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Approximate Invariant Property Checking

Using Term-Height Reduction

for a Subset of First-Order Logic �1

Hiroaki Shimizu,†1 Kiyoharu Hamaguchi†2

and Toshinobu Kashiwabara†2

The use of a subset of first-order logic, called EUF, in model checking can
be an effective abstraction technique for verifying larger and more complicated
systems. The EUF model checking problem is, however, undecidable. In this
paper, in order to guarantee the termination of state enumeration in the EUF-
based model checking, we introduce a technique called term-height reduction.
This technique is used to generate a finitely represented over-approximate set
of states including all the reachable states. By checking a specified invariant
property for this over-approximate set of states, we can safely assure that the
invariant property always holds for the design, when verification succeeds. We
also show some experimental results for a simple C program and a DSP design.

1. Introduction

Model checking 1) is a technique to verify whether hardware or software designs
satisfy some designated properties. The technique checks all the reachable states
of the design exhaustively, and it has advantages of being able to verify the design
with no test pattern and detect all the errors with regard to the designated
properties. Some model checking tools, such as SMV 12), SPIN 13), CBMC 14),
and UCLID 15), have been put to practical use.

Model checking has still difficulties in handling large and complicated designs.
To tackle this problem, abstraction techniques are necessary to use. In this paper,
for this purpose, we adopt abstraction by a quantifier-free first-order logic with
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equality and uninterpreted functions (EUF) 2),3). In the EUF-based model check-
ing, for example, arithmetic operations are abstracted as function symbols, and
the algorithm treats them simply as symbols without considering their semantics.

Model checking using EUF is, however, known to be undecidable 4). In fact,
straightforward state exploration for transition functions defined with EUF terms
does not terminate, because the number of terms which possibly occur in state
variables can be infinite. Bounded model checking 11), which handles transitions
up to a given number of cycles, is an approach for this difficulty, and some
bounded model checkers have been developed such as UCLID 15), EUREKA 7) or
SAL 6) which utilize SAT solvers for EUF and its extension, or SMT solvers.

This paper addresses unbounded invariant property checking using the EUF.
We introduce a technique called term-height reduction to restrict the number of
terms occurring in state variables. When the height of some term which occurs in
a state variable exceeds a given limit, its innermost sub-term is replaced by a new
variable so that its height is lower than or equal to the limit. Intuitively, this ma-
nipulation discards the least recently performed operation to the corresponding
term.

This height reduction technique, together with the state reduction technique
similar to that by Isles, et al. 5), generates a finitely represented over-approximate
set of states including all the reachable states, and guarantees termination of
state enumeration The degree of approximation is controlled by the term-height
parameter. Although our algorithm is based on explicit state enumeration, in
the experiments we performed, state explosion is effectively curtailed.

We applied our technique to a simple C program for Bisection Method and a
DSP design, that is, ADPCM encoder. Since both of the systems has an indeter-
minate number of iteration in their parts, state enumeration does not terminate
if we apply a straightforward procedure without term-height reduction. Further-
more, since both of them contain arithmetic operations such as multiplication or
division, formal verification without an abstraction technique, or that at Boolean
level, is significantly difficult. Our verification algorithm was able to verify them
successfully.

The remainder of this paper is organized as follows. We describe related works
first, and give the definition of EUF, its state machine, and invariant checking
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problem. Next, we present the procedure of state traversal with EUF, followed
by the detail of our algorithm. We also show the experimental results.

2. Related Works

Unbounded model checking using EUF or its extension has been studied in
some literature 4),5),8). Isles, et al. 5) show a state enumeration procedure for
transition systems using EUF terms extended with memories. They use some
state reduction techniques 4), which utilize replaceability of sub-terms that com-
prise two states. Corella, et al. 8) show a procedure using Multiway Decision
Graphs, which can represent characteristic functions for state sets. They also
use state reduction techniques similar to that by Isels, et al. 5). In both of these
works, termination is not guaranteed.

Bryant, et al. 9) show a criterion for convergence test, which checks if newly
added states are all included in the previously enumerated state set. This crite-
rion is formulated as a quantified second-order formula, for which they show a
semi-decidable procedure. This criterion gives a precise definition of convergence,
but they have also reported that their approach leads to high computational com-
plexity.

The contribution of this paper is an invariant checking method of unbounded
state traversal for EUF-based state machines. A novel idea we propose is term-
height reduction technique, which is the key for termination of state traversal. In
addition to this term-height reduction, our algorithm uses state space reduction
techniques named state merging, which was introduced by Isels, et al. 5). Using
the term-height reduction and state merging together, our algorithm produces
a finitely represented over-approximate set of states in the state traversal pro-
cedure. Unlike our approach, unbounded model checking, or invariant checking
methods in the other literatures 4),5),8) cannot guarantee termination of the state
traversal procedure.

3. EUF and State Machine

We abstract designs by a subset of the first-order logic, called EUF. In this
section, we define the syntax and the semantics of EUF and its state machine,
and then, invariant checking problem.

term := variable | function-symbol(term, . . . , term) |
ITE(formula,term,term)
formula := true | false | Boolean-variable |
(term=term) | predicate-symbol(term, . . ., term) |
formula ∨ formula | formula ∧ formula | ¬ formula

Fig. 1 The syntax of EUF.

3.1 EUF Syntax
EUF is a subset of first-order logic. The logic does not have any quantifier, but

has the equal sign as a predefined predicate. It is constructed from terms and
formulas. Figure 1 shows its syntax. The numbers of arguments, called arities,
for function symbols and predicate symbols are finite.

Term t has nested structure of function symbols. The term-height of t, denoted
by term-height(t), is defined as follows:

term-height(t) ={
MAX (term-height(t1), . . . , term-height(tn)) + 1, if t = f(t1, . . . , tn).
0, if t is a variable.

,

where MAX is the function which returns the maximum from its arguments and
f is a function symbol. For example, let c1 and c2 be terms, f and g be function
symbols. Then the term-heights of c1, f(c1) and g(g(c1,f(c2)),f(c1)) are 0,
1 and 3, respectively.

In this paper, atomic formulas are an equation, a predicate and a Boolean
variable. An atomic formula and negation of an atomic formula are literals. A
product term is a literal or conjunction of more than one literals. A disjunction
normal form (DNF) is a product term or disjunction of more than one product
terms.

We can assume all of the ITE terms have been removed. This can be done by
recursively replacing t = ITE(α, t1, t2) with (α ∧ (t = t1)) ∨ (¬α ∧ (t = t2)).

3.2 EUF Semantics
For a nonempty domain D and an interpretation σ, the truth of a formula is

defined. The interpretation σ maps a function symbol and predicate symbol of
arity k to a function Dk → D and Dk → {true, false}, respectively. Also, σ maps
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each variable to an element in D. Boolean variables are mapped to {true, false}.
Valuation of a term t and a formula α, denoted by σ(t) and σ(α) respectively,

are defined as follows. Here, f is a function symbol and p is a predicate symbol.
1) For term t = f(t1, t2, . . . , tn), σ(t) = σ(f)(σ(t1), σ(t2), . . . , σ(tn)). 2) For
term t = ITE(α, t1, t2), σ(t) = σ(t1) if σ(α) = true, otherwise σ(t) = σ(t2).
3) For formula α = p(t1, t2, . . . , tn), σ(α) = σ(p)(σ(t1), σ(t2), . . . , σ(tn)). 4) For
formula α = (t1 = t2), σ(α) = true if and only if σ(t1) = σ(t2). 5) For formula
α = ¬α1, σ(α) = ¬σ(α1). 6) For formula α = α1 ◦ α2, where ◦ is ∨ or ∧,
σ(α) = σ(α1) ◦ σ(α2).

A formula α is valid if and only if σ(α) = true for any interpretation σ and
any domain D.

For simplicity, we introduce a new special constant TRUE, and treat
p(t1, . . . , tn) and ¬p(t1, . . . , tn) as p(t1, . . . , tn) = TRUE and ¬(p(t1, . . . , tn) =
TRUE ), respectively. Then each literal can be treated as an equation, a Boolean
variable or negative forms of them.

3.3 EUF State Machine
We start with an example. An EUF state machine is given as a set of transition

functions.

Example 1 We consider a program code using EUF in the following:

0: while (t1!=t2){

t1 := f(t1,t2);

}

1: t2 := g(t2);

The transition functions for this code are as follows:

b1′ := ITE(b1 = 0, ITE(t1 = t2, 1, 0), 1)
t1′ := ITE(b1 = 0, ITE(t1 = t2, t1, f(t1, t2)), t1)
t2′ := ITE(b1 = 1, ITE(t1 = t2, g(t2), t2), t2)

Here, b1 is a Boolean state variable. t1 and t2 are state variables interpreted
in the EUF logic, called term state variables. The variables with ′ are next
state variables. f and g are function symbols. The transition functions are a

natural extension of usual transition functions for sequential state machines. For
example, the second transition function means that the state variable t1 at the
next cycle is t1 of the present cycle if b1 = 0 and t1 = t2, and f(t1, t2) of the
present cycle if b1 = 0 and t1! = t2, and so on. �

More precisely, an EUF state machine is defined as follows: To describe tran-
sition functions, we assume four types of variables as follows: 1) Boolean state
variables: b1, . . . , bm, 2) term state variables: t1, . . . , tn, 3) Boolean variables:
a1, . . . , ap, 4) term variables: c1, . . . , cq.

The variables of 1) and 3) are Boolean variables, and those of 2) and 4) are
variables of the EUF. We introduce next state variables b′1, . . . , b

′
m and t′1, . . . , t

′
n

corresponding to b1, . . . , bm and t1, . . . , tn respectively. Then, transition functions
are described by b′i := Fi (1 ≤ i ≤ m) and t′j := Tj (1 ≤ j ≤ n), where Fi is
a formula and Tj is a term. Fi and Tj do not contain any next state variables.
Some of Boolean variables and term variables are specified as inputs. This means
that each of these input variables at each step is treated as distinct, and an
interpretation for such a variable at the i-th step can be different from that at
the j-th step (i �= j).

We call the following formula transition relation:∧
1≤i≤m

(b′i = Fi) ∧
∧

1≤j≤n

(t′j = Tj) (1)

The behavior of an EUF state machine depends on an initial state and a se-
quence of interpretations for each step. At an initial state, each Boolean variable
is mapped to true or false, and each term variable is mapped to an element in
D. We define an interpretation sequence as σ̃ = (σ0, σ1, . . .), where σi is an in-
terpretation at the i-th step. Note that the length of an interpretation sequence
is infinite. Any interpretation sequence is required to satisfy the following con-
ditions.
• The interpretations of term variables, Boolean variables, function symbols

and predicate symbols are the same at every step, except for input variables.
In other words, for each variable cj , each Boolean variable aj , each function
symbol fj and each predicate symbol pj , σ0(cj) = σi(cj), σ0(aj) = σi(aj),
σ0(fj) = σi(fj) and σ0(pj) = σi(pj) for all i.
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• As for each input term variable cj and for each input Boolean variable aj

at the i-th step, we introduce new variable names ci
j and ai

j for distinction.
σi(ci

j) and σi(ai
j) are given arbitrary at the i-th step. σk(ci

j) = σi(ci
j) (k =

i, i + 1, . . .), and σk(ai
j) = σi(ai

j) (k = i, i + 1, . . .). The interpretations of
these variables for k = 0, 1, . . . , i − 1 are not defined.

• For transition functions b′j := Fj and t′j := Tj , σi+1(bj) = σi(Fj), σi+1(tj) =
σi(Tj) for all i.

• For an initial state in which each term state variable tj is mapped to variable
cj , σ0(tj) = σ0(cj).

We call an interpretation sequence which satisfies the above conditions a normal
interpretation sequence. Note that σi and σi+1 are identical except for the state
variables bj and tj , which depend on each step, and the input variables ci+1

j and
ai+1

j , which are not defined for the i-th step.
In this paper, we assume that interpretation sequences are normal.
3.4 Invariant Checking Problem Using EUF
The inputs of our problem are an EUF state machine M , which models a

design we want to verify, and a property P , which is composed from Boolean
state variables, term state variables, Boolean variables and term variables. The
invariant checking problem is to check whether M always satisfies P .

Since the contents of the Boolean or term state variables used in P depends on
each state, the formula to be checked at each state also depends on each state.
The details are given in Section 4.3.

4. State Traversal and Invariant Checking

Invariant checking requires a procedure for enumerating the reachable states
from the given initial states. We show a basic state traversal procedure for an
EUF state machine. The resulting state transition graph has generally infinite
number of states.

4.1 State Traversal Procedure
Each state s is composed of the following two elements:
• State vector −→v = (−→b ,

−→
t )

• Condition set C ⊆ T × T × Rel

where T is the set of terms which do not contain ITE terms, and Rel = {=, �=}.

We suppose −→
b = (b1, . . . , bm) and −→

t = (t1, . . . , tn), where for 1 ≤ i ≤ m, bi is
true or false, and for 1 ≤ j ≤ n, tj is a term. C is the set of all conditions which
must be satisfied in order to reach the state. The conditions in C can also be
regarded as constraints to the terms assigned to state variables.

Examples of states are shown in Fig. 2. Each box represents a state. This
example is explained later.

For a state s, we consider a specific interpretation which makes true all the
formulas in C. Then, each state variable has a specific value. In this sense,
state s is truly a specific state. We can also consider arbitrary interpretations
satisfying C. Then, we can consider many states corresponding to s, that is, we
can regard this symbolically expressed state s as representing a set of states in
actuality. In the following, we mainly view each state in the latter sense.

Fig. 2 Simple State Traversal.
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As for state traversal, based on the transition relation, we enumerate all the
reachable states from initial states one by one.

Example 2 Figure 2 shows a part of state traversal for the transition func-
tions in Example 1. Each box corresponds to a state. The binary value at the left
upper side of each state represents the value of b1 at the state. The initial values
for state term variables t1 and t2 are c1 and c2 respectively, where c1 and c2 are
EUF variables in actuality. C is a condition set at each state. State traversal
for this example does not terminate, because the number of the occurrences of
function symbol f can be arbitrarily large, when we follow branches labeled by
t1! = t2 repeatedly. �

In the following, we explain precise procedure of state traversal. Firstly, we
perform a preprocessing to convert the transition relation into DNF (disjunctive
normal form).

Then, the next state s′ = (−→v ′, C ′) is constructed from the current state s =
(−→v , C) based on the following rule. First, we replace all the current state variables
occurring in the transition relation in DNF, with the corresponding values or
terms in −→v . Then, we can get the formula α � α1 ∨ α2 ∨ . . . ∨ αp, where each
αi (1 ≤ i ≤ p) is a product term whose variables are next state variables b′k
(1 ≤ k ≤ m) and t′l (1 ≤ l ≤ n), Boolean variables and term variables. Note that
αi does not contain any current state variable, because it has been replaced by
a value or a term in −→v .

For each αi � β1 ∧ β2 ∧ . . . ∧ βq, where βj (1 ≤ j ≤ q) are literals, the next
state s′ is generated as follows. The contents of −→v ′ and C ′ are initialized with
the ones of −→v and C, respectively. Next, for each βj , the appropriate step shown
in the below is performed.

Here, we assign an arbitrary value in { true, false } to each input Boolean
variable in αi, and we introduce a term variable with a new distinct name to
each input term variable in αi. This means that multiple next states can be
generated for each αi.
( 1 ) If βj is an equation b′k = b, where b′k is a next Boolean state variable and b

is a propositional formula, the Boolean state variable bk at the next state

is assigned to the value of b.
( 2 ) If βj is an equation t′l = t, where t′l is a next term state variable and t is a

term, the term state variable tl at the next state is assigned to t.
( 3 ) If βj is an equation t1 = t2 or its negation ¬(t1 = t2), where t1 and t2

are terms which do not contain any next state variable, the new condition
(t1, t2,=) or (t1, t2, �=) is added to C ′, respectively.

( 4 ) If βj is an Boolean variable or its negation, the Boolean variable is assigned
to true or false so that βj is true.

The above Case (3) means that C ′ contains the conditions which enable the
transition from s to s′, in addition to C. Thus, we say that state s′ is reachable
from state s in one step if s′ can be composed from s by applying the above rule
once, and the conjunction of the conditions in C ′ is satisfiable. For an EUF state
machine M and an initial state s0, (s0, s1, . . .) is a state transition sequence if
si+1 is reachable from state si in one step for any i ≥ 0.

4.2 State Traversal and Interpretation Sequence
Given a state transition sequence s̃ = (s0, s1, . . .), we can construct a normal

interpretation sequence σ̃ = (σ0, σ1, . . .). Note that, in the state traversal pro-
cedure, we have chosen αj as well as values or term variables to be inserted to
input variables, to generate si+1 from si.

This can be done by 1) fixing the valuations of non-input term or Boolean
variables, function or predicate symbols; 2) giving the valuations to state variables
at the i + 1-th step so that σi+1(bj) = σi(Fj) and σi+1(tj) = σi(Tj) for all
i = 0, 1, . . .; 3) giving to input Boolean variables at the i-th step, the same values
we have chosen in the generation of si+1; 4) giving some valuations for term
variables which were inserted to the input term variables at the i-th step.

When both equations σi+1(bj) = σi(Fj) and σi+1(tj) = σi(Tj) are satisfied, all
the conditions for the transitions embedded in Fj and Tj must be true. Other-
wise neither of the above equations can hold. Since all the transition conditions
(reachable conditions) are recorded at Ci, we can show the following property.

Property 1 For a normal interpretation sequence, the conjunction of the
conditions in Ci is true, under interpretation σi. �
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4.3 Invariant Checking
A property P , which is restricted to an invariant in this paper, is an EUF for-

mula containing Boolean state variables, term state variables, Boolean variables
and term variables.

For a state transition sequence s = (s0, s1, . . .), we denote by Pvi the formula
whose state variables are all replaced with corresponding contents of −→v i, where
state si = (−→v i, Ci). The property P holds at state si if the formula P i defined
below is valid.

P i � (
∧

(t1,t2,Re)∈Ci

t1Ret2) → Pvi (2)

Invariant checking is the problem of deciding whether P i is valid at any reachable
state si.

5. Over-approximation for Reachable States

In this section, we propose an over-approximate algorithm using term-height
reduction. We introduce the maximum value of term-height maxh and restrict the
heights of terms occurring in the state variables. The algorithm guarantees that
a property P always holds if P holds for the approximated state set, otherwise
the verification result is inconclusive.

Here, we explain our approach. As was stated, the original invariant checking
problem is undecidable. The intention of the following algorithm is to gener-
ate a finitely represented over-approximation set of states. As we described in
Section 4.1, a “state” in our state traversal procedure can be regarded a set of
states under many interpretations satisfying its reachability condition set. The
effect of the term-height reduction is to extend the set of represented states. This
is because term-height reduction removes some of constraints among the terms
stored in state vectors. In other words, it causes over-approximation at each
state. As we see in the following subsections, term-height reduction together
with state merging generates a finite state transition graph for a given maxh.
The resulting state transition graph can be regarded as an over-approximation of
the original non-approximated and possibly infinite state transition graph. Then,
we can solve the invariant checking problem, by checking the given property at

each state of the over-approximated state transition graph.
5.1 Overall Algorithm
Figure 3 shows the overall procedure. The details of term-height reduction

and state inclusion check are given in the following subsections.
The procedure is given a property P , the initial state sinit, the transition

relation Trans of the EUF state machine and maxh as the maximum height for
term-height reduction procedure. RS stores states which are reachable from the
initial state. CS stores states which are candidates for reachable states.

The candidate state set CS is set and updated in line 2 and 15. In the while
loop in lines 3-17, the procedure picks a candidate state s from CS (line 4), and
lines 6-8 check whether s should be added to RS. Firstly, it checks whether the
reachable condition C of s = (−→v , C) is satisfiable in line 6, which means s is
reachable from the initial state. This can be done by satisfiability checking of
the conjunction of the formulas in C. Line 7 checks whether s is contained in
RS, in terms of “state inclusion relation” discussed in Section 5.3. Line 8 checks
whether P holds in s, based on formula (2).

AppInvChk(P ,sinit,Trans,maxh)
//P : property, sinit: initial state, Trans: transition relation
//maxh: maximum term-height

1: RS = {}; // Reachable state set
2: CS = {sinit}; // Candidate state set for RS
3: while (CS �= {}) {
4: choose s ∈ CS;
5: CS = CS − {s};
6: if (¬SatisfiableReachableCondition(s)) continue;
7: if (StateInclusionCheck(s, RS)) continue;
8: if (¬PropertyCheck(s, P )) {return(“Inconclusive”);}
9: RS = RS ∪ {s};
10: NS = ComputeNextState(s, T rans);
11: while (NS �= {}) {
12: choose ns ∈ NS;
13: NS = NS − {ns}
14: ns′ = TermHeightReduction(ns, maxh);
15: CS = CS ∪ {ns′}
16: }
17: }
18: return (“Property holds”);

Fig. 3 Approximate Invariant Checking Procedure.
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For the reachable state s, line 10 computes the set of next states NS, using
the procedure shown in Section 4.1. The procedure picks states from NS one
by one, and perform “term height reduction” to them with the given parameter
maxh (line 14). The resulting state ns′ is added to CS. Term-height reduction
is discussed in Section 5.2.

If the number of reachable states is finite, then eventually this procedure ter-
minates, when all the candidate states turn out to be included in RS by checking
in line 7, and CS becomes empty.

5.2 Term-height Reduction
Term-height reduction is the key idea for our algorithm. This operation keeps

the term-heights of the terms stored at state vectors less than or equal to a
given limit maxh. By doing this, the number of terms stored at state vectors
becomes finite, if we ignore the variables newly introduced in the state traversal
procedure for input Boolean variables and input term variables. How to handle
these variables is described in Section 5.3.

When the terms whose heights are larger than maxh occur in a state vector −→v
or a condition set C, we reduce their term-heights by replacing the subterms with
new variables, so that the term-heights are all restricted to less than or equal to
maxh.

Definition 1 For a term t whose height is larger than 0, the reduced subterms
of t, denoted RTt, are defined as those satisfying all the following conditions:
( 1 ) For any tr ∈ RTt, term-height(tr) = 1.
( 2 ) Let t′ be the term obtained from t by replacing all the subterms of t in RTt

with new variables. Then, term-height(t) = term-height(t′) + 1.
( 3 ) If some term is deleted from RTt, condition (2) does not hold.

�
Term-height reduction for a term t is a manipulation replacing each subterm

of t in RTt with a new variable. For example, the reduced subterm of term
g(g(c1,f(c2)), f(c1)) is f(c2). By applying term-height reduction for this
term, we obtain term g(g(c1,c3),f(c1)), where c3 is a new variable. Also, the
reduced subterms of g(g(c1,c3),f(c1)) are { g(c1,c3), f(c1) }. We apply
term-height reduction to this term and obtain the term g(c4,c5), where c4 and

c5 are new variables. By applying term-height reduction for a term, we can
decrease the term-height just by one. Note that for any term t whose height
is larger than 0, the reduced subterms of t exist uniquely. Also, our algorithm
replaces the same subterm with the same variable.

We keep the record of the mapping from a subterm to a new variable until
the algorithm terminates. When term state variables are updated by new terms
in state traversal, this mapping is applied to all the subterms included. Note
that the record of the mapping can get larger in the progress of state traversal,
but this does not affect termination of the procedure, because the termination
condition does not depend on this record of mapping.

Since term-height reduction removes constrains among terms stored in state
vectors, it causes over-approximation at each state. This leads to the following
theorems.

Theorem 1 For any EUF formula F , F is valid if the formula F ′ obtained
by applying term-height reduction for a term t in F is valid.
(Proof ) Suppose that F ′ is valid. Let us evaluate F with an arbitrary interpreta-
tion σ. Then, t has some valuation σ(t). Suppose that t in F is replaced to term
variable v in F ′ by term-height reduction. We can construct an interpretation σ′

for F ′ such that σ′(v) = σ(t), and the other valuations do not change. Since F ′

is valid, σ′(F ′) is true. Then, σ(F ) is also true, because the corresponding t and
v have the same valuation, and the valuations for the other variables, functions
or predicates do not change. For any interpretation, the above argument holds.
Thus, if F ′ is valid, so is F . �

When term-height reduction is repeated for more than one term in F , the
similar theorem holds for the resulting formula F ′.

The term-height reduction procedure, TermHeightReduction(s,maxh), which
generates state s′ = (−→v ′, C ′) from s = (−→v , C) with parameter maxh, is as follows.
Here, −→v ′ = (−→b ′

,
−→
t
′
).

( 1 ) s′ is initialized with s.
( 2 ) If −→v ′ or C ′ contains terms whose heights are larger than maxh, their heights

are reduced repeatedly until becoming less than or equal to maxh.
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( 3 ) The conditions in C ′ containing any variable which does not occur in −→
t
′

are all deleted.
The above step (3) can remove some constraints from C ′. As for formula (2),

we can obtain the following theorem. Here, similarly to formula (2), we define
P s and P s′

for s and s′ respectively.

P s � (
∧

(t1,t2,Re)∈C

t1Ret2) → Pv, P s′ � (
∧

(t1,t2,Re)∈C′
t1Ret2) → Pv′

Theorem 2 If P s′
is valid, then P s is valid.

(Proof ) Note that P s can be expressed as:

P s =
∨

(t1,t2,Re)∈C

¬(t1Ret2) ∨ Pv

Let us s′′ be the state before applying step (3) in the above term height reduction
procedure. We can construct P s′′

similarly. From Theorem 1, if P s′′
is valid,

then P s is valid. The conditions of form ¬(t1Ret2) in P s′
is fewer than those in

P s′′
because of step (3). Thus, if P s′

is valid, then P s′′
is valid. This concludes

the theorem. �

5.3 State Merging Based on Inclusion Relation
State merging we explain in this section is basically the same as that introduced

by Isels, et al. 5). We formulate it in our terminology. We also show a theorem
on relationship between state merging and validity checking (Theorem 3), which
was not explicitly given before 5).

Since we introduce new variables in the state traversal and term-height reduc-
tion, the number of terms which appear in state vectors can get larger arbitrarily.
State merging avoids this. Suppose that we have state s with term state vec-
tor (f(c1, c2), c2) and condition set (c1 �= c2), and a state s′ with (f(c3, c2), c2)
and (c3 �= c2), respectively, where both of the Boolean state variables have the
same values. Since we consider assignment of arbitrary values to c1 and c3 under
constraints by the condition sets, we can safely view the two states as the same
state.

State merging based on inclusion relation is an extension of this observation.

Suppose that we have two states s and s′ with condition sets C and C ′, respec-
tively. If their state vectors match syntactically with each other under appropriate
renaming of variables, and condition C ′ implies condition C, then we can safely
merge s′ to s. That is, even if delete s′ and redirect transition edges to s′ to
s, we can have a proper state transition graph. Renaming is done by finding a
mapping from original variable names to a set of new variable names. Its details
are as follows.

For a state s = (−→v , C), where −→v = (−→b ,
−→
t ) and −→

t = (t1, . . . , tn), let Vt be
the set of variables occurring in −→

t , D be a set of variables {d1, d2, . . . , d|Vt|},
where Vt ∩ D = φ, and mapD

t be a bijective function from Vt to D. We denote
by mapD

t [ti] the term obtained from a term ti in which each variable c ∈ Vt

is replaced with mapD
t (c). Furthermore, we denote by mapD

t [−→t ] the vector of
terms obtained from −→

t in which each term ti is replaced with mapD
t [ti]. Also, we

denote by mapD
t [C] the condition set obtained from C in which each condition

(t1, t2, Re) is replaced with (mapD
t [t1],mapD

t [t2], Re).

Definition 2 For two states s = (−→v , C) and s′ = (−→v ′, C ′), where −→v =
(−→b ,

−→
t ), −→v ′ = (−→b ′

,
−→
t
′
), we say “s includes s′”, denoted by s ≥ s′, if the following

conditions are all satisfied.
( 1 ) −→

b = −→
b

′

( 2 ) |Vt| = |Vt′ |
( 3 ) For a set of variables D, there exist two functions mapD

t and mapD
t′ such

that:
• mapD

t [−→t ] = mapD
t′ [

−→
t
′
] and

•
∧

(t′1,t′2,R′
e)∈mapD

t′ [C
′]

(t′1R
′
et

′
2) −→

∧
(t1,t2,Re)∈mapD

t [C]

(t1Ret2) is valid

The third condition in Definition 2 means that when we compare −→t with −→
t
′
, or

C with C ′, we focus on the forms of terms and disregard the names of variables,
to check the term equivalence between −→

t and
−→
t′ and to check the inclusion

relation between conditions C and C ′.
In our implementation, the terms in −→

t are compared with those in −→
t
′
from the

top of the lists, one by one. If renaming of the variables can make the two terms
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syntactically equivalent, then the two mappings mapD
t and mapD

t′ are updated.
Otherwise, checking the conditions of Definition 2 is aborted. If construction of
mapD

t and mapD
t′ is successful, the implication of C by C ′ is checked under the

mappings, which can be done by using some SMT solver.
In a state traversal, for a state r and its next state s′, if s ≥ s′ for some state

s we have already visited, then we move from r to s instead of s′, and do not
visit s′ and its successors. We say that “s′ is merged into s.” s is said to be a
merging state of s′.

In Fig. 3, procedure StateInclusionCheck(s′, RS) checks, based on the above
inclusion relation in Definition 2, whether there exists some state s ∈ RS which
includes s′.

As for state inclusion, we can obtain the following theorem. We define P s and
P s′

as in Section 5.2.

Theorem 3 Let s ≥ s′. If P s is valid, then P s′
is valid.

(Proof ) Suppose that P s is valid. Consider an interpretation σ′ for P s′
. We

construct σ for P s so that each pair of variables v in s and v′ in s′ such
as mapD

t (v) = mapD
t′ (v) has the same interpretation, that is, σ(v) = σ′(v′).

If
∧

(t′1,t′2,Re)∈C′ t′1Ret
′
2 in P s′

is false under σ′, then P s′
is true. Otherwise,∧

(t1,t2,Re)∈C t1Ret2 is true under σ, because
∧

(t′1,t′2,R′
e)∈mapD

t′ [C
′] (t

′
1R

′
et

′
2) →∧

(t1,t2,Re)∈mapD
t [C] (t1Ret2) is valid (Condition (3)). Then, Pv is also true under

σ, because P s is valid.
Thus, P s′

is also true under σ′, because the corresponding variables have the
same valuation both under σ and σ′, and the valuations for the other variables,
functions or predicates are also the same. For any interpretation σ′, the above
argument holds. Therefore, if P s is valid, then P s′

is valid. �

Example 3 Figure 4 shows state traversal for the transition functions in
Example 1 and 2 under maxh = 1. When the transition from s to s′ occurs,
the height of t1 gets larger than maxh and term-height reduction is performed.
Then, s ≥ s′ holds under the domain D = {d1, d2} and functions mapD

t = {c1 →
d1, c2 → d2}, mapD

t′ = {c3 → d1, c2 → d2}. Therefore, s′ is merged into s, and
s has a self-loop. �

Fig. 4 State Traversal Example (maxh = 1).

5.4 Termination and Correctness
The state transition graph obtained by the procedure in Fig. 3 using term-

height reduction and state merging is called approximate state transition graph.
The infinite state graph obtained by the procedure in Section 4.1 without term-
height reduction and state merging is called non-approximate state transition
graph. The following is the key property for termination of our algorithm.

Theorem 4 The size of any approximate state transition graph is finite.
(Proof ) Suppose that term-height is restricted to a finite value. Then, the num-
ber of term forms occurring in a state vector is finite because a function and a
predicate have the finite number of arguments. Also, the number of elements
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in a condition set is finite because the conditions containing any variable which
does not occur in the state variables are all deleted. Thus, disregarding the
name of variables, there exists only the finite number of components for a state.
Since state merging resolves the difference among variable names, the size of the
abstract state transition graph is finite. �

Theorem 5 For any non-approximate state transition graph G and its ap-
proximate state transition graph Ga, a property P holds at any state in G if P

holds at any state in Ga.
(Proof ) Firstly we show that, for any possible normal interpretation sequence
σ̃ = (σ0, σ1, . . . , ) in G, we can have σ̃a = (σ0

a, σ1
a, . . . , ) in Ga such that the

valuations of term state variables and Boolean state variables at each i-th step
under σi equal to those under σi

a.
Suppose that we choose an arbitrary state sequence s̃ = (s0, s1, . . .) in G, and

a normal interpretation sequence σ̃ = (σ0, σ1, . . .) along s̃. We can find a state
transition sequence s̃a = (s0

a, s1
a, . . .) in Ga which corresponds to s̃ as follows.

In the state traversal procedure (Section 4.1), we choose αj as well as values or
terms to be inserted to input variables, in order to generate si+1 from si in G.
Since we use the same procedure to compute next states in G and Ga, we can
choose s̃a = (s0

a, s1
a, . . .) so that generation of si+1

a from si
a in Ga is based on the

same αj as that of si+1 from si in G.
Suppose that we have constructed a partial interpretation sequence up to i-th

step (σ0
a, σ1

a, . . . , σi
a) which is equal to (σ0, σ1, . . . , σi) in terms of valuations of

term state variables and Boolean state variables at each step.
The state traversal procedure 1) generates, from si

a, state si+1
a

′ as a next state
candidate; 2) applies term-height reduction to si+1

a
′ to obtain si+1

a
′′ when neces-

sary; 3) perform state merging for si+1
a

′′, when possible, to obtain si+1
a .

We give the same valuations to the corresponding sub-terms or variables in si+1

and si+1
a

′, that is, we can construct an interpretation σi+1
a

′ for si+1
a

′ which gives
the same valuations of term variables and Boolean variables as σi+1. Further-
more, as in the proofs in Theorem 1 and 3, we can also construct interpretations
σi+1

a
′′ for si+1

a
′′, and then σi+1

a for si+1
a , which give the same valuations of term

variables and Boolean variables as σi+1.

The above argument assures that any possible normal interpretation sequence
in G is also a normal interpretation sequence in Ga.

Next, we discuss the the validity of the formula (2) at each state. Theorem 3
and 2 assure that proving the validity of P at state si+1

a in Ga implies the validity
at state si+1

a
′′, and then that at si+1

a
′ in Ga.

The remaining task is to show that, if formula (2) at state si+1
a

′ is valid, then
that at state si+1 is also valid. Suppose that formula (2) is valid at si+1

a
′. Choose

an arbitrary partial normal interpretation sequence (σ0, σ1, . . . , σi, σi+1) for G.
As in the above, we can construct (σ0

a, σ1
a, . . . , σi

a, σi+1
a

′) for Ga.
Furthermore, from Property 1, we can say the left-hand sides of the implication

in formula (2) (that is,
∧

(t1,t2,Re)∈C t1Ret2) at state si, si+1 and si
a are true under

σi, σi+1 and σi
a respectively. Then, that at si+1

a
′ is true under σi+1

a
′, because the

same conditions are added to C along the transition from si and si+1, and that
from si

a and si+1
a

′, and both of σi+1 and σi+1
a

′ assign the same valuations to the
same conditions.

The right-hand sides of the implication in formula (2) at si+1 and si+1
a

′ have
the same valuations. Since we have assumed the validity of formula (2) at state
si+1

a
′, the right-hand sides are both true. Thus, formula (2) at si+1 is true.

This argument holds for any normal interpretation sequence (σ0, σ1, . . . , σi, σi+1).
Therefore, we can conclude that, if formula (2) at state si+1

a
′ is valid, then that

at state si+1 is also valid. �

6. Experimental Results

We implemented our algorithm in the C++ language and performed some
experiments with Intel Core 2 duo 2.4 GHz of 4 GB Memory under Mac OS X
10.5.6. We used CVC3 16) as an EUF SAT solver. The SAT solver was used
to check, the satisfiability of reachable conditions, formula (2) and the third
condition of Definition 2.

To the best of our knowledge, only a small number of benchmarks written in
form of EUF state machines, are available 6),15). Such benchmarks, intended for
bounded model checking, contain features our method cannot handle presently,
such as unbounded memories or list structures. In this paper, we prepared designs
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float bisect(float left, float right, // left < right
float diff, float (*f)(float)) // diff >= 0 is an allowed error

{
float mid, fleft, fright, fmid;

fleft = f(left);
fright = f(right);
if (fleft == 0) return left;
if (fright == 0) return right;
if (samesign(fleft, fright)) {

exit;
}
while (true) {

mid = (left + right) / 2;
if (mid - left <= diff) break;
if (right - mid <= diff) break;
fmid = f(mid);
if (fmid == 0) return mid;
if (samesign(fmid, fleft)) {

left = mid;
fleft = fmid;

} else {
right = mid;
fright = fmid;

}
}
return mid;

}

Fig. 5 Pseudo Code for Bisection Method.

of a simple C program for Bisection Method and an ADPCM encoder and applied
our algorithm.

The run-times we show in this section do not include construction of a DNF of
the transition relation from transition functions. In the following examples, we
gave the transition relations in DNF as inputs.

6.1 Bisection Method
Bisection method is an algorithm for solving an equation. We show its pseudo

code in Fig. 5. The number of executions of the while body depends on input
value diff, and is indeterminate.

We verify equivalence of returned values between BISECT1 which executes the
code sequentially, and BISECT2 which is obtained by modifying BISECT1 to
execute the loop body in one step. Both of the obtained EUF state machines

Table 1 Experimental Result: Bisection Method.

maxh # of new vars. # of states time(sec) result
0 7 18 5.3 inconclusive
1 6 113 46.8 successful
2 5 113 46.7 successful
3 6 117 49.3 successful
4 7 127 54.0 successful
5 8 205 94.2 successful
6 13 283 125.1 successful
7 14 448 220.1 successful
8 27 595 301.4 successful
9 28 964 560.1 successful

were executed concurrently.
The experimental result is shown in Table 1, where # of new vars. means

the total number of new variables introduced by term-height reduction and #
of states means the number of states in the obtained abstract state transition
graph.

In this experiment, the result for maxh = 0 is “Inconclusive”, that is, the al-
gorithm cannot judge whether the invariant property holds or not. The reason
of the very short run-time for this case is that the algorithm stops state genera-
tion, as soon as it detects that the invariant property does not hold at a newly
generated state (line 8 in Fig. 3).

The rest of the results for various maxh’s are all successful, that is, the invariant
which claims the equivalence of computed values holds. In this sense, the result
for the first and second lines (maxh = 0 and 1) are enough to show the correctness.
The other lines are given to show the change of performance to various maxh’s.

6.2 ADPCM Encoder
An ADPCM (Adaptive Differential Pulse Code Modulation) encoder trans-

forms sound data to digital data. The high-level description of an ADPCM en-
coder 17) is written in the C language and has about 70 lines. This description also
contains multiplication and division. Furthermore, since it has a loop structure
whose number of iteration depends on an input parameter, state enumeration for
it does not terminate if our technique is not used. The loop structure contains 9
if-branches.

We verify equivalence of output values between ADPCM1 which executes the
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Table 2 Experimental Result: ADPCM Encoders.

All of the results are all successful in this experiment.

maxh # of new vars. # of states time (sec) result
0 47 266 161.2 successful
1 30 1016 667.0 successful
2 21 1974 1273.7 successful
3 16 2956 1952.0 successful

high-level description sequentially, and ADPCM2 which is obtained by modifying
ADPCM1 to execute the loop body in less steps. Table 2 shows the experimental
result.

In this experiment, the shown results for various maxh’s are all successful, that
is, the invariant holds.

6.3 Consideration
Without term-height reduction, in both of the above examples, the term-heights

occurred at state variables continue to get larger infinitely, as state traversal
proceeds. For larger maxh, state merging is delayed at later steps, and as a
result, both of the number of states and the run-time increase. This suggests
that we should increase maxh from a smaller value.

On the other hand, verification for the design which does not contain feedback
structures, such as filter designs, is expected to terminate without term-height
reduction, because the term-height of any term state variable does not exceed
some constant. In this case, term-height reduction would not be necessary, and
can even degrade the performance.

6.4 Comparison with Other Works
The proposed algorithm handles unbounded state traversal and invariant check-

ing for EUF state machines. Other works 4),5),8) which handle the same problem
do not guarantee the termination of the procedure. In actuality, the algorithms
proposed by the above previous works do not terminate for the two examples
used in this section. Since the tools such as UCLID 15) or EUREKA 7) are based
on bounded model checking, they cannot obtain the complete result that the
proposed method can.

7. Conclusion

In this paper, we proposed a term-height reduction technique to compute an
over-approximate state set for an EUF state machine. Together with the state
merging technique, our algorithm can show equivalences of modified C programs
as well as two DSP designs, which the existent state-traversal based verification
methods cannot verify.

If the invariant depends on the property of operators, however, checking the
invariant can fail. To compensate for this, we will study some approach using the
other logic together with EUF, or some other method 10) to consider the property
of functions when we check satisfiability for EUF formulas.

As other future works, it would be necessary to extend the algorithm to deal
with arrays or memories of arbitrary length, or to check more general temporal
properties which are not invariants. Furthermore, we would like to handle the
cases in which the designated property does not hold. For this purpose, we
would need to combine the other logic such as Boolean logic or linear arithmetic,
together with EUF.

In our approach, a limit on term-height influences the degree of over-
approximation. Since the term-height reduction implies discarding the least
recent operations done to state variables, larger height means less of approxi-
mation. Finding an appropriate limit depends on the properties to be checked
and also affects the performance. In this paper, this is not considered, because
small heights are sufficient for the examples we handled. In order to determine the
limit in general, we could increase the limit from some small value, while checking
generated counter-examples are surely spurious by, for example, Boolean SAT.
This also remains as a future work.
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