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Regular Paper

Theory of Minimizing Linear Separation Automata

Yuji Numai,†1 Yoshiaki Udagawa†2

and Satoshi Kobayashi†1

In this paper, we theoretically analyze a certain extension of a finite automa-
ton, called a linear separation automaton (LSA). An LSA accepts a sequence
of real vectors, and has a weight function and a threshold sequence at every
state, which determine the transition from some state to another at each step.
Transitions of LSAs are just corresponding to the behavior of perceptrons. We
develop the theory of minimizing LSAs by using Myhill-Nerode theorem for
LSAs. Its proof is performed as in the proof of the theorem for finite automata.
Therefore we find that the extension to an LSA from the original finite automa-
ton is theoretically natural.

1. Introduction

The computational model, the finite automaton, is an inevitably important
concept in computer science. Recent advances in information technology and
its related fields reveal the importance of computational models which can deal
with time series of real valued data. Many researchers utilize computational tools
based on these models to solve various problems including weather forecasting 7),
motion recognition 4),5), and time-sequential image analysis 13).

There are several works proposing an extension of an automaton which can
deal with real values in some sense. Models in these works include a hybrid
automaton 1),9) and a timed automaton 3). The hybrid automaton is a mathe-
matical model for describing systems in which computational processes interact
with physical processes. More formally speaking, the hybrid automaton is a finite
state machine augmented with differential equations at each state. It is used for
modelling various control systems and for verifying various theoretical proper-
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ties of them. The timed automaton is a labeled transition system for modelling
real-time systems. It has time-passage action in addition to ordinary inputs,
outputs, and internal actions. It was developed as providing a formal framework
for simulation proof techniques of such real-time systems.

In this paper, we will theoretically analyze a certain extension of a finite au-
tomaton, which has a weight function and a threshold sequence at every state,
and accepts a sequence of real vectors. We call this automaton a linear sepa-
ration automaton (LSA).

Let us consider how an LSA works. Transitions of LSAs are just corresponding
to the behavior of perceptrons 6),12). Figure 1 shows an example M1 of an LSA.
An LSA has a weight function w(qi) and a threshold sequence h(qi) at each state
qi. If a vector x ∈ R2 is input to the current state qi, then the next state is
determined by comparing the inner product x⊗w(qi) with each element of h(qi).
If a threshold sequence h(qi) has n elements, then there can be n + 1 transitions
from a state qi. In an LSA M1, the transition δ(q1, x) from q1 with x is the
following:

δ(q1, x) =

⎧⎪⎪⎨
⎪⎪⎩

q1 if x ⊗ w(q1) ≤ 0

q2 if 0 < x ⊗ w(q1) ≤ 5

q3 if 5 < x ⊗ w(q1).

We will develop the theory of minimizing LSAs by using Myhill-Nerode the-

Fig. 1 LSA M1.
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orem for LSAs. Its proof is performed as in the proof of the theorem for the
original finite automaton 8),10). Therefore we find that the extension to an LSA
from the original finite automaton is theoretically natural.

LSA-like computational models have been already utilized in some application
problems. For instance, Matsunaga and Oshita 4),5) proposed to use a state tran-
sition system for recognizing a specified motion. Their system accepts at each
state feature vector values acquired from a camera or a motion capture, and de-
termines its transition from the current state by using Support Vector Machines.

In order to develop a theory of learning such computational models, we need
computational analysis on the proposed models themselves. For instance, the
uniqueness of the minimum state finite automaton for a given one is crucially
important in the theory of learning finite automata, because almost all of the
learning algorithms try to identify the minimum state automaton of a target
language 2),11). Therefore we will develop the theory of minimizing LSAs in this
paper.

In Section 2, we will give necessary definitions and notation needed in the sequel
of this paper. Section 3 introduces a linear separation automaton (LSA). We
show that Myhill-Nerode theorem for LSAs is established as in the original finite
automata in Section 4. The uniqueness of the minimum state LSA is shown in
Section 5. In Section 6, we will characterize the minimum state LSA for a given
one by using Myhill-Nerode theorem for LSAs. Section 7 includes concluding
remarks and future works.

2. Preliminaries

We introduce basic definitions and notation needed later in this paper.
By R, we denote the set of real numbers. For a positive integer d, by Rd we

denote d-dimensional vector space over R. For x, y ∈ Rd, x⊗y denotes the inner
product of x and y. We define (Rd)∗ as the set of all finite sequences of vectors in
Rd. For a sequence α = 〈x1, . . . , xn〉 ∈ (Rd)∗, we denote the length of α by |α|,
that is, |α| = n. An element in (Rd)∗ of length 0 is called an empty sequence,
and is denoted by λ. For sequences α, β ∈ (Rd)∗, we denote the concatenation
of α and β by αβ. For α = 〈x1, . . . , xn〉 ∈ (R1)∗, the sequence α is said to be
increasing if the inequality xi < xi+1 holds for every i.

A partition π = {S1, . . . , Sk} of Rd (i.e., S1, . . . , Sk are mutually disjoint non-
empty subsets of Rd such that ∪i=1,...,kSi = Rd) is said to be linearly separable
iff there exists w ∈ Rd and an increasing h = 〈h1, . . . , hk−1〉 ∈ (R1)∗ such that,
for any x ∈ Rd,

hi−1 < x ⊗ w ≤ hi ⇔ x ∈ Si (i = 1, . . . , k)
holds, where h0 = −∞ and hk = ∞.

Consider equivalence relations ≡,≡1, and ≡2 over (Rd)∗. The number of the
equivalence classes of ≡ is called the index of ≡. An equivalence relation ≡1

is finer than an equivalence relation ≡2 (or ≡2 is coarser than ≡1) iff x ≡1 y

implies x ≡2 y for any x and y. An equivalence relation ≡ is right invariant iff
α ≡ β implies αγ ≡ βγ for any α, β and γ.

Consider partitions π1 and π2 of Rd. A partition π1 is finer than a partition
π2 (or π2 is coarser than π1) iff for any block B ∈ π1, there exists a block B′ ∈ π2

such that B ⊆ B′.

3. Linear Separation Automata

This section introduces an extension of a finite automaton, called a linear
separation automaton (LSA). This automaton has a weight function and a
threshold sequence at every state, and accepts a sequence of real vectors. The
transition from the current state to another is determined by the weight function
and the threshold sequence associated with the current state.

An LSA M is defined as an 8-tuple
M = (d,Q, q0, F, w, h, s, δ),

where
d is a positive integer specifying the dimension of input vectors to M ,
Q is a finite set of states,
q0 is an initial state (q0 ∈ Q),
F is a finite set of final states (F ⊆ Q),
w is a weight function from Q to Rd such that w(q) is a unit vector for any

q ∈ Q,
h is a threshold function from Q to (R1)∗ such that h(q) is increasing for every

q ∈ Q, and
s is a sub-transition function from Q to Q∗.
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If |s(q)| ≥ 1, then the equality |h(q)| = |s(q)| − 1 holds for every q ∈ Q.
δ is a transition function from Q×Rd to Q; and is defined in the following way

by using w, h, and s. Consider any state q ∈ Q. First, in the case of |s(q)| = 0,
the transition function δ is undefined. Secondly, suppose that |s(q)| ≥ 1. In
order to improve the readability, we define iq = |h(q)| for any q ∈ Q. Let
s(q) = 〈p1, . . . , piq+1〉 and h(q) = 〈h1, . . . , hiq

〉. The value δ(q, x) for a given
x ∈ Rd is defined as follows:

δ(q, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 if x ⊗ w(q) ≤ h1

p2 if h1 < x ⊗ w(q) ≤ h2

...
...

piq
if hiq−1 < x ⊗ w(q) ≤ hiq

piq+1 if hiq
< x ⊗ w(q).

In the state transition diagrams of LSAs as in Fig. 1, we illustrate the condition
of the transition from a state p to a state q by using an interval I ⊆ R. Suppose
that δ(p, x) = q holds if hi < x⊗w(p) ≤ hj . In the diagram, the transition from
p to q is associated with an interval (hi, hj ].

For α = 〈x1, . . . , xl〉 ∈ (Rd)∗, we write δ(p, α) = q if there exists a sequence
p1(= p), p2, . . . , pl+1(= q) of states such that δ(pi, xi) = pi+1 holds for i =
1, . . . , l. We define the set of sequences accepted by an LSA M , denoted by
L(M), as

L(M) = {α ∈ (Rd)∗ | δ(q0, α) ∈ F }.
A subset L of (Rd)∗ is said to be regular if there exists an LSA M such that
L = L(M). We define the size of M as size(M) = |Q|.

A state q ∈ Q is said to be reachable if there exists α ∈ (Rd)∗ such that
δ(q0, α) = q. A state is said to be unreachable if it is not reachable.

Let M = (d,Q, q0, F, w, h, s, δ) be an LSA. We define an equivalence relation
≡M over (Rd)∗ as follows:

α ≡M β
def⇔ δ(q0, α) = δ(q0, β).

Example . Consider an LSA M1 = (d = 2, Q = {q1, q2, q3}, q1, F =

{q1}, w, h, s, δ) in Fig. 1. Let α = 〈x1, x2, x3〉 be a sequence of vectors in R2 with
x1 = (1, 1), x2 = (2, 2), and x3 = (10, 10). The inner product x1 ⊗w(q1) = 3√

5
is

in the interval (0, 5], which implies that δ(q1, x1) = q2. We see in the same way
that δ(q2, x2) = q3 and δ(q3, x3) = q1 ∈ F . Hence the sequence α is accepted by
M1. �

4. Myhill-Nerode Theorem for LSAs

In the sequel of this paper, we will develop the theory of minimizing LSAs by
using Myhill-Nerode theorem for LSAs. Its proof is performed as in the proof of
the theorem for the original finite automaton.

In this section, we will show that Myhill-Nerode theorem for LSAs is established
as in the original finite automata.

Myhill-Nerode theorem is originally proved by Myhill 8) and Nerode 10). This
theorem characterizes the class of languages accepted by a finite automaton. We
modify this theorem in order to develop the theory of minimizing linear separation
automata.

Let ≡ be a right invariant equivalence relation over (Rd)∗ and consider an
equivalence class [α]≡ containing α ∈ (Rd)∗. An equivalence relation R([α]≡)
over Rd induced by [α]≡ is defined as follows:

x R([α]≡) y
def⇔ αx ≡ αy.

For any α and β with α ≡ β, the equality R([α]≡) = R([β]≡) holds, because
≡ is right invariant.

We say that a right invariant equivalence relation ≡ over (Rd)∗ is right lin-
early separable iff for any equivalence class [α]≡, there exists a finite linearly
separable partition of Rd that is finer than Rd/R([α]≡). The concept of the right
linearly separability is newly added to the original Myhill-Nerode relation and
theorem. It is the very essence of the characterization of the class of languages
accepted by an LSA. It also plays an important role in the proof of Myhill-Nerode
theorem for LSAs.
Lemma 1. Consider two right invariant equivalence relations ≡1 and ≡2 over
(Rd)∗ such that ≡1 is finer than ≡2. If ≡1 is right linearly separable, then ≡2 is
right linearly separable.
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Proof. Let α ∈ (Rd)∗. We have

x R([α]≡1) y
def⇔ αx ≡1 αy,

x R([α]≡2) y
def⇔ αx ≡2 αy.

Since ≡1 is finer than ≡2, we have αx ≡1 αy implies αx ≡2 αy. Hence we obtain
x R([α]≡1) y ⇒ x R([α]≡2) y.

Thus, R([α]≡1) is finer than R([α]≡2). Since ≡1 is right linearly separa-
ble, there exists a finite linearly separable partition P of Rd that is finer than
Rd/ R([α]≡1). Then, P is finer than Rd/ R([α]≡2), because R([α]≡1) is finer
than R([α]≡2). We have finally proven the claim. �
Definition 1 (Modified Myhill-Nerode Relation for LSAs). Let S ⊆
(Rd)∗ be a set of sequences. The equivalence relation ≡ over (Rd)∗ satisfying
the following conditions is called a modified Myhill-Nerode relation with
respect to S.
( 1 ) The equivalence relation ≡ is right invariant.
( 2 ) The equivalence relation ≡ is of finite index.
( 3 ) The equivalence relation ≡ is right linearly separable.
( 4 ) The set S is a union of some equivalence classes of ≡. �

For any subset S of (Rd)∗, we define an equivalence relation ≈S over (Rd)∗ as
follows:

α ≈S β
def⇔ ∀γ ∈ (Rd)∗ (αγ ∈ S iff βγ ∈ S).

Theorem 1 (Myhill-Nerode Theorem for LSAs). Let S ⊆ (Rd)∗ be a set
of sequences. The following three statements are equivalent.
( 1 ) The set S is regular.
( 2 ) There exists a modified Myhill-Nerode relation with respect to S.
( 3 ) The equivalent relation ≈S is of finite index and right linearly separable.

Proof. (1)⇒(2):
Let M = (d,Q, q0, F, w, h, s, δ) be an LSA accepting S. The relation ≡M is

right invariant because
α ≡M β ⇒ δ(q0, α) = δ(q0, β)

⇒ ∀γ ∈ (Rd)∗ δ(q0, αγ) = δ(q0, βγ)

⇒ ∀γ ∈ (Rd)∗ αγ ≡M βγ.

The relation ≡M is of finite index because |(Rd)∗/ ≡M | is bounded by |Q|.
Let [α]≡M

be any equivalence class of ≡M . Consider the relation R([α]≡M
)

induced by [α]≡M
. Let p = δ(q0, α) and let h(p) = 〈h1, . . . , hip

〉. We define a
partition π = {S1, . . . , Sip+1} of Rd as follows: for k = 1, . . . , ip + 1,

Sk
def= {x ∈ R | hk−1 < x ⊗ w(p) ≤ hk },

where h0 = −∞ and hip+1 = ∞. It is clear that the partition π of Rd is
linearly separable. Furthermore, it is straightforward to see that x, y ∈ Sk implies
δ(p, x) = δ(p, y) implies αx ≡M αy implies x R([α]≡M

) y. Thus, π is finer than
Rd/ R([α]≡M

) , which implies that ≡M is right linearly separable.
Finally, we have

S = L(M) = {α ∈ (Rd)∗ | δ(q0, α) ∈ F}
= ∪f∈F {α ∈ (Rd)∗ | δ(q0, α) = f}
= ∪f∈F [αf ]≡M

,

where αf is any representative element α such that δ(q0, α) = f . Thus, S is a
union of some equivalence classes of ≡M .

Therefore, ≡M is a Myhill-Nerode relation with respect to S.
(2)⇒(3):

Let ≡ be a Myhill-Nerode relation with respect to S. The relation ≡ is finer
than ≈S because

α ≡ β ⇒ ∀γ ∈ (Rd)∗, αγ ≡ βγ

⇒ ∀γ ∈ (Rd)∗, αγ ∈ S iff βγ ∈ S

⇒ α ≈S β.

Thus, the relation ≈S is of finite index.
It is clear from the definition of ≈S that ≈S is right invariant. Therefore we

deduce from Lemma 1 that ≈S is right linearly separable.
(3)⇒(1):

Let α be any element in (Rd)∗. Since ≈S is right linearly separable, there
exists a finite linearly separable partition π = {S1, . . . , Sk} that is finer than
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Rd/ R([α]≈S
). Thus, there exist w ∈ Rd and h = 〈h1, . . . , hk−1〉 ∈ (R1)∗ such

that, for any x ∈ Rd,
hi−1 < x ⊗ w ≤ hi ⇔ x ∈ Si (i = 1, . . . , k)

holds, where h0 = −∞ and hk = ∞. Such w and h are denoted by wα and hα,
respectively. Note that hα i−1 < x ⊗ wα ≤ hα i iff x ∈ Si. Then, we define an
LSA M ′ = (d,Q′, q′0, F

′, w′, h′, s′, δ′), where

Q′ = (Rd)∗/ ≈S , q′0 = [λ]≈S
, F ′ = {[α]≈S

| α ∈ S },
δ′([α]≈S

, x) = [αx]≈S
, w′([α]≈S

) = wα, h′([α]≈S
) = hα.

We will show that δ′ is well-defined. Suppose that [α]≈S
= [β]≈S

, that is,
α ≈S β. Since ≈S is right invariant, αx ≈S βx holds. Hence, [αx]≈S

= [βx]≈S
,

which implies that δ′([α]≈S
, x) = δ′([β]≈S

, x).
Since ≈S is of finite index, the set Q′ is finite. The selection of α in the

definition of w′ and h′ could be arbitrary. Note that for any α, β ∈ (Rd)∗, the
equality δ′([α]≈S

, β) = [αβ]≈S
holds. Finally, we have

α ∈ L(M ′) ⇔ δ′(q′0, α) ∈ F ′

⇔ δ′([λ]≈S
, α) ∈ F ′

⇔ [α]≈S
∈ F ′

⇔ α ∈ S.

Therefore, L(M ′) = S, which implies that S is regular. �

5. Uniqueness of Minimum State LSA

In this section, we demonstrate the uniqueness of the minimum state LSA for
a given one.

Let S be any regular subset of (Rd)∗. In the sequel, by
Mmin = (d,Qmin, q0min, Fmin, wmin, hmin, smin, δmin)

we denote the LSA M ′ constructed in the proof (3) ⇒ (1) of Theorem 1. We
will prove that the minimum state LSA accepting S is determined uniquely in
the sense that Mmin is isomorphic to every minimum state LSA. The definition
of isomorphism is described below.

Let M = (d,Q, q0, F, w, h, s, δ) and M ′ = (d,Q′, q′0, F
′, w′, h′, s′, δ′) be LSAs.

We say that M is isomorphic to M ′ iff there exists a bijection f from Q to Q′

satisfying the following conditions:

( 1 ) f(q0) = q′0.
( 2 ) f(δ(q, x)) = δ′(f(q), x) holds for any q ∈ Q and x ∈ Rd.
( 3 ) f(F ) = F ′.
Theorem 2 (Uniqueness of Minimum State LSA). Let S be a regular
subset of (Rd)∗. The LSA Mmin is isomorphic to every minimum state LSA
accepting S.

Proof. Let M be any LSA accepting S. As shown in the proof (2) ⇒ (3) of
Theorem 1, the equivalence relation ≡M is finer than ≈S . Thus we have

size(Mmin) = (index of ≈S) ≤ (index of ≡M ) ≤ size(M).
Therefore, Mmin is a minimum state LSA.

Let N = (d,Q, q0, F, w, h, s, δ) be any minimum state LSA accepting S. Let
define the mapping f from Qmin to Q as f([α]≈S

) = δ(q0, α).
We deduce from the discussion in the proof (2) ⇒ (3) of Theorem 1 that

≡N is finer than ≈S . Therefore, we have [α]≡N
⊆ [α]≈S

for any α ∈ (Rd)∗.
Suppose that there exist α, β ∈ (Rd)∗ such that α ≈S β and α �≡N β. Then, it
immediately holds that [α]≈S

contains two equivalence classes [α]≡N
and [β]≡N

.
This implies that the index of ≈S is less than that of ≡N , which contradicts the
minimality of N . Therefore, we have [α]≡N

= [α]≈S
for any α ∈ (Rd)∗. Thus,

the definition f([α]≈S
) = δ(q0, α) is well-defined.

We will first demonstrate that f is a bijection.
First, we will show that f is injective. Suppose that f([α]≈S

) = f([β]≈S
), that

is, δ(q0, α) = δ(q0, β). We deduce from the definition of ≡N that [α]≡N
= [β]≡N

.
Note that ≡N is finer than ≈S . We have [α]≈S

= [β]≈S
.

Secondly, we will show that f is surjective. To prove that an LSA N does not
have any unreachable state, let us assume the opposite and see what happens.
Removing unreachable states leads to an LSA accepting S with fewer states
than Mmin, which contradicts the minimality of Mmin. Therefore, for every state
p ∈ Q, there exists α ∈ (Rd)∗ such that p = δ(q0, α) = f([α]≈S

).
We will next demonstrate that the mapping f satisfies the three conditions

above.
The initial state [λ]≈S

is mapped to f([λ]≈S
) = q0.

It holds that
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f(δmin([α]≈S
, x)) = f([αx]≈S

)
= δ(q0, αx)
= δ(δ(q0, α), x)
= δ(f([α]≈S

), x).

It also holds that
[α]≈S

∈ Fmin ⇔ α ∈ S = L(Mmin)
⇔ α ∈ L(N)
⇔ δ(q0, α) ∈ F

⇔ f([α]≈S
) ∈ F.

Finally we conclude that f is an isomorphic mapping from Mmin to N . �

6. Characterization of Minimum State LSA

In this section, we characterize the minimum state LSA for a given one.

Let M = (d,Q, q0, F, w, h, s, δ) be an LSA accepting the set of sequences S

with no unreachable states. For any p, q ∈ Q, there exists α, β ∈ (Rd)∗ such that
δ(q0, α) = p and δ(q0, β) = q. We define the equivalence relation ∼ over Q as
follows:

p ∼ q
def⇔ α ≈S β.

The choice of α and β can not be determined uniquely. However, for α′, α′′ ∈
(Rd)∗ such that δ(q0, α

′) = δ(q0, α
′′), we have δ(q0, α

′γ) = δ(q0, α
′′γ) for any

γ ∈ (Rd)∗. Hence, it holds that α′ ≈S α′′. Therefore, ∼ is well-defined.
We say that p and q are indistinguishable iff p ∼ q. The states p and q are

said to be distinguishable iff p �∼ q.
Example . Consider an LSA in Fig. 1. The equality w(q2) = w(q3) holds, which
implies that x⊗w(q2) = x⊗w(q3) for any x ∈ Rd. If x⊗w(q2) = x⊗w(q3) ≤ 10
holds, then δ(q2, x) = δ(q3, x) = q3; otherwise δ(q2, x) = δ(q3, x) = q1 holds.
Thus we have δ(q2, x) = δ(q3, x) for any x ∈ Rd, which implies that q2 ∼ q3, that
is, q2 and q3 are indistinguishable.

Let x1 = (−1,−1). We obtain x1⊗w(q1) = − 3√
5
, which implies that δ(q1, x1) =

q1. We also obtain x1 ⊗w(q2) = x1 ⊗w(q3) = − 7
5 , which implies that δ(q2, x1) =

δ(q3, x1) = q3. Note that q1 is a final state and q3 is not. We have q1 �∼ q2 and
q1 �∼ q3, that is, q1 and q2 (or q1 and q3) are distinguishable. �
Lemma 2.

p ∼ q ⇔ ∀γ ∈ (Rd)∗, δ(p, γ) ∈ F iff δ(q, γ) ∈ F.

Proof. We have
p ∼ q ⇔ ∃α, β ∈ (Rd)∗, δ(q0, α) = p, δ(q0, β) = q, α ≈S β

⇔ ∃α, β ∈ (Rd)∗, δ(q0, α) = p, δ(q0, β) = q,

∀γ ∈ (Rd)∗, αγ ∈ L(M) iff βγ ∈ L(M)
⇔ ∃α, β ∈ (Rd)∗, δ(q0, α) = p, δ(q0, β) = q,

∀γ ∈ (Rd)∗, δ(q0, αγ) ∈ F iff δ(q0, βγ) ∈ F

⇔ ∀γ ∈ (Rd)∗, δ(p, γ) ∈ F iff δ(q, γ) ∈ F. �

Furthermore, Lemma 2 immediately implies Lemma 3.
Lemma 3.

p ∼ q ⇔ ∀α ∈ (Rd)∗, δ(p, α) ∼ δ(q, α).

Proof. We have
p ∼ q ⇔ ∀α, β ∈ (Rd)∗, δ(p, αβ) ∈ F iff δ(q, αβ) ∈ F

⇔ ∀α, β ∈ (Rd)∗, δ(δ(p, α), β) ∈ F iff δ(δ(q, α), β) ∈ F

⇔ ∀α ∈ (Rd)∗, δ(p, α) ∼ δ(q, α). �

For any p ∈ Q, by r(p) we denote a representative element of [p]∼.
Lemma 4.

δ(r(p), α) ∼ r(δ(p, α)).

Proof. For any α ∈ (Rd)∗, we have
δ(r(p), α) ∼ δ(p, α) (By Lemma 3)

∼ r(δ(p, α)). �

We will prove that the minimum state LSA is obtained by identifying indistin-
guishable states.
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We define an LSA
M/ ∼= (d,Q′, q′0, F

′, w′, h′, s′, δ′),
where

Q′ = Q/ ∼, q′0 = [q0]∼, F ′ = {[q]∼ | q ∈ F},
δ′([q]∼, x) = [δ(r(q), x)]∼, w′([q]∼) = w(r(q)), h′([q]∼) = h(r(q)).

Lemma 5. For α ∈ (Rd)∗,
δ′([p]∼, α) = [δ(p, α)]∼.

Proof. We will prove this Lemma by induction on |α|.
In the case of |α| = 0, i.e., α = λ, we have

δ′([p]∼, λ) = [p]∼
= [δ(p, λ)]∼.

Assume that the claim holds for |α| ≤ k and consider the case of |α| = k + 1.
Let α = βx (β ∈ (Rd)∗, x ∈ Rd). Then, we have

δ′([p]∼, α) = δ′(δ′([p]∼, β), x)
= δ′([δ(p, β)]∼, x) (By induction hypothesis)
= [δ(r(δ(p, β)), x)]∼
= [r(δ(δ(p, β), x))]∼ (By Lemma 4)
= [r(δ(p, βx))]∼
= [δ(p, βx)]∼
= [δ(p, α)]∼. �

Lemma 6.
p ∈ F iff [p]∼ ∈ F ′.

Proof. From the definition of F ′, it is clear that p ∈ F implies [p]∼ ∈ F ′. Suppose
that [p]∼ ∈ F ′. Then, there exists q ∈ F such that p ∼ q. We deduce from
δ(q, λ) ∈ F and Lemma 2 that p = δ(p, λ) ∈ F holds. �

Lemma 7.
L(M/ ∼) = L(M).

Proof. For any α ∈ (Rd)∗, we have

Fig. 2 LSA M1/ ∼.

α ∈ L(M/ ∼) ⇔ δ′(q′0, α) ∈ F ′

⇔ δ′([q0]∼, α) ∈ F ′

⇔ [δ(q0, α)]∼ ∈ F ′ (By Lemma 5)
⇔ δ(q0, α) ∈ F (By Lemma 6)
⇔ α ∈ L(M). �

Theorem 3 (Characterization of Minimum State LSA). Let M be an LSA.
The LSA M/ ∼ is a minimum state LSA for M such that L(M/ ∼) = L(M).

Proof. Lemma 7 implies that L(M/ ∼) = L(M) holds.
It is clear that ∼ is an equivalence relation. From the definition of ∼, the index

|Q/ ∼ | of ∼ is equal to |(Rd)∗/ ≈S |. Therefore we conclude that size(M/ ∼) =
|Q/ ∼ | = |(Rd)∗/ ≈S | = size(Mmin). �
Example . Consider an LSA M1 in Fig. 1. From the example above, the states
q2 and q3 are indistinguishable; and the states q1 and q2 (or q1 and q3) are
distinguishable. Let q4 be a state obtained by merging q2 with q3. Thus, we
obtain the minimum state LSA for M1, M1/ ∼, illustrated in Fig. 2. �

7. Conclusions

In this paper, we theoretically analyzed a certain extension of a finite automa-
ton, called a linear separation automaton (LSA). We developed the theory of
minimizing LSAs by using Myhill-Nerode theorem for LSAs. Myhill-Nerode the-
orem for LSAs is established as in the original finite automata. The minimum
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state LSA for a given one is unique, and is characterized by using Myhill-Nerode
theorem for LSAs.

In order to develop a theory of learning computational models like LSAs, we
need computational analysis on the models themselves. The theory of minimizing
LSAs will play an important role in the theory of learning LSAs as in the original
finite automata 2),11).

Some of our future works are the following.
In this paper, we do not give algorithms for minimizing LSAs. Therefore in the

next paper, we will present some algorithms for minimizing LSAs, which will be
the naive algorithm directly induced by Myhill-Nerode theorem for LSAs, and a
more efficient algorithm.

The development of the theory of learning LSAs is one of the future research
topics. Its theory will help us solve some application problems including weather
forecasting, motion recognition, and time-sequential image analysis.
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