
IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010)

Regular Paper

A Real-Time File System for

Constrained Quality of Service Applications

Damien Le Moal,†1,†2 Donald Molaro†3

and Jorge Campello†3

The prevalence of multi-tuners, high-definition digital video recorder sys-
tems and home networking is increasing the number of simultaneous streams
that must be processed by recorder storage devices. Whereas recent hard-disk
drives provide enough performance to theoretically handle such workloads, gen-
eral purpose file systems and I/O schedulers used by operating systems such
as Linux do not satisfy the quality of service (QoS) requirements necessary for
efficient processing of real-time video streams. In this paper, we introduce the
Audio/Video File System (AVFS) composed of a file system and a disk I/O
scheduler optimized for handling simultaneous high bit-rate real-time streams.
Using a precise QoS measurement method, evaluation results of a Linux im-
plementation of AVFS show that, compared to traditional file systems such as
ext3 and JFS, AVFS provides QoS guarantees for real-time streams and more
stable performance.

1. Introduction

New high-end consumer electronic systems such as high-definition multi-room
Digital Video Recorders (DVR) are capable of simultaneously recording digital
content from several sources such as cable or over-the-air broadcasting tuners,
while at the same time, allowing for local playback of stored content and its
streaming to other devices over a home network. Many DVR systems also provide
other types of applications such as digital photo storage and viewing, Internet
browsing, email, games, etc.

Such entertainment systems are now often implemented using some version
of the Linux kernel as an operating system. This approach greatly facilitates

†1 Systems Development Laboratory, Hitachi Ltd., Kawasaki, Japan
†2 Graduate School of Informatics, Systems Science, Kyoto University, Kyoto, Japan
†3 Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA, USA

the development process and provides a high level of functionalities and perfor-
mance. In particular, Linux storage subsystems (file system and I/O scheduler)
can efficiently harness the high performance of recent hard-disk drives to allow
supporting the high load incurred by the simultaneous recording and reading of
multiple streams of high-definition video.

However, Linux file systems and I/O schedulers have no inherent ability to
distinguish between a real-time application, e.g., playing a movie, and a best-
effort task, e.g., viewing a photo. As a consequence, the on-time processing of
time critical disk I/O requests cannot be consistently guaranteed, particularly
in the presence of best-effort disk accesses, leading to poor Quality of Service
(QoS) for real-time video recording and playback applications. In addition to
this problem, these traditional storage stacks achieve high throughput at the
cost of a high disk utilization rate, leading to higher disk power consumption and
operating temperatures.

In this paper, we present the Audio/Video File System (AVFS), a solution to
exhaustively address DVR quality and performance problems. AVFS is com-
posed of a file system and a real-time disk scheduler cooperating to provide
efficient processing of real-time disk accesses with quality of service guarantees.
The proposed file system provides a set of new system calls allowing applications
to specify deadlines for real-time requests, thus implementing traffic differentia-
tion. It also implements a block allocation policy resulting in stable performance,
independent of the files accessed. The disk scheduler is optimized to deliver high
real-time disk throughput with QoS guarantees while minimizing the disk uti-
lization rate through aggressive seek overhead reduction.

This integrated approach is different from traditional Linux implementations
where the file system and disk scheduler operate independently from each other.
Also, unlike other solutions proposed in the past, AVFS achieves higher perfor-
mance and QoS using simple solutions that can be implemented in Linux entirely
within dynamic loadable kernel modules without requiring any kernel modifica-
tions, facilitating its integration in different systems.

The remainder of this paper is organized as follows. Section 2 discusses DVR
implementation and problems in more detail. AVFS is described in depth in
Section 3, and evaluation results of a Linux implementation are presented in Sec-

61 c© 2010 Information Processing Society of Japan

62 A Real-Time File System for Constrained Quality of Service Applications

tion 4. Related work is discussed in Section 5 and Section 6 provides a conclusion
to this paper.

2. Background

In this section, a typical implementation of a DVR application is presented
and used as a basis for discussing DVR performance and QoS requirements. The
problems raised by the use of traditional file systems and disk schedulers to
achieve these requirements are also discussed.

2.1 Typical DVR Implementation
A typical implementation of a multi-stream DVR system can be roughly split

into several software layers as shown in Fig. 1.
At the user level, stream applications manage input streams (recording of video

data obtained from a tuner or a network feed) and output streams (video local
playback using a hardware decoder or transmission over a network) by issuing
read and write I/O requests to the file system. In this model, all I/O requests
issued by stream applications have completion time constraints to ensure smooth
recordings, playbacks or network streaming of video content. Applications with-
out real-time requirements may also be executed simultaneously. These applica-
tions are classified as best-effort and may also execute file I/O operations.

To accommodate the different access models (block based or character based)
and response times of the devices being used, stream I/O operations are processed

Fig. 1 Typical DVR software architecture.

using buffers to temporarily store video data. If one were to examine the amount
of data in the buffers of real-time streams (i.e. buffer level) over time, a pattern
as shown in Fig. 2 would be observed. In read streams (such as video playback)
the buffer level depletes as the video data in the buffer is used. At some point
in time (submission time), the application has the opportunity to issue an I/O
request to partially refill the buffer. Some time later (service time), the request
completes and the buffer level increases. The reverse applies for write streams
(e.g., a video recording).

At the time a request is submitted, a stream application can calculate a deadline
for the submitted request. In the case of a constant bit rate video, dividing the
buffer size by the rate at which it is being depleted (or filled) gives the deadline.
In variable bit rate streams, the deadline can be calculated by finding the number
of video frames that the buffer contains and the frame display rate. Real-time
request deadlines may also be calculated using video frame information often
provided by digital tuners during video recording. The time interval between a
request completion time and its deadline is the I/O completion margin.

2.2 Measuring DVR Quality of Service
A well behaved DVR system, or in other words a DVR system providing good

quality of service, is one that processes all stream I/O requests within their
deadlines to avoid buffer under-run in output streams and input stream buffer
overflows, even in the presence of competing best-effort disk accesses.

Fig. 2 I/O request deadline relation to a stream buffer state.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

63 A Real-Time File System for Constrained Quality of Service Applications

Fig. 3 Cumulative distribution function (CDF) for real-time I/O request completion margin.
The y-axis shows the probability that a real-time request will be completed within a
margin lower or equal to a particular value (x-axis).

The QoS level of a DVR can be precisely defined by utilizing the rate of deadline
misses when handling real-time requests. This rate can be calculated statistically
by keeping track of the submission time, completion time and deadline of real-
time requests. For a sufficiently large set of data, one can obtain an estimate of
the probability distribution function (PDF) of the completion margins of real-
time requests. Integrating this PDF leads to the cumulative function (CDF) for
the completion margins (Fig. 3).

The CDF indicates the probability (y-axis in Fig. 3) that a real-time request
will be completed within a margin lower or equal to a particular value (x-axis
in Fig. 3). As the completion margin is negative only for requests with missed
deadlines, the probability given for a 0 margin (point P0 in Fig. 3) is equal to
the probability of any one request missing its deadline. By knowing the average
amount of data processed in each request and the bit rate of the observed streams,
it is possible to show that the system meets a specific QoS level, or in other words
meets requirements such as “less than one glitch per hour”.

The positioning of the tail of the CDF curve along the time axis also reveals the
overall system performance. If the tail of the CDF curve is well away from the
Y-axis, e.g., the distance m in Fig. 3 is large, the system is over-buffering and the
system designer can safely reduce the size of stream buffers without any impact
on the observed quality of the streams. If on the other hand the curve shows

margins close to 0 but still positive, the system is meeting all real-time request
deadlines without much room for the system to support unexpected events such
as a lengthy disk error recovery procedure when a defective disk sector is accessed.

2.3 DVR Requirements and Implementation Problems
The QoS metric introduced in the previous section shows that a DVR only

needs to ensure that real-time I/O requests complete within at least the desired
margin. An implementation of a DVR storage subsystem should thus first pro-
vide a performance level reasonably high enough to allow the on-time completion
of real-time I/O requests for several streams of high-definition video. Such perfor-
mance level must also be achieved even in environments where there is a mixture
of real-time and best-effort disk accesses. That is, the implementation must
be able to differentiate real-time and best-effort requests to apply an adapted
scheduling policy and achieve QoS guarantees for real-time accesses.

Another quality aspect that must be provided is stability: the performance level
should be stable enough over time so that the system can consistently provide
the same level of functionality to its user.

Finally, the implementation should also fit reasonably well into the typical
application model presented previously so that it can be easily adopted by the
relevant development community.

Modern file systems and I/O schedulers in Linux, combined with recent hard-
disk drives, generally provide a throughput sufficiently high to process several
streams of high-definition video simultaneously. However, I/O system calls in
Linux are based on the POSIX specification which lacks a means to specify the
nature of an I/O operation (real-time or not) as well as a method to attach a time
constraint (deadline) to I/O requests. As a result, I/O operation classes cannot be
differentiated in order to implement QoS guarantees for real-time applications.
It has also be shown that Linux file systems, while not very sensitive to file
fragmentation due to the repeated deletion and creation of files, exhibit variations
of up to 30% in file access performance 1). For a DVR, this can lead to a different
maximum possible number of streams that can be processed over time, or in
other words to unstable and unpredictable performance.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

64 A Real-Time File System for Constrained Quality of Service Applications

3. The Audio/Video File System

The Audio/Video File System (AVFS) was developed to exhaustively ad-
dress the DVR storage stack requirements presented in the previous section.
It uses simple methods integrated to achieve efficient processing of multiple high-
definition video streams.

3.1 Overview
AVFS simultaneously addresses performance as well as QoS issues using two

main components, as shown in Fig. 4. First the A/V file system provides support
for new I/O system calls (A/V I/O library) allowing assigning deadlines to real-
time requests, while preserving the standard POSIX set of system calls for best-
effort I/O operations. The A/V file system also improves file access performance
stability by distributing file data blocks across the entire disk partition. The
second main component of AVFS is a disk scheduler called the traffic mixer. The
traffic mixer uses real-time request deadlines to implement QoS guarantees while
increasing performance of disk accesses through disk seek overhead reduction
using batch processing of real-time requests.

AVFS can coexist with a standard file system on a different partition of a single
disk drive. In such cases, the traffic mixer treats all disk I/O requests issued by
the standard file system as best-effort traffic.

The Linux implementation of AVFS uses dynamic loadable modules. In addi-
tion to avoiding the need for any kernel modification, this implementation ap-
proach also simplifies the integration of AVFS into the various Linux distributions

Fig. 4 Organization of AVFS components.

provided by DVR hardware vendors.
3.2 A/V File-System
The A/V file system is a journaling file system which shares many features

with the traditional UNIX file system such as its inode metadata structure. The
differences mainly reside in its partition format which separates metadata and
data blocks into distinct regions, its data block allocation policy using very large
blocks distributed over the entire disk partition, and its support for the real-time
I/O system calls implemented by the user level A/V I/O library.

3.2.1 Partition Format
As shown in Fig. 5, an AVFS disk partition is separated into three regions: the

primary metadata region, the data region, and the backup metadata region.
The primary metadata region is organized as a set of 4 KB blocks used to

store metadata. It consists of the super block (SB) for describing the file system
format, a set of contiguous blocks for the journal, blocks used as bitmaps for
controlling the allocation state of metadata blocks, data blocks and inodes, and
blocks containing inode data structures. The remaining of the metadata blocks
are dynamically used for storing the data block mapping of files and directory
entries.

The backup metadata region is a copy of the primary metadata region, with
the exception of the journal blocks. This copy is maintained through AVFS
journaling and is used to improve the robustness of the file system against sector
corruption in the primary metadata region.

Fig. 5 Disk partition format with the A/V file system.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

65 A Real-Time File System for Constrained Quality of Service Applications

3.2.2 Data Block Management
Since modern disk drives are organized into zones whose sector density de-

creases toward the disk center, the disk drive data transfer rate is not uniform
but instead decreases towards the center of the disk. This leads to a large de-
viation in I/O processing time depending on the sectors accessed and thus to
non-predictable maximum performance.

To solve this problem, the A/V file system distributes data blocks of a file
across the entire data region to implement a uniform and thus predictable per-
formance for sequential accesses to files. This block allocation policy is called
Zone-Round-Robin (ZRR). The ZRR policy allocates data blocks to files using
groups of contiguous data blocks (zones). Data block allocation for a file is done
by first choosing a zone, then a data block within the zone. Zones are used in
a round-robin manner, that is, consecutive data blocks of a file are chosen from
consecutive zones. The first free data block of a zone is always chosen as the
allocation candidate. The first data block of a file is always allocated from the
zone following the one last used for an allocation. The zone used for the first
data block allocation after a file system formatting is chosen randomly.

To simplify implementation, the data region is divided up into zones without
any consideration of the physical layout of the disk sectors, tracks and cylinders.
That is, data block zones are generally not aligned on disk tracks or cylinders.
The size and the number of zones are computed using the size of the data region
so that at most 32 zones are created with each zone size no smaller than 16 GB.
These values were arbitrarily chosen. The study of the impact on performance
of different zone division methods is left as a subject for future study and not
discussed in this paper.

An example of this allocation scheme is shown in Fig. 6: the data region is
divided into n zones of m blocks. The file system is initially empty and data
blocks for file A are allocated starting from the zone i. Since the file system is
empty, the first block of each zone is allocated to file A resulting in the sequence
shown. Block allocation for the files created following A are similarly allocated
so that, roughly speaking, all files are uniformly spread out across the whole
data region. Sequential accesses to files thus result in all zones being traversed
sequentially and cyclically, accessing one or more blocks in each zone visited. As

Fig. 6 A/V file system ZRR block allocation policy.

a consequence, the total access time for a file is almost totally independent of
its block locations but is simply proportional to its size with an almost constant
seek time between blocks and almost constant average transfer time of blocks.
In other words, the ZRR policy achieves a stable average I/O processing time,
leading to more stable and predictable overall disk performance.

To mitigate the performance penalty due to the introduction of disk head seeks
between logically sequential requests in different blocks in consecutive zones, that
is, to avoid excessive file fragmentation, the A/V file system uses large data
blocks. The default size for data blocks is 4 MB, which corresponds to about 1.7
seconds of ATSC MPEG2 high-definition video with a bit rate of 19.39 Mbps.
this default value can be changed during disk formatting to any value that is a
power of 2 higher than 4 KB and up to 4 GB.

Beyond stabilizing access performance, this large data block management strat-
egy has also the advantage of reducing the amount of metadata required to store
a file data block mapping on disk. As was shown with the Conquest file system 2),
this can further improve disk performance.

3.2.3 Real-time I/O System Calls
AVFS real-time I/O system call functions are implemented as an application

level library (A/V I/O library in Fig. 4) using the standard ioctl system call.
The functions provided, shown in Table 1, are similar to the POSIX aio inter-
face.

As shown in Fig. 7, AVFS real-time I/O system call functions are used in
the same way as their POSIX equivalent (Fig. 8). To use these functions, the
first step is to set up an asynchronous I/O descriptor (aio variable). The main
difference between the two sets of functions is the aio_deadline field in the

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

66 A Real-Time File System for Constrained Quality of Service Applications

Table 1 AVFS real-time I/O system call functions.

Function Description POSIX equivalent

avfs_asyncio_start Start an asynchronous I/O request aio_read
aio_write

avfs_asyncio_check Wait or check the completion aio_suspend
of an asynchronous I/O request aio_error

avfs_asyncio_cancel Cancel the processing of a aio_cancel
started asynchronous I/O request

avfs_asyncio_poll Poll a set of files for the completion poll
of asynchronous I/O requests

/* AVFS aio example */

avfs_asyncio_t aio;
. . .
/* Setup aio */
aio.aio_fildes = fd;
aio.aio_offset = ofst;
aio.aio_buf = buf;
aio.aio_nbytes = size;
aio.aio_deadline = dl;

/* Start aio */
avfs_asyncio_start(&aio, AVFS_READ);

/* Do some other processing */
. . .

/* Wait for aio completion */
avfs_asyncio_check(&aio, AVFS_WAIT);
if (aio.aio_ret < 0) {

/* I/O error */
}

/* Use data */
. . .

Fig. 7 Simple example of a typical use of
AVFS real-time I/O system calls.

/* POSIX aio example */

struct aiocb aio;
. . .
/* Setup aio */
aio.aio_fildes = fd;
aio.aio_offset = ofst;
aio.aio_buf = buf;
aio.aio_nbytes = size;

/* Start aio */
aio_read(&aio);

/* Do some other processing */
. . .

/* Wait for aio completion */
aio_suspend(&aio, 1, 0);
if (aio_return(&aio) < 0) {

/* I/O error */
}

/* Use data */
. . .

Fig. 8 Simple example of a typical use of
the POSIX asynchronous I/O system
calls.

avfs_asyncio_t data structure. This field allows an application to specify a
deadline in absolute system time, indicating that the request is a real-time one.
This differentiation is not possible with the POSIX interface as such a field is

not available in the aiocb data structure. The next steps of the processing are
starting the I/O request and checking its completion. These steps are done in a
very similar manner with the two interfaces.

For AVFS asynchronous I/O requests, the deadline indicated by the
aio_deadline field is passed down to the traffic mixer by the A/V file system
using the bi_private field of Linux block I/O data structures (struct bio)
generated to process the application I/O request. This information is used by
the traffic mixer to differentiate real-time requests from best-effort ones. Block
I/O requests with no deadline specified (i.e. the aio_deadline field is set to 0)
are assumed by the traffic mixer to be best-effort. The same also applies to any
block I/O request generated by the execution of a standard POSIX I/O system
call.

3.3 Traffic Mixer
The traffic mixer is a real-time disk I/O scheduler. Its goal is to mitigate the

adverse effects of the periodic nature of real-time requests on the spatial locality
of disk accesses, that is, on the degradation of disk seek overhead due to the
processing of non-sequential requests directed to different files. This is achieved
by delaying the processing of real-time requests according to their deadlines and
to their estimated processing time so that several sequential I/O operations to
a single file can be accumulated in the scheduler queue. This approach virtually
creates a request pattern similar to a fast file access where sequential I/O are
issued quickly one after another. Such a pattern can be processed more efficiently
using a typical elevator type policy (e.g., C-SCAN 3)), which drastically reduces
seek overhead and improves performance.

3.3.1 Overview
The traffic mixer is organized as shown in Fig. 9. Received block I/O requests

first go through an admission step to separate real-time and best-effort requests
into different queues. A request with a specified deadline is treated as a real-time
request. All other requests are treated as best-effort.

Both real-time and best-effort request queues are maintained in their execution
order that is, the order in which requests can be executed as efficiently as possible,
i.e., with the least amount of seek between requests. The optimal execution order
in general varies according to the disk drive model, its physical block layout,

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

67 A Real-Time File System for Constrained Quality of Service Applications

Fig. 9 A/V traffic mixer organization.

etc. The traffic mixer considers only a simplistic disk model and uses increasing
logical block address (LBA) ordering as the execution order (equivalent to a C-
SCAN policy). Real-time requests are also queued into another list maintained
in deadline order.

Once requests are differentiated and queued, the traffic mixer estimates the
service time of each real-time request assuming the requests are executed in LBA
order. Depending on the result of this estimation, the mixer either sets the hold
timer to delay the processing of pending real-time requests, activates the real-
time scheduler to start processing all pending real-time requests, or activates the
best-effort scheduler to execute a single best-effort request. The traffic mixer
always dispatches requests to the disk driver one at a time.

In its current implementation, the traffic mixer does not provide a bandwidth
reservation mechanism. Scheduling decisions are made dynamically upon request
arrival and completion. A possible consequence is that the system might become
overloaded with real-time traffic, causing the real-time scheduling to fail. To
avoid this problem, a DVR system designer can rely on the performance stability
provided by the A/V file system and use the QoS measurement method presented
in Section 2 to verify during a DVR development phase if a target workload is
within the maximum performance achievable by the system.

3.3.2 Real-time Request Service Time Estimation
The service time of real-time requests is estimated using a simple disk model.

This model is based on the disk rotational period Tr, its average seek time Tk, its
maximum and minimum data transfer speed Dtmax and Dtmin and the largest
LBA of the disk Lmax. The model assumes a linear variation of the disk transfer
speed between the minimum and maximum LBA. The service time TS(R) of
a real-time request R of size S(R) and of starting LBA L(R) is estimated as
follows.

TS(R) = α

(
Tk +

Tr

2

)
+

S(R)

Dtmax − (Dtmax−Dtmin)L(R)
Lmax

(1)

The request service time estimate is in other words just the average seek time
plus the average rotational latency plus the data transfer time. The seek time
factor α is equal to 1 if the estimated request is not sequential with respect to
the previous one estimated in execution order. Otherwise, α is set to 0 to reflect
the absence of disk head seek.

A more precise estimator could be designed using more detailed disk models 4).
However, the estimator used here, while crude, has the advantage of using only
a small set of parameters that can be easily obtained from the disk specifications
or directly measured. Despite its simplicity, this model also has the advantage
of lowering the probability of underestimation to reasonably small level.

3.3.3 Mixer Algorithm
The role of the mixer is to control execution of the real-time and best-effort

schedulers so that real-time requests are processed before the expiration of their
deadlines and the average seek distance between consecutive real-time requests in
execution order is minimized. The mixer does this by delaying the processing of
real-time requests until the time H at which it must start executing all pending
real-time requests to meet their deadlines. The time H is calculated as follows
using the index set e0, e1, · · · , eNR−1 to represent the sequence of NR real-time
requests in execution (LBA) order, with TD(R) being the deadline of request R

and m the desired completion margin (see Fig. 3).

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

68 A Real-Time File System for Constrained Quality of Service Applications

Fig. 10 Traffic mixer scheduling states.

Hj = TD(Rej
) −

(
m +

j∑
i=0

TS(Rei
)

)
(2)

H = min
j=0...NR−1

Hj (3)

Here Hj represents the latest time at which LBA order execution of the request
Rej

and of its predecessors can start without missing its deadline within the
margin m. The minimum Hj for the entire set of NR real-time requests, i.e. H,
thus gives the latest possible time to activate the real-time scheduler to execute
all requests in LBA order so that a completion margin of at least m is achieved
for all requests.

Using H, the mixer controls activation of the real-time and best-effort sched-
ulers as shown in Fig. 10. At the current time t, if H > t then the mixer delays
execution of pending real-time requests (hold state). If this condition becomes
false, the mixer activates the real-time scheduler to process all pending real-time
requests �1. When both best-effort and real-time requests are present and the
real-time scheduler is not activated, if H ≥ t+TS(R′), where R′ is the next best-
effort request in the queue, then R′ is executed and the set of real-time requests
remains schedulable. If the test fails the mixer activates the real-time scheduler.
In the absence of real-time requests, the best-effort scheduler is always activated

�1 Strictly speaking, the processing of real-time requests could be interleaved with best-effort
requests when better candidates in terms of seek can be found, and all remaining real-time
requests have a large enough Hj to tolerate additional delays. However, the existence of
such best-effort requests is unlikely, leading to only a negligible improvement in the response
time of best-effort requests. The entire set of real-time requests is thus simply passed as a
whole to the real-time scheduler.

immediately upon arrival of a new best-effort request.
The delayed processing of real-time requests introduced by the mixer implies

that efficient processing of real-time I/O operations can be achieved only using the
asynchronous I/O model (as provided by the A/V I/O library). Using traditional
blocking I/O functions for real-time requests would result in the introduction of a
large apparent I/O processing time, and result in potential stream buffer under-
run or overflow (i.e. video quality problems).

3.3.4 Real-time Scheduler Policy
As discussed in the previous section, the mixer activates the real-time scheduler

to process all NR real-time requests in the LBA ordered queue. Therefore, when
activated by the mixer, the real-time scheduler removes all real-time requests
in the execution ordered queue to form a single batch of requests. Since H is
calculated using the execution order of requests with deadlines reduced by the
margin m, the real-time scheduler assumes that all requests in the batch can be
executed in LBA order to improve disk throughput. However, a request may still
miss its deadline if an unexpected event such as a disk error recovery results in
a large difference between the estimated service time and actual execution time
of previous requests.

To address this problem, the real-time scheduler operates depending on the
current time t and on the earliest deadline td = TD(Rd) of the requests in the
batch. First, if td ≤ t, i.e., Rd missed its deadline, the request is not processed
and immediately terminated as failed. If td > t but td ≤ t + e, where e < m

is a parameter to identify requests to be urgently scheduled, then Rd and all
succeeding requests having urgent deadlines are scheduled in an earliest-deadline-
first (EDF) manner until Td(R) > t + e is satisfied for all remaining requests R.

If td > t+e but td ≤ t+m, meaning that the request with the earliest deadline
cannot be executed without missing the desired completion margin m, then LBA
order processing is only applied to the subset of requests {Rj |TD(Rj) < td +m}.
Otherwise, that is if td > t + m as expected and obtained in most cases, the
real-time scheduler starts executing the request Re0 and its successors in LBA
order.

As shown in Fig. 11, this policy implicitly defines three different scheduling
windows defining the sets of requests considered for execution by the real-time

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

69 A Real-Time File System for Constrained Quality of Service Applications

Fig. 11 Scheduling windows of the traffic mixer real-time scheduler.

scheduler. The EDF window is used only if some real-time requests have a
deadline below e. The reduced C-SCAN window is used for requests with a
deadline within the earliest deadline plus the desired completion margin m. The
normal case C-SCAN window is used for all other cases. If the real-time workload
applied to the system is within the system maximum, the EDF and reduced C-
SCAN windows will be used only if the processing time for some requests exceeded
the estimate or if an application issued some urgent requests.

Any real-time request received while the real-time scheduler is active is only
added to the current batch if its deadline is earlier than the latest deadline of
the requests in the current batch. Otherwise, this new real-time request is left
pending until a new batch processing is started.

3.3.5 Best-effort Scheduler Policy
Best-effort requests are always executed in increasing LBA order, starting from

the end LBA of the last request executed (either real-time or best-effort). Since
the processing of best-effort requests may be interrupted to execute real-time
requests, the LBA variation may not be monotonic, potentially resulting in re-
quests starvation. The best-effort scheduler takes care of such cases by managing
the age of its pending requests, ensuring that older requests are processed with
a higher precedence over new ones.

4. Experimental Results

This section presents evaluation results from implementing AVFS on Linux
and using a DVR workload generator application which mimics the simultaneous
recording and playback of multiple streams of high-definition video. In order to
precisely determine the relative contribution to performance and QoS of the A/V
file system and of the traffic mixer, the A/V file system was used alternatively

in combination with Linux cfq scheduler 5) and with the traffic mixer. Results
obtained with these two configurations were compared with those obtained when
using Linux ext3 6) and JFS 7) file systems in combination with the cfq scheduler.

4.1 Evaluation Environment
All experiments were performed using a 250 GB SATA hard-disk drive (3.5

inches form factor, 7200 rpm, 8 MB buffer, 2 platters and 4 heads). The disk
write cache was disabled for all experiments and the read-ahead functionality was
kept enabled. The disk maximum read throughput was measured at 560 Mbps.
This disk was attached to a mini ITX PC motherboard equipped with a VIA C3
(1 GHz) CPU and 128 MB of RAM. A standard (unmodified from official release)
Linux kernel version 2.6.24 was used for all experiments.

The DVR workload generator application used was a multi-threaded appli-
cation using one thread per stream. The workload generated for each stream
corresponds to either the recording or playback of ATSC MPEG2 video files
with a bit-rate of 19.39 Mbps. The I/O operations for streams were executed us-
ing POSIX aio functions for ext3 and JFS evaluation and AVFS asynchronous
I/O operations for AVFS measurements. The traffic mixer scheduler was set up
with a desired completion margin (parameter m) for real-time requests set to
500 milliseconds. The urgent request threshold (parameter e) was set to 100
milliseconds.

In all experiments, stream I/O operations were 512 KB direct I/O, representing
217 milliseconds of high-definition video data. This led to applications issuing I/O
requests with a 217 milliseconds cycle, thus making the overhead due to execution
of system calls negligible. An application was allowed to issue simultaneously at
most 8 I/O requests per stream, representing a per stream buffer of 4 MB (i.e.,
1.73 seconds of video data). Each experiment was executed for one hour.

The workloads tested are identified using the notation NrMw where N is
the number of read streams (playbacks) and M is the number of write streams
(recordings).

4.2 Performance Measurements
This section presents evaluation results of the streaming performance achieved

by different configurations. Performance was measured by observing the number
of streams that can be simultaneously processed in real-time without deadline

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

70 A Real-Time File System for Constrained Quality of Service Applications

miss. The stability and efficiency of the tested configurations were also quanti-
fied using the disk utilization rate (i.e. the percentage of time the disk is busy
processing I/O requests).

4.2.1 Real-time Streaming Performance
In this experiment, using a randomly chosen set of files from a file system

filled up to 80% of capacity, the I/O completion margin CDF for workloads of
2, 4, 6 and 8 read streams and 0, 2, 4 and 6 read streams combined with 2
write streams was measured. Results for ext3 and JFS used in combination
with the cfq scheduler are shown in Fig. 12. Results for the A/V file system
used in combination with the cfq scheduler (AVFS-cfq case) and the traffic mixer
scheduler (AVFS-tm case) are shown in Fig. 13.

Referring to Fig. 12, JFS clearly processed all I/O requests quickly, completing
the processing of all requests well within the desired margin. It can be observed
however, that as write streams are introduced, the tail of the CDF curves shift
left, with the heaviest workload (6r2w) clearly showing the lowest completion
margins. On the other hand, ext3 failed to maintain QoS for the two workloads of
8 streams (8r0w and 6r2w). These two cases showed a deadline miss probability
P0 of 0.001 and 0.003 respectively. This corresponds to a video glitch every 28.9
min and 9.6 min in average per stream.

As shown in Fig. 13, combining the A/V file system with the cfq scheduler
(AVFS-cfq case) resulted in completion margins very similar to the margin ob-
tained with JFS. The desired QoS constraint of 500 milliseconds was maintained
for all test cases. The use of the traffic mixer (AVFS-tm case) also led to the same
results with the tail of all CDF curves converging toward the desired completion
margin.

These results show that the performance level that can be obtained with the
A/V file system, regardless of the scheduler being used, is similar to that of JFS,
or in other words has the ability to simultaneously support at least 8 streams of
high-definition video. Here, ext3 provided lower performance with a maximum
of only 6 streams.

4.2.2 Performance Stability
In order to observe the performance stability of the different configurations, this

experiment repeatedly measured the disk utilization rate for the 4r2w workload.

Fig. 12 Real-time request completion margin CDF for various workloads using ext3 and
JFS with the cfq scheduler.

Fig. 13 Real-time request completion margin CDF for various workloads using AVFS in com-
bination with the cfq scheduler (AVFS-cfq case) and the traffic mixer scheduler
(AVFS-tm case). Completion margins of the AVFS-tm case are lower due to the
delayed processing of real-time requests, but not lower than the desired completion
margin (parameter m) set to 500 msecs in this test.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

71 A Real-Time File System for Constrained Quality of Service Applications

Fig. 14 Disk utilization rate stability for different files (4r2w workload).

For each measurement, a different set of files was utilized for the read streams.
The files created by the two write streams of this workload were deleted at the
end of each test and another test started without reformatting the file systems.

As shown in Fig. 14, both ext3 and JFS exhibited a large variation in the disk
utilization rate depending on the set of files being used. This instability shows
that the 4r2w workload may potentially result in deadline misses for some file
combinations. In other word, the performance is not stable and thus the ability
to process this workload without deadline miss not predictable.

On the other hand, the A/V file system combined with the cfq scheduler showed
a more stable disk utilization rate. This rate was also lower than that obtained
with ext3 and JFS. The AVFS-tm configuration also led to the same result with
a slightly lower (improved) disk utilization rate.

This higher stability of the disk utilization rate obtained with AVFS, regard-
less of the scheduler being used, can be explained by the data block management
policy of the file systems tested. As ext3 and JFS allocate data blocks to files
sequentially, simultaneous access to different files result in a seek distance be-
tween I/O requests that is dependent on the relative position of the files on disk.
As the time necessary to process a request increases significantly with the seek
distance 8),9), lower seek distances on average lead to lower disk utilization. In
other words, if the accessed files are close together, seek can be reduced, resulting
in a lower overall disk utilization rate. Simultaneous accesses to files far apart
on disk render an opposite result.

The distribution of a file data blocks across the disk done by AVFS solves this

Fig. 15 Seek distance distribution of consecutive requests for the 4r2w workload.

problem, leading to a disk utilization rate that is only dependent on the number of
streams and not on the files being used. AVFS data block management therefore
provides more stable and predictable performance.

4.2.3 Efficiency
The results presented in Fig. 14 also clearly showed that using the traffic mixer

scheduler yielded the lowest disk utilization rate. As for the stability results,
this improvement can also be explained by looking at the distance on disk (i.e.
amount of seek) between consecutively processed requests (Fig. 15).

The use of ext3 and JFS led to a majority of requests separated by seek dis-
tances in excess of 50 GB. Since the cfq scheduler quickly processes requests in
order to minimize response times, the cyclic nature of stream I/O operations
results in a scheduling queue generally containing requests directed to different
files, and rarely to a sequence of contiguous requests within a file. This charac-
teristic of cfq exerts less of an effect on AVFS because of the distribution of data
blocks across the disk, leading to a majority of consecutively executed requests
separated by a seek distance below 50 GB.

On the other hand, the use of the traffic mixer with AVFS resulted in an I/O
request processing sequence with an average lower seek distance or namely to
more efficient processing. As the delayed processing of real-time requests by the
traffic mixer allows accumulation of sequential requests within a file, more than

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

72 A Real-Time File System for Constrained Quality of Service Applications

70% of the processed requests were separated by a seek distance lower than 5 GB.
4.2.4 Stability Over Time
Previous results not only showed that AVFS performance is stable regardless of

the set of files being used, but also that AVFS processes workloads more efficiently
with a lower disk utilization rate. To verify that these results are also achieved
independently of the age of the file system, that is, on the repeated deletion and
creation of files, the workloads applied in Section 4.2.1 are repeatedly executed
at increasing file system ages.

The age of a file system is defined here as the total amount of video time
recorded without reformatting the file system. The aging process repeatedly
deletes files and creates new ones by executing write streams, emulating the
repeated recording of video files. The 0 hour age case corresponds to a file system
filled up to 80% of its capacity after a fresh formatting. At each measurement
point, the set of files used for real-time streams is chosen randomly. Results are
shown in Fig. 16.

Compared to ext3 and JFS, the disk utilization rate with AVFS did not vary
significantly with the file system age. The observed variation over time was
smaller than 1% for all workloads whereas the maximum difference reached 36%
for JFS and 15% for ext3. Disk utilization rates with AVFS were also consistently
lower for almost all workloads. Only JFS performed better for the 2r0w case
with an average disk utilization rate over time of 9.5% against 14% for AVFS. For
higher workloads such as 8r0w, AVFS resulted in a disk utilization rate lowered
to 57% from an average of 88% for ext3 and 82% for JFS.

4.3 QoS Measurements
This section presents evaluation results showing the quality of service achieved

by all file system configurations.
4.3.1 Effect of Metadata Traffic
This experiment measured the effect of metadata accesses by the file system

on real-time streams by deleting a randomly picked video file while the 2r0w

workload was executed. To characterize the effect of the file deletion, the amount
of data in the buffer of one of the read streams was observed. Measurement results
are shown in Fig. 17. The file deletion processing interval is shown in gray.

Neither JFS nor AVFS (regardless of the scheduler being used) were affected

Fig. 16 Disk utilization rate stability over time (same workloads as for Fig. 12 and Fig. 13).

by the large file deletion because the amount of metadata requiring processing
is small. The file deletion took less than one second and did not cause any
noticeable change in the buffer level of the observed read stream. In contrast,
the data block management scheme used by ext3 resulted in a large amount of
metadata block accesses to process the file deletion, causing several buffer under-
runs. The overall deletion operation was also slower and took 29 seconds to
complete.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

73 A Real-Time File System for Constrained Quality of Service Applications

Fig. 17 Effect of a file deletion on the buffer level of a read stream of the 2r0w workload.
Buffer level fluctuation in the AVFS-tm case is more important due to the traffic
mixer delayed processing of real-time requests.

4.3.2 Effect of Simultaneous Best-effort Traffic
Under the 2r2w workload, this experiment incorporated best-effort accesses by

writing a set of 100 pictures to the disk. Picture files averaged 1.3 MB in size,
with the entire set of files representing 135 MB of data. The buffer level of one
of the write stream (recording) was observed to characterize the effect of the
best-effort traffic. Results are shown in Fig. 18.

The use of the cfq scheduler, independently of the file system being used,
resulted in buffer overflows for the observed write stream during execution of the
best-effort write operations. As cfq does not differentiate processing of real-time

Fig. 18 Effect of best-effort traffic on the buffer level of a write stream of the 2r2w workload.
Buffer level fluctuation in the AVFS-tm case is more important due to the traffic
mixer delayed processing of real-time requests.

and best-effort requests, unacceptable delays in the processing of real-time I/O
requests are introduced. The effective bandwidth for writing the entire set of files
was comparable for AVFS and JFS at 108 Mbps. Here, ext3 did not perform as
well and achieved a rate of only 72 Mbps.

The traffic mixer with AVFS on the other hand processed real-time requests
without causing any buffer overflow, which demonstrates the effectiveness of the
scheduling policy implemented. The traffic mixer use also caused no significant
degradation in the processing speed of the best-effort traffic, completing the copy
of the picture files as quickly as in the AVFS-cfq and JFS-cfq cases.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

74 A Real-Time File System for Constrained Quality of Service Applications

5. Related Work

Real-time disk scheduling has been extensively studied and many solutions
proposed. One of the simplest solutions proposed is the Earliest Deadline First
(EDF) policy which executes requests in increasing deadline order. It has been
shown that EDF often leads to poor performance results compared to SCAN
or C-SCAN due to a higher seek and rotational latency overhead 10). SCAN-
EDF 11), which also executes requests in increasing deadline order and increasing
LBA order for requests with the same deadline, provides only marginal improve-
ments over EDF. Both EDF and SCAN-EDF also lack a means to safely handle
simultaneously best-effort requests while still guaranteeing the completion times
of real-time requests.

This problem is addressed by more advanced scheduling methods such as
RTFS 12) and ABISS 13). However, unlike AVFS traffic mixer, these methods
use fixed scheduling cycles for processing real-time requests which implicitly as-
sumes periodic real-time behaviour of streams, i.e. a uniform increase in real-time
request deadlines. It has been shown that the effectiveness of cycle based schedul-
ing methods depends on the value chosen for the scheduling cycle 10): short cycles
can result in a high seek and rotational latency overhead, whereas larger periods
degrade best-effort request processing response time. Since a DVR needs to sup-
port various video bit-rates at different playback speeds, determining an optimum
processing cycle can be difficult in general cases and may require restrictions on
the type of video and functions supported. Both RTFS and ABISS implemen-
tation also rely on stream buffers placed within the file system or kernel. This
allows preserving the POSIX file I/O interface for processing real-time operations
(using automatic read-ahead in the kernel buffers) but increases memory usage
overhead due to the double buffering of data at the application and kernel levels
if a traditional streaming application model is used. Overcoming this problem
thus requires important design changes to existing applications. AVFS relies
on a more traditional application model, making its integration in existing sys-
tems more simple. Also, its use of real-time requests deadlines and service time
estimation leads to scheduling cycles that dynamically adapt to the workload.

The Cello scheduling framework 10) constitutes a more flexible approach to

disk real-time scheduling. A class independent scheduler maintains a request
execution queue according to request slack time (time until desired completion)
determined by class specific schedulers. This results in efficient processing of
mixed best-effort and real-time disk traffic, for instance by allowing fair-sharing
of the disk bandwidth or disk processing time among service classes. However,
there is no proposition for a real-time class specific scheduler beyond the low
performing SCAN-EDF. The two level scheduling method mechanism of Cello
allows the integration of the traffic mixer as a class specific scheduler, making
these methods complementary.

Cooperative-I/O 14) utilizes a very different approach to providing QoS guar-
antees, albeit weaker ones. It introduces new I/O system calls to specify an
acceptable delay for I/O requests which can in effect be seen as a deadline. Ker-
nel level layers such as the virtual file system and the page cache are modified
to use this information to delay the processing of disk I/O requests within the
desired maximum delay, resulting in bursts of requests sent to the disk. This is in
essence very comparable to AVFS but requires more changes to the operating sys-
tem core parts, leading to a more difficult integration process and maintenance.
AVFS has the advantage of being less intrusive as its benefits are confined within
the file system and disk scheduler which are implemented as dynamically loadable
modules.

Providing QoS guarantees for real-time applications also requires that the work-
load applied to the disk does not exceed its physical capabilities. This is usually
implemented using bandwidth reservation methods. However, as disk perfor-
mance heavily depends on head seek overhead and rotational latency generated
by the sequence of requests executed, the maximum performance is not easily
predictable. Often, the worst case (maximum seek latency and rotational delay
between requests) is used for estimating maximum performance, leading to a
non-optimal result 8). Better estimates can be obtained through statistical meth-
ods but at the expense of weaker QoS guarantees 15). However, unlike video
streaming servers, the maximum number of streams that a DVR must process is
often physically fixed by parameters such as the number of video tuners and the
maximum number of clients that can access it. This results in a lower need for
a bandwidth reservation function which can be replaced by a simple application

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

75 A Real-Time File System for Constrained Quality of Service Applications

level stream admission control. A QoS measurement method such as introduced
in Section 2 is a practical solution to precisely verify if a particular workload can
be processed.

The data block allocation scheme used in the A/V file system is very similar to
the region based block allocation (REBECA) mechanism 16). This method also
distributes data blocks evenly across the disk to lower on average seek distances
between I/O operations and achieve more efficient processing of accesses to video
files. The Symphony multimedia file system 15) also showed that a file system/disk
scheduler integrated approach using a data block size adapted to the file type
processed, as implemented by AVFS, significantly improves performance.

Previous work with AVFS has also shown that reducing seek overhead leads to
significantly lower disk power consumption 17). Compared to cfq and other Linux
standard I/O schedulers, a reduction of up to 20% in power consumption can be
observed.

6. Concluding Remarks

In this paper, we propose AVFS which is comprised of a file system and real-
time disk scheduler, to comprehensively resolve problems in implementing real-
time streaming applications in single disk embedded systems. The file system
uses large data blocks evenly distributed over the disk partition to stabilize per-
formance and to reduce the amount of metadata necessary to store file data block
mapping on disk. The inclusion of deadline information to the proposed asyn-
chronous I/O interface effectively allows lower level components in the storage
stack to differentiate the type of file accesses (real-time or best-effort) while pre-
serving a traditional buffer based application implementation model for stream
processing. Support for AVFS at the application level can be achieved very
easily for real-time applications without requiring any modifications whatsoever
to other software. AVFS disk I/O scheduler, called the traffic mixer, processes
real-time requests in batches built dynamically according to real-time request
deadlines and service time estimation. This methods result in an important re-
duction of the average seek distance between consecutively executed requests and
thus to better performance.

Evaluation results have shown that compared to traditional file systems and

I/O schedulers, AVFS can maintain a high QoS level for real-time I/O opera-
tions even in the presence of best-effort disk accesses and under high workloads.
Furthermore, AVFS performance is more stable with lower disk utilization rates,
making it possible to use smaller and slower disk form factors (e.g. 2.5” disk
drives) for processing high bit rate workloads such as high-definition video.

Acknowledgments The authors wish to express their sincere thanks to
the following persons for their contribution to and support of this work: Dr.
Richard New and Dr. Zvonimir Bandic of Hitachi Global Storage Technologies,
San Jose Research Center, Mika Mizutani and Dr. Tadashi Takeuchi of Hitachi
Ltd. Systems Development Laboratory and Prof. Hiroshi Nakashima of Kyoto
University, Academic Center for Computing and Media Studies.

References

1) De Nijs, G., Biesheuvel, A., Denissen, A. and Lambert, N.: The Effects of Filesys-
tem Fragmentation, Proc. 2006 Linux Symposium, Vol.1, pp.193–208 (2006).

2) Wang, A.-I.A., Kuenning, G., Reiher, P. and Popek, G.: The Conquest file system:
Better performance through a disk/persistent-RAM hybrid design, Trans. Storage,
Vol.2, No.3, pp.309–348 (2006).

3) Seltzer, M., Chen, P. and Ousterhout, J.: Disk scheduling revisited, Proc. USENIX
Winter 1990 Technical Conference, pp.313–324 (1990).

4) Jacob, B., Ng, S.W. and Wang, D.: Memory Systems: Cache, DRAM, Disk, Mor-
gan Kaufmann (2007). ISBN-13: 978-0123797513.

5) Axboe, J.: Time sliced cfq (2004).
http://article.gmane.org/gmane.linux.kernel/264676

6) Tweedie, S.: Journaling the Linux ext2fs Filesystem, Proc. 4th Annual Linux Expo
(1998).

7) Best, S.: JFS Overview (2000). http://jfs.sourceforge.net/project/pub/jfs.pdf
8) Mesut, O. and Lambert, N.: HDD Characterization for A/V Streaming Appli-

cations, IEEE Transactions on Consumer Electronics, Vol.48, No.2, pp.802–807
(2002).

9) Molaro, D., Payer, H. and Le Moal, D.: Tempo: Disk Drive Power Consump-
tion Characterization and Modeling, Proc. 13th IEEE International Symposium on
Consumer Electronics (ISCE ’09), pp.246–250 (2009).

10) Shenoy, P. and Vin, H.M.: Cello: A Disk Scheduling Framework for Next Gen-
eration Operating Systems, Proc. 1998 ACM SIGMETRICS Joint international
Conference on Measurement and Modeling of Computer Systems, pp.44–55 (1998).

11) Reddy, A.L.N., Wyllie, J. and Wijayaratne, K.B.R.: Disk scheduling in a multi-
media I/O system, ACM Trans. Multimedia Comput. Commun. Appl., Vol.1, No.1,

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

76 A Real-Time File System for Constrained Quality of Service Applications

pp.37–59 (2005).
12) Hong, L., Cumpson, S., Jochemsen, R., Korst, J. and Lambert, N.: A scalable

HDD video recording solution using a real-time file system, IEEE Transactions on
Consumer Electronics, Vol.49, No.3, pp.663–669 (2003).

13) De Nijs, G., Van Den Brink, B. and Almesberger, W.: Active Block I/O Scheduling
System (ABISS), Proc. 2005 Linux Symposium, Vol.1, pp.109–126 (2005).

14) Weissel, A., Beutel, B. and Bellosa, F.: Cooperative I/O: a novel I/O semantics for
energy-aware applications, OSDI ’02: Proc. 5th symposium on Operating systems
design and implementation, pp.117–129 (2002).

15) Shenoy, P.J., Goyal, P., Rao, S. and Vin, H.M.: Symphony: an Integrated Multi-
media File System, Technical Report (1998). UMI Order Number: CS-TR-97-09.

16) Ghandeharizadeh, S., Kim, S.H. and Shalabi, C.: On configuring a single disk con-
tinuous media server, Proc. 1995 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pp.37–46 (1995).

17) Le Moal, D., Molaro, D. and Campello, J.: Power efficient real-time disk schedul-
ing, NOSSDAV ’09: Proc. 18th international workshop on Network and operating
systems support for digital audio and video, pp.55–60 (2009).

(Received July 24, 2009)
(Accepted December 9, 2009)

Damien Le Moal received his engineering degree in Computer
Science and Applied Mathematics from ENSEEIHT (National Su-
perior Institute of Electronics, Electrical Engineering, Computer
Science, Hydraulics and Telecommunications, Toulouse, France)
in 1995 and his M.I. from Kyoto University, Graduate School of
Informatics, in 2000. Since joining Hitachi Ltd. in 2000, he has
been engaged in research on operating systems, storage systems

and applications for video streaming.

Donald Molaro is a Sr. Software Engineer with Hitachi Global
Storage Technologies, San Jose Research Center, holds a MSc.
from the University of Calgary, Canada, and has over twenty years
of software development experience. He has worked on a number
of consumer and professional electronic products including set-top
and media server systems. Since joining Hitachi Global Storage
Technologies in August 2004, he has worked on addressing several

issues related to the use of hard-disks in high-performance multimedia systems.

Jorge Campello received EE and M.Sc. in Electrical Engi-
neering degrees from Universidade Federal de Pernambuco, Recife,
Brazil in 1992 and 1994 respectively. He received a Ph.D. in Elec-
trical Engineering from Stanford University, Palo Alto, California,
in 1999. In 1999 he joined IBM’s Almaden Research Center as a
Research Staff Member, working on Coding and Information The-
ory applied to Magnetic Recording Systems. In 2003, he joined

Hitachi Global Storage Technologies San Jose Research Center where he is cur-
rently a research staff member working in the area of hard-disk drive applications
to Consumer Electronics.

IPSJ Transactions on Advanced Computing Systems Vol. 3 No. 1 61–76 (Mar. 2010) c© 2010 Information Processing Society of Japan

