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Multi-FPGA prototyping systems are widely used to verify logic circuit de-
signs. To implement a large circuit using such a system, the circuit is partitioned
into multiple FPGAs. Subsequently, sub-circuits assigned to FPGAs are con-
nected using interconnection resources among the FPGAs. Because of limited
resources, time-multiplexed I/Os are used to accommodate all signals in ex-
change for system speed. In this study, we propose an optimization method of
inter-FPGA connections for multi-FPGA systems with time-multiplexed I/Os
to shorten the verification time by accelerating the systems. Our method de-
cides whether each inter-FPGA signal is transferred by a normal I/O or a
time-multiplexed I/O, which is slower than a normal I/O but can transfer mul-
tiple signals. Our method optimizes inter-FPGA connections not only between
a single FPGA pair, but among all the FPGAs. Experiments showed that
for four-way partitioned circuits, our method obtains an average system clock
period 16.0% shorter than that of a conventional method.

1. Introduction

With increasing size of VLSI circuits, the design and fabrication costs of VLSIs
are also rapidly increasing. In this situation, if a bug is found after fabrication
begins, the cost of revising the VLSI design and refabricating the VLSIs is large.
Thus, VLSI designs are verified at each stage of the design flow to find and
remove bugs at as early a stage as possible. In one of the verification processes,
logic verification, a circuit is verified by determining whether its required logic
functions are implemented appropriately. Logic verification is one of the most
important functions of the VLSI circuit verifications, since it is performed at an
early stage of the VLSI design flow. Several methods are used to perform logic
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verification of a VLSI circuit design. The simplest is to simulate the functions of
the circuit design by software on a processor. This is a reasonable way because
it requires only a general-purpose processor and a software circuit simulator.
In contrast, it is very slow compared with the target VLSI circuit, since such
a software simulator emulates each logic gate one by one and the number of
logic gates is very large (e.g., 100 million). Since test bench data sets are often
very large (e.g., a dozen-hour video data stream processed by the target VLSI
circuit), the slow speed of software simulators is critical for logic verification of
a large circuit. Another way is to use a hardware simulation accelerator. That
greatly accelerates software circuit simulation by up to several MHz. In contrast,
such an accelerator costs more than one million dollars in some cases. Thus, it is
economically difficult to perform logic verification of a circuit design in parallel by
using several hardware simulation accelerators. The third way is to use an FPGA
prototyping system. Since an FPGA is a VLSI chip whose circuit is electrically
reconfigurable, it is often used to prototype a circuit. An FPGA prototyping
system is also used to verify the circuit. Due to the limited capacity of an
FPGA, a multi-FPGA prototyping system 4),8) composed of multiple FPGAs is
often used to verify a large circuit design. Such a system is much cheaper than
hardware simulation accelerators because it consists of general-purpose FPGAs.
Besides, such a system is faster (e.g., several dozen MHz) than accelerators. Thus,
multi-FPGA prototyping systems are widely used.

To perform logic verification using a multi-FPGA prototyping system, a large
circuit must be partitioned into sub-circuits, each of which fits a single FPGA.
This process, called circuit partitioning, has been studied for a few decades
[e.g., Ref. 12), 6), 11) and 1)]. Since the number of I/O pins of an FPGA is
very limited, the number of I/O signals of a sub-circuit has typically been mini-
mized to fit a single FPGA. However, even the minimized number of I/O signals
of a sub-circuit often exceeds the number of I/O pins of an FPGA. To over-
come the problem, Babb, et al. 2) introduced time-multiplexing of I/O pins. A
time-multiplexed I/O pin transfers multiple I/O signals by time-division. This
technique dramatically increases the acceptable number of I/O signals of a sub-
circuit. In contrast, this technique makes a prototyping system much slower since
inter-FPGA signal delay is considerably increased by time-multiplexing of I/O
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Fig. 1 Variation in the number of signals #sig among FPGA pairs.

Fig. 2 Variation in the number of wires #wire among FPGA pairs.

pins. Each signal must wait for its turn to transfer. To ease this problem, we
proposed an optimization method 10) of inter-FPGA connections for 2-FPGA sys-
tems, in which both normal I/O pins and time-multiplexed I/O pins are used for
fast signal transfer and wide signal transfer, respectively. Hereinafter, we call this
method OTM-2. In this study, we extend this method to handle multi-FPGA pro-
totyping systems with many FPGAs. OTM-2 is also applicable to multi-FPGA
prototyping systems. However, it does not distinguish the inter-FPGA signals of
a pair of FPGAs, from those of another. Thus, it ignores the variation in the num-
ber of I/O signals from one pair of FPGAs to another (Fig. 1). Our new method
considers this variation and obtains globally optimal solutions. It can also handle
the variation in the number of wires between a pair of FPGAs (Fig. 2). This

makes the method more practical, because in industrial multi-FPGA prototyping
systems, different pairs of FPGAs often have different numbers of wires.

The rest of this paper is organized as follows. In Section 2, some definitions are
given. In Section 3, we describe our proposed method. Subsequently, we present
our experiments in Section 4 and give conclusions in Section 5.

2. Preliminaries

2.1 Definitions
A circuit is modeled as a hypergraph G(V,E), called a circuit graph, which

represents a circuit net-list. V is the set of vertices corresponding to cells (e.g.,
gates, flip-flops), including primary I/Os. Hereinafter, a vertex v ∈ V and the
cell corresponding to v are used interchangeably. E is the set of hyper-edges
corresponding to nets that electrically connect cells. Each element e ∈ E is
the set of vertices to which the net corresponding to e connects. Hereinafter, a
hyper-edge e ∈ E and the net corresponding to e are used interchangeably.

Decomposition of a circuit into sub-circuits is called circuit partitioning. k-way
partitioning of a circuit graph G(V,E) gives vertex sets V1, V2, . . . , Vk such that
Vi �= ∅, ⋃k

i=1 Vi = V , and Vi∩Vj = ∅ (i �= j). Vi (i = 1, 2, . . . , k) are called blocks.
A set Φ = {V1, V2, . . . , Vk} of vertex sets is called a k-way partition. e ∈ E is
called a cutnet iff ∃i, j, {i �= j, e ∩ Vi �= ∅ ∧ e ∩ Vj �= ∅}. Since in this study it is
assumed that one FPGA contains only one block and each block is assigned to an
FPGA in advance, a block and its corresponding FPGA are used interchangeably.
Let S be the set of all the pairs of FPGAs (Vi, Vj) (1 ≤ i < j ≤ k).

Given a circuit graph G and its partition Φ, we represent the connections
between inter-FPGA signals by a directed graph Gi/o(Vi/o, Ei/o), called an inter-
FPGA signal graph, where Vi/o = {v1, v2, . . . , vm} is the set of vertices corre-
sponding to the inter-FPGA signals, and Ei/o = {e1, e2, . . . , el} is the set of
directed edges corresponding to the direct signal paths between inter-FPGA sig-
nals (Fig. 3). Let VFI(v) (v ∈ Vi/o) be the set of inter-FPGA signals (vertices
in Vi/o) from which there is at least one signal path to v through no other inter-
FPGA signals. A vertex v ∈ Vi/o which has no incoming edges is called a source
of Gi/o. A vertex v ∈ Vi/o which has no outgoing edges is called a sink of Gi/o.
Each FPGA pair a ∈ S has its inter-FPGA signals Vi/o,a.
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Fig. 3 (a) Circuit graph, (b), (c) Inter-FPGA signal graphs.

2.2 Time-multiplexed I/O
A time-multiplexed I/O (TM I/O) [e.g., used in Ref. 2)] is an I/O that serially

transfers multiple signals from one device to another. It eases the problem of
the limited number of I/O pins on a device (e.g., an LSI, an FPGA). Several
implementations of TM I/Os exist. We adopt a simple implementation (Fig. 4)
to maintain the reliability of our prototyping system. In our implementation, a
TM I/O consists of a parallel/serial converter, an I/O pin of the sender device,
an I/O pin of the receiver device, a wire between them, and a serial/parallel
converter. The converters are triggered by an I/O clock, which is set to be faster
than the system clock in order to transfer multiple signals within a system clock
period. A signal is transferred in an I/O clock period, which is called a slot. A
set of signals are transferred by using a set of slots, called a stage. #slot refers
to the number of slots in a stage, which is the size of the stage. In a system clock
period, a TM I/O repeats stages until the signals of the logic circuit converge.
#stage refers to the number of stages repeated in a system clock period. In our

Fig. 4 Time-multiplexed I/O.

system, each TM I/O works with the same #slot and #stage. Empirically, #slot
is set to be greater than or equal to 4. Each signal transferred by a TM I/O waits
for the completion of the transfer for at most #slot I/O clock periods at the TM
I/O. Thus, TM I/Os introduce a large delay to the circuit. Due to this large
delay, the delays caused by other parts can be ignored for practical purposes. In
our prototyping system, both normal I/O and TM I/O are used to accommodate
inter-FPGA signals, alleviating system slowdown. We say a selection of signals
to be time-multiplexed, a TM I/O signal selection, or simply a signal selection.

2.3 I/O Constraint
Let Wa and Xa be the number of wires for inter-FPGA I/Os and the number of

time-multiplexed signals between FPGAs of an FPGA pair a ∈ S, respectively.
Let Ta be the number of TM I/Os between an FPGA pair a. The number of
signals transferred by a normal I/O can be represented by |Vi/o,a| − Xa. Then,

Ta + |Vi/o,a| − Xa ≤ Wa

must be satisfied to transfer the signals using Wa wires. This is the I/O constraint
of multi-FPGA prototyping systems with TM I/Os.

2.4 Delay in Multi-FPGA Systems with TM I/Os
Let Mi be the number of signals transferred by a TM I/O i. Then, #slot ≥
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maxi Mi. Let Np be the number of TM I/Os on a FF-to-FF signal path p. Np is
called the TM-depth of path p. Np is determined by the signal selection. Then,
#stage ≥ maxp Np. maxp Np is called the TM-depth of the system, which is also
the lower limit of #stage. Let Csys and Ci/o be the system clock period and I/O
clock period, respectively. A slot corresponds to an I/O clock period, a stage
consists of #slot slots, and a system clock period contains #stage stages. Thus,

Csys ≥ #slot · #stage · Ci/o.

Since the minimum value of Ci/o is a constant given by a prototyping system, we
assume

Csys ∝ #slot · #stage.
Since our TM I/Os transfer signals equally, we set Mi = maxa∈S �Xa/Ta� regard-
less of the value of i to minimize #slot ≥ maxi Mi under the signal selection.
Note that the minimum values of both #slot and #stage are determined by the
signal selection. For more details, refer to Ref. 10).

2.5 Optimization of Inter-FPGA Connections between FPGAs
We proposed an optimization method of TM I/O signal selection for mini-

mizing Csys for 2-FPGA systems, OTM-2 10). OTM-2 is based on integer linear
programming (ILP) 5). We briefly explain the method here for the completeness
of this paper. Note that OTM-2 is for 2-FPGA systems and thus does not dis-
tinguish FPGA pairs signals belong to. Since only one FPGA pair exists in a
2-FPGA system, we denote Xa, Wa, and Vi/o,a by X, W and Vi/o, respectively.

An inter-FPGA signal graph Gi/o(Vi/o, Ei/o), which represents signal prop-
agation between inter-FPGA I/Os, is given. Let xv represent whether a sig-
nal v ∈ Vi/o is time-multiplexed. xv = 1 indicates that the signal v is time-
multiplexed, and xv = 0 indicates that v is not time-multiplexed. That is, the
set of xv (v ∈ Vi/o) represents a TM I/O signal selection. Then, the number
of time-multiplexed signals X =

∑
v∈Vi/o

xv. Then, the lower limit of #slot in
2-FPGA systems,

#slot ≥
⌈

X

W − |Vi/o| + X

⌉
,

is derived from the I/O constraint. Since X > W − |Vi/o| + X when TM I/Os
are necessary,

⌈
X

W−|Vi/o|+X

⌉
is a monotonically decreasing function of X. Thus,

#slot can be minimized when X is maximized. Let yv be the number of TM
I/Os on a path from an FF to a signal v ∈ Vi/o. Then, yv can be calculated
recursively on the inter-FPGA signal graph by yv = xv +maxv∈VFI(v). Note that
maxp Np = maxv∈Vi/o yv. Thus,

#stage ≥ max
v∈Vi/o

yv.

A maximum function can be substituted by parallel inequalities in linear pro-
gramming.

The final goal is to minimize #slot × #stage. However, it cannot be directly
minimized by using ILP. Thus, we decompose the problem into sub-problems by
#stage to minimize #slot under the given #stage = N as described below.

N -depth Signal Selection problem (N -SS problem)
Constants:

N : the number of stages (#stage)
Variables:

xv1 , xv2 , . . . , xvm
: 0-1 integers

yv1 , yv2 , . . . , yvm
: integers

Subject to:

0 ≤ yvi
≤ N (1 ≤ i ≤ m)

∀v ∈ Vi/o

{
yv ≥ xv if VFI(v) = ∅

yv ≥ xv + yv′ ,∀v′ ∈ VFI(v) if VFI(v) �= ∅
Maximize:∑

v∈Vi/o

xv

The maximum number of gates on an FF-to-FF path is empirically less than
50, and the number of inter-block signals on an FF-to-FF path is empirically
less than 20. Since #stage is less than or equal to the number of inter-block
signals on an FF-to-FF path, #stage is also less than 20. Thus, we can obtain
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the minimum value of Csys by solving a small number of N -SS problems (fewer
than 20). OTM-2 obtains the minimum value of Csys in this manner.

In Ref. 10), we also formulated an extended problem, the N -depth Directed
Signal Selection problem (N -D-SS problem), to consider signal direction. A signal
between FPGA p and FPGA q has the direction p to q, or q to p. Only signals
that have the same direction can be transmitted by a single TM I/O. This is
considered in the N -D-SS problem. However, we omit the consideration in the
rest of this paper because the effect changes the number of necessary TM I/Os
by at most only one, though it is important in some cases.

The N -SS problem can be efficiently solved by LP solvers (e.g., CPLEX 9) and
GLPK 7), which are also ILP solvers) by integer relaxation. In addition, ILP
solvers can empirically solve the N -D-SS problem efficiently, though it is not
guaranteed theoretically. Thus, the minimum value of Csys for a 2-FPGA system
can be obtained efficiently by OTM-2. For more details, refer to Ref. 10).

Now, let us consider how to apply OTM-2 to multi-FPGA systems with more
than two FPGAs. An inter-FPGA signal graph Gi/o(Vi/o, Ei/o) and the set of
signals Vi/o,a ⊆ Vi/o for each FPGA pair a ∈ S are given. In addition, the number
of inter-FPGA wires Wa for each FPGA pair a ∈ S is given. Since neither W nor
Wa appears in the N -SS problem, it can be solved by using the N -SS problem
ignoring FPGA pairs. Once a TM signal selection is obtained, its #slot can be
evaluated by the following expression, which is from the I/O constraint,

#slot ≥ max
a∈S

⌈
Xa

Wa − |Vi/o,a| + Xa

⌉
,

where Xa is the number of time-multiplexed signals in Vi/o,a. Note that OTM-2
does not obtain optimal TM signal selections for multi-FPGA systems with more
than two FPGAs since it ignores FPGA pairs.

3. ILP-based Optimization of Inter-block Connections for k-way
Partitioned Circuit

In this section, we propose a method to consider, in an ILP formulation, the
variation of the number of I/O signals from one FPGA pair to another.

An inter-FPGA signal graph Gi/o(Vi/o, Ei/o) and the set of signals Vi/o,a ⊆ Vi/o

for each FPGA pair a ∈ S are given. In addition, the number of inter-FPGA

wires Wa for each FPGA pair a ∈ S is given.
#slot is limited only by the I/O constraint⌈

Xa

#slot

⌉
+ |Vi/o,a| − Xa ≤ Wa.

By transposing the second and third terms of the left side to the right side,⌈
Xa

#slot

⌉
≤ Wa − |Vi/o,a| + Xa.

Since Wa − |Vi/o,a| + Xa is an integer,
Xa

#slot
≤ Wa − |Vi/o,a| + Xa.

By solving the inequality about #slot,
Xa ≤ (Wa − |Vi/o,a| + Xa) · #slot

Xa

Wa − |Vi/o,a| + Xa
≤ #slot.

This inequality cannot be handled by ILP because the left side of it is non linear.
In OTM-2, the number of time-multiplexed signals X =

∑
a∈S Xa is maximized

instead of directly minimizing #slot, since #slot is monotonically decreasing
function of X. In our new method, OTM-k, we transform the inequalities for
all a ∈ S into linear inequalities and a linear objective function. Let X ′

a =
Wa − |Vi/o,a| + Xa. Then, we get:

X ′
a − Wa + |Vi/o,a|

X ′
a

≤ #slot

1 + (|Vi/o,a| − Wa)/X ′
a ≤ #slot.

Considering all a ∈ S,

1 + max
a∈S

(|Vi/o,a| − Wa)/X ′
a ≤ #slot.

Thus, #slot is minimized if

max
a∈S

(|Vi/o,a| − Wa)/X ′
a

is minimized. That is, #slot is minimized if

min
a∈S

X ′
a/(|Vi/o,a| − Wa)

is maximized. Thus, the I/O constraints and the minimization of #slot are
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represented by

∀a ∈ S,

{
X ′′ ≤ 1

|Vi/o,a| − Wa
X ′

a

}
,

Maximize:X ′′,
by introducing a variable X ′′ to obtain the minimum value. Summing up, we
formulate the problem to minimize #slot under the given #stage considering the
variation in the number of I/O signals as described below.

k-way N -depth Signal Selection problem (k-way N -SS problem)
Constants:

N : the number of stages (#stage)
Wa: the numbers of wires of an FPGA pair a ∈ S

Vi/o,a: the set of inter-FPGA signals of an FPGA pair a ∈ S

Variables:
xa,v: 0-1 integers for all v ∈ Vi/o,a for all a ∈ S

ya,v: integers for all v ∈ Vi/o,a for all a ∈ S

Xa,X ′
a: real numbers for all a ∈ S

X ′′: a real number
Subject to:

Xa =
∑

v∈Vi/o,a

xa,v

∀a ∈ S, {X ′
a = Wa − |Vi/o,a| + Xa}

∀a ∈ S,∀v ∈ Vi/o,a, {0 ≤ ya,v ≤ N}

∀a ∈ S,∀v ∈ Vi/o,a

{
ya,v ≥ xa,v if VFI(v) = ∅

ya,v ≥ xa,v + yv′ ,∀v′ ∈ VFI(v) if VFI(v) �= ∅

∀a ∈ S,

{
X ′′ ≤ 1

|Vi/o,a| − Wa
X ′

a

}
if |Vi/o,a| > Wa

Maximize:
X ′′

As mentioned in the previous section, the mixed ILP problem is solved empir-

ically fewer than 20 times to minimize Csys.

4. Experimental Results

We performed experiments to evaluate our proposed method OTM-k compared
to the ILP-based conventional method OTM-2 10). ILP problem generation pro-
grams of both methods were implemented in C++, and the problems were solved
by a well-known LP/ILP solver, GNU Linear Programming Kit (GLPK 7)). The
experiments were conducted on a PC equipped with an AMD Opteron 1.8 GHz
CPU and 3 GB of memory. Table 1 shows the benchmark circuits from industrial
circuits used in the experiments. They are peripheral circuits for media proces-
sors, which need to be verified with long test benches such as video streams. In
the experiments, all partitions were generated by using the well-known circuit
partitioner hMetis 11).

Table 2 and Table 3 show the numbers of time-multiplexed I/O signals of
FPGA pairs of benchmark circuit A with 3- and 4-way partitioning, respectively.
The number of wires between FPGAs of an FPGA pair for A was set to 100. Ta-
ble 4 and Table 5 show the numbers of time-multiplexed I/O signals of FPGA
pairs of benchmark circuit G with 3- and 4-way partitioning, respectively. The
number of wires between FPGAs of an FPGA pair for G was set to 400. In
these tables, a represents an FPGA pair in S, and #sig represents the num-
ber of I/O signals between a pair of FPGAs. For each #stage, the numbers of
time-multiplexed I/O signals by OTM-k and OTM-2 are shown in the -k and -2
columns, respectively. The parenthetic number in each cell is the #slot value de-
rived from the number of time-multiplexed I/O signals. These tables demonstrate
that OTM-k selects signals on congested inter-FPGA connections prioritized to

Table 1 Benchmark circuits.

Circuit #gates #nets #FFs
A 251,636 253,215 24,119
B 58,011 52,217 8,181
C 202,693 204,582 18,708
D 33,036 33,460 3,794
E 177,818 181,962 14,672
F 164,204 167,232 17,487
G 1,858,702 1,870,027 180,789
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Table 2 Number of TM signals of A (3-way, W = 100).

a #sig #stage = 1 #stage = 2 #stage = 3 #stage = 4 #stage = 5
-k -2 -k -2 -k -2 -k -2 -k -2

0-1 464 378 (27) 353 (N/A) 448 (6) 445 (6) 463 (5) 463 (5) 464 (5) 464 (5) 464 (5) 464 (5)
1-2 368 279 (26) 343 (5) 330 (6) 351 (5) 341 (5) 368 (4) 342 (5) 368 (4) 342 (5) 368 (4)
2-0 436 350 (25) 376 (10) 414 (6) 432 (5) 428 (5) 436 (5) 429 (5) 436 (5) 429 (5) 436 (5)

#slot 27 N/A 6 6 5 5 5 5 5 5
Csys 27 N/A 12 12 15 15 20 20 25 25

Table 3 Number of TM signals of A (4-way, W = 100).

a #sig #stage = 1 #stage = 2 #stage = 3 #stage = 4 #stage = 5
-k -2 -k -2 -k -2 -k -2 -k -2

0-1 366 285 (15) 333 (5) 327 (6) 344 (5) 334 (5) 360 (4) 337 (5) 366 (4) 339 (5) 366 (4)
0-2 191 98 (14) 185 (2) 112 (6) 191 (2) 115 (5) 191 (2) 116 (5) 191 (2) 116 (5) 191 (2)
0-3 137 40 (14) 126 (2) 46 (6) 136 (2) 47 (5) 136 (2) 47 (5) 137 (2) 48 (5) 137 (2)
1-2 168 73 (15) 155 (2) 84 (6) 161 (2) 86 (5) 165 (2) 87 (5) 167 (2) 87 (5) 168 (2)
1-3 78 0 (0) 62 (1) 0 (0) 73 (1) 0 (0) 78 (1) 0 (0) 78 (1) 0 (0) 78 (1)
2-3 469 394 (16) 365 (N/A) 453 (6) 437 (7) 463 (5) 462 (5) 467 (5) 464 (5) 469 (5) 469 (5)

#slot 16 N/A 6 7 5 5 5 5 5 5
Csys 16 N/A 12 14 15 15 20 20 25 25

Table 4 Number of TM signals of G (3-way, W = 400).

a #sig #stage = 1 #stage = 2 #stage = 3 #stage = 4 #stage = 5
-k -2 -k -2 -k -2 -k -2 -k -2

0-1 1,600 1,277 (17) 1,485 (6) 1,402 (7) 1,570 (5) 1,408 (7) 1,598 (5) 1,408 (7) 1,598 (5) 1,408 (7) 1,599 (5)
1-2 945 580 (17) 903 (3) 637 (7) 930 (3) 640 (7) 944 (3) 640 (7) 945 (3) 640 (7) 945 (3)
2-0 2,712 2,459 (17) 2,435 (20) 2,701 (7) 2,696 (8) 2,712 (7) 2,710 (7) 2,712 (7) 2,712 (7) 2,712 (7) 2,712 (7)

#slot 17 20 7 8 7 7 7 7 7 7
Csys 17 20 14 16 21 21 28 28 35 35

reduce the maximum value of the lower limits of #slot derived from the I/O
constraints on FPGA pairs. All the ILP problems in our proposed method were
solved within 10 seconds.

Table 6 and Table 7 show the minimum system clock periods for each #stage
for each circuit, which are intermediate solutions of OTM-k and OTM-2. The
unit of the system clock periods is one I/O clock period. The minimum system
clock period for each circuit with OTM-k is underlined in Table 6 and Table 7. W

represents the number of wires between FPGAs of an FPGA pair. #ineq. rep-
resents the number of constraints in the ILP formulation of the k-way N -SS
problem. Note that #ineq. does not depend on #stage. “N/A” means that the

intermediate solution was infeasible. Imp. represents the improvement ratio com-
pared to the result using OTM-2. Time represents the total time in seconds to
solve k-way N -SS problems for N = 1, 2, . . . , 5. The Ave. row shows the average
improvement ratio and the average total time. Note that we assume the system
clock period Csys is proportional to #stage ·#slot, and the lower limit of #slot is
derived from the I/O constraints when a signal selection is given. Compared with
OTM-2, the average minimum system clock periods of 3- and 4-way partitioned
circuits were improved by 3.1% and 16.0% by OTM-k.

Let us consider the effect of the variation in the number of signals between an
FPGA pair. Suppose a partition Φ of a circuit is given. Then, the variation can
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Table 5 Number of TM signals of G (4-way, W = 400).

a #sig #stage = 1 #stage = 2 #stage = 3 #stage = 4 #stage = 5
-k -2 -k -2 -k -2 -k -2 -k -2

0-1 2,543 2,426 (9) 2,372 (10) 2,527 (7) 2,515 (7) 2,533 (7) 2,533 (7) 2,534 (7) 2,534 (7) 2,534 (7) 2,534 (7)
0-2 886 553 (9) 841 (3) 576 (7) 884 (3) 577 (7) 883 (3) 578 (7) 885 (3) 578 (7) 886 (3)
0-3 1,118 817 (9) 1,014 (4) 851 (7) 1,091 (3) 853 (7) 1,109 (3) 853 (7) 1,115 (3) 853 (7) 1,118 (3)
1-2 720 364 (9) 717 (2) 379 (7) 720 (2) 380 (7) 720 (2) 380 (7) 720 (2) 380 (7) 720 (2)
1-3 469 79 (8) 411 (2) 82 (7) 449 (2) 82 (7) 465 (2) 82 (7) 468 (2) 82 (7) 468 (2)
2-3 439 45 (8) 389 (2) 47 (6) 428 (2) 47 (6) 436 (2) 47 (6) 439 (2) 47 (6) 439 (2)

#slot 9 10 7 7 7 7 7 7 7 7
Csys 9 10 14 14 21 21 28 28 35 35

Table 6 Minimum clock period (3-way).

Circuit W #ineq. #stage = 1 #stage = 2 #stage = 3 #stage = 4 #stage = 5 Imp. Time
-k -2 -k -2 -k -2 -k -2 -k -2

A 100 7,310 27 (27) N/A (N/A) 12 (6) 12 (6) 15 (5) 15 (5) 20 (5) 20 (5) 25 (5) 25 (5) 0.0% 7 s
B 50 3,416 N/A (N/A) N/A (N/A) 20 (10) 22 (11) 24 (8) 24 (8) 32 (8) 32 (8) 40 (8) 40 (8) 9.1% 2 s
C 100 6,713 N/A (N/A) N/A (N/A) 12 (6) 12 (6) 15 (5) 18 (6) 20 (5) 24 (6) 25 (5) 25 (5) 0.0% 9 s
D 100 2,323 35 (35) 35 (35) 18 (9) 18 (9) 27 (9) 27 (9) 36 (9) 36 (9) 45 (9) 45 (9) 0.0% 2 s
E 400 7,135 4 (4) 4 (4) 8 (4) 8 (4) 12 (4) 12 (4) 16 (4) 16 (4) 20 (4) 20 (4) 0.0% 4 s
F 100 7,328 11 (11) 11 (11) 10 (5) 10 (5) 15 (5) 15 (5) 20 (5) 20 (5) 25 (5) 25 (5) 0.0% 2 s
G 400 23,605 17 (17) 20 (20) 14 (7) 16 (8) 21 (7) 21 (7) 28 (7) 28 (7) 35 (5) 35 (5) 12.5% 49 s

Ave. 3.1% 11 s

Table 7 Minimum clock period (4-way).

Circuit W #ineq. #stage = 1 #stage = 2 #stage = 3 #stage = 4 #stage = 5 Imp. Time
-k -2 -k -2 -k -2 -k -2 -k -2

A 100 9,859 16 (16) N/A (N/A) 12 (6) 14 (7) 15 (5) 15 (5) 20 (5) 20 (5) 25 (5) 25 (5) 14.3% 12 s
B 50 3,735 12 (12) 15 (15) 14 (7) 18 (9) 18 (6) 21 (7) 24 (6) 24 (6) 30 (6) 30 (6) 20.0% 1 s
C 100 4,554 3 (3) 4 (4) 6 (3) 6 (3) 9 (3) 9 (3) 12 (3) 12 (3) 15 (3) 15 (3) 25.0% 3 s
D 100 4,476 21 (21) 59 (59) 26 (13) 30 (15) 36 (12) 42 (14) 48 (12) 48 (12) 60 (12) 60 (12) 30.0% 2 s
E 400 11,396 3 (3) 3 (3) 6 (3) 6 (3) 9 (3) 9 (3) 12 (3) 12 (3) 15 (3) 15 (3) 0.0% 11 s
F 100 11,313 7 (7) 8 (8) 8 (4) 10 (5) 12 (4) 12 (4) 16 (4) 16 (4) 20 (5) 20 (5) 12.5% 11 s
G 400 22,281 9 (9) 10 (10) 14 (7) 14 (7) 21 (7) 21 (7) 28 (7) 28 (7) 35 (7) 35 (7) 10.0% 47 s

Ave. 16.0% 12 s

be briefly represented by the ratio of #sig-max to #sig-min, where #sig-max is
the maximum number of signals between an FPGA pair among the FPGA pairs,
and #sig-min is the minimum number of signals between an FPGA pair among
the FPGA pairs. Since OTM-k preferentially selects signals from those between
the FPGA pair with #sig-max to minimize #slot under the given #stage, it
is expected to work effectively in cases with a large variation in the number of

signals. This is confirmed by the experimental results: the improvement ratios
by OTM-k of the 3- and 4-way partitions of A are 0% and 14.3%, and that of the
3-way partition of G is 12.5%, while the variations in the 3- and 4-way partitions
of A are 1.26 (= 464/368) and 6.01 (= 469/78), and that of the 3-way partition
of G is 2.87 (= 2,712/945).
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5. Concluding Remarks

In this study, we proposed an extended method for optimizing time-
multiplexing in inter-FPGA connections of FPGA prototyping systems to con-
sider the variation in the number of signals between a pair of FPGAs from one
pair to another. Our method is based on integer linear programming, for which
efficient algorithms have been proposed. We transformed the non-linear con-
straints of inter-FPGA communication into linear constraint inequalities and
a linear objective function to solve the optimization problem by integer linear
programming. Experiments showed that our method obtains the minimum sys-
tem clock periods 16.0% shorter than those of a method ignoring the variations,
for 4-way partitioned circuits on average. Our future work includes the devel-
opment of a partitioning algorithm considering optimal time-multiplexing and a
time-multiplexing method considering data transfer scheduling.
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