

. .
 .

. .
 .

. .

+ +

M/2

. .
 . M/2+ +

+ +

M/2-parallel
computation

Reg

ω

δ

RegO

o

+ +

M/2

. .
 .

. .
 .

t’,p . .
 .

PE1 1

PE1 2

PE1 M/2-1

PE1 M/2

Viterbi scorer

. . .

M

. . .

. . .

M

. . .

. . .

M

. . .

CMP

SEL+
PE2 1 +

+

. .
 . N. .
 .

. .
 .

. .
 .

L

RegaRega j, j j-1, j

.

μ, σ, ω
ROM RAM

O

Regδ l

. .
 .

. .
 .

Regδ

Regδ j-1

 j

SEL

<
t’==1
CMP

Fig. 9 StoreBPP VLSI architecture (�M/P� = 2).

+

+

+

+

N N

+

+

μ

μ, σ, ω
ROM RAM

O

σReg Reg

Output probability computation circuit

+

+

P P

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

.

o
N-parallel

computation

t,p

. .
 .

PE1 1

PE1 2

PE1 N-1

PE1 N

. . .

N-1 Rega

. . .
. . .

N Rega j, j j-1, j

+
PE2’ 1

+

Reg

. .
 .

δ

N. .
 .

. . .

N-parallel
computation

. .
 .

. .
 .

Viterbi scorer

CMP

SEL+
PE2 N-1 +

+SEL

<

CMP

SEL+
PE2 1 +

+SEL

t==1
CMP

<

SEL

N. .
 .

Regω

. . .

N

Fig. 10 StreamBPP VLSI architecture.

7 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 Register size.

Register size (bit)

FastStoreBPP (ours)
(P · M · xo + xμ + xσ + M · xf) 　　　　　
+(N ·L+2 ·M +(M · (�M/P �+1))/2) ·xf +2 ·xa

StoreBPP (ours)
(P · M · xo + 2 · xμ + xσ + M · xf) 　　　　　
+(N ·L+2 ·M +(M · (�M/P �+1))/2) ·xf +2 ·xa

StreamBPP (N · P · xμ + N · P · xσ) +(3 · N − 1) · xa + N · xf

表 2 Processing times.

Processing time (cycles)

FastStoreBPP (ours) �V/L� · {P · �M/2� + (2 + P) · L · N} · �T/M�
StoreBPP (ours) �V/L� · {P · M + (4 + 2 · P) · L · N} · �T/M�

StreamBPP V · (N · P + 2 · N + P · T)

表 3 Evaluation of the FastStoreBPP, StoreBPP and StreamBPP performance.

Register Processing #PE1s #PE2s

size (bit) time (cycles)

FastStoreBPP (ours) 22,000 2,315,520 44 (M=44) 2

FastStoreBPP (ours) 15,808 3,345,600 29 (M=29) 1

StoreBPP (ours) 22,008 4,631,040 22 (M=44) 1

StreamBPP 21,288 3,638,400 32 32

less processing time. Compared with the FastStoreBPP (M = 44), the FastStoreBPP

(M = 29) has fewer registers and PEs. Compared with StreamBPP (Fig. 3) which

requires N PE2s, the proposed architecture requires fewer PE2s because the value of

�M/P � is at most 2 when using StoreBPP5). From a VLSI architectural viewpoint,

the evaluation results show that full performance of the StoreBPP architecture has

been exploited by a little extention of the bit length of the bus in the FastStoreBPP.

From a logic design viewpoint, the register arrays of the FastStoreBPP, StoreBPP and

StreamBPP architectures are designed with Flip-Flops or on-chip multi-port memories

of different sizes. Data paths are designed with identical PEs, but in a different num-

ber. The control paths of these architectures are designed, as shown in the flowcharts

Figs. 3, 5 and 6. The data path delay is the same for the FastStoreBPP, StoreBPP and

StreamBPP designs—equal to the delay time of one PE1. The delay times of control

paths differ between the three, but the control path delay is small compared with the

data path delay.

5. Conclusions

We presented FastStoreBPP for output probability computations and Viterbi scorer

and presented a new VLSI architecture. A reconfigurable architecture for both the

StreamBPP and FastStoreBPP architectures are our future work.

Acknowledgment

The authors would like to thank to Assistant Professor Shingo Yoshizawa of Hokkaido

University.

参 考 文 献

1) S.Yoshizawa, N.Wada, N.Hayakawa and Y.Miyanaga : Scalable Architecture for

Word HMM-based Speech Recognition and VLSI Implementation in CompleteSys-

tem, IEEE TRANS. ON CIRCUITS AND SYST., Vol.53, No.1, pp.70–77 (2006).

2) S.Yoshizawa, N.Wada, N.Hayasaka and Y Miyanaga : Scalable Architecture for

Word HMM-Based Speech Recognition, Proc. of ISCAS’04, pp.417-420 (2004).

3) S.Yoshizawa, Y.Miyanaga and N.Yoshida, : On a High-Speed HMM VLSI Module

with Block Parallel Processing, IEICE TRANS. Fundamentals, Vol.J85-A, No.12,

pp.1440-1450 (2002).

4) Y.Kim and H. Jeong : A Systoric FPGA Architecture of Two-Level Dynamic

Programming for Connected Speech Recognition, IEICE TRANS.INF & SYST.,

Vol.E90-D, No.2, pp.562–568 (2007).

5) K.Nakamura, M.Yamamoto, K.Takagi and N.Takagi : A VLSI Architecture for

Output Probability Computations of HMM-Based Recognition Systems with Store-

Based Block Parallel Processing, IEICE TRANS.INF & SYST., Vol.E93-D, No.2,

pp.300–305 (2010).

6) B.Mathew, A.Davis and Z.Fang, A Low-Power Accelerator for the SPHINX 3

Speech Recognition System, Proc. of Int’l Conf. on Compilers, Architecture and

Synthesis for Embedded Systems, pp.210-219, 2003.

7) B.Mathew, A.Davis and A.Ibrahim, Perception Coprocessors for Embedded Sys-

tems, Proc. of ESTIMedia, pp.109-116, 2003.

8) X.Huang, F.Alleva, H.W. Hon, M.Y. Hwang, K. f. Lee and R.Rosenfeld, The

SPHINX-II speech recognition system: an overview, Computer Speech and Lan-

guage, vol.7(2), pp.137-148, 1992.

8 c© 2010 Information Processing Society of Japan

Vol.2010-SLDM-144 No.8
Vol.2010-EMB-16 No.8
Vol.2010-MBL-53 No.8
Vol.2010-UBI-25 No.8

2010/3/26

