000000000 0Oo0oDOoooOd Vol 3 No.2 49 (Mar. 2010)

cannot implement the copying GC on the Ruby VM, because part of the VM
oo depends on the conservative GC, and some objects cannot be moved. Therefore
we decided to use the mostly-copying GC, which collects garbage by copying
only movable objects. In this research, we aim to reduce the time spent on

. GC by implementing the mostly-copying GC on the VM of Ruby 1.9. We im-

D D D MOStly_COpylng GC D plemented the mostly-copying GC on the VM and examined the behavior of
objects in the heap, such as the ratio of immovable objects and their lifetime,

RUby VM D D D |:| D |:| D |:| using the VM and a web server program of Ruby on Rails. As a result, we found

immovable objects tend to be long-lived though the ratio of them is not small.
In this presentation, we present the design of generational mostly-copying GC

O 0O Ol O O O 0Of? O O o of2 based on the observation.

000WebO0OOOODODOOOOOOOOD Ruby 0000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000 Ruby OO
00000000000000000000GCOD00000000000000
0000000000000000000 GCO GCOO000000000000
0000000000Ruby 00000000 GCOOOOOOOO0O0O0000000O
000000000000000000000000 GCOOO0000000000
0000000000000000000000 GCOOO0000 Mostly-Copying
GCO000000000000000000 Mostly-Copying GC 000000
GCOO00000000000Rubyl.90 VM O Mostly-Copying GC 00000
OO0Ruby on Rails 00000 WebO0DOOOOOOOOOOOO0OO0O0O00O0O
000000000000 GCOOOO0OO00000000000000000000
00000000000000000000000000000000000000
00000000000000000000000 Mostly-Copying GC 00000
00000000000

ooo0O210 100290000

Toward an Implementation of
Generational Mostly-Copying GC on Ruby VM

OSAMU NAGAHARA,! ToMOHARU UGAwA 2
and HIDEYA TWASAKI'?

Recently, large-scale applications, such as web applications, have come to be t1000000000000D00000DODOO00D
developed in Ruby. A large-scale application tends to treat a large amount of Department of Computer Science, Graduate School of Electro-Communications, The University
data and to keep working for a long time. While the Ruby VM has the con- of Electro-Communications
servative mark-sweep GC, it is known that the time spent on GC in such an 200000000000

application can be reduced by using the generational copying GC. However, we Department of Computer Science, The University of Electro-Communications

49 (© 2010 Information Processing Society of Japan

