
IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010)

Regular Paper

Performance Evaluation of a Dynamically Switchable

SIMD/MIMD Processor by Using an Image

Recognition Application

Shohei Nomoto,†1 Shorin Kyo†1

and Shinichiro Okazaki†1

We have developed an “XC core” processor that achieves low cost, high per-
formance, and low power consumption through the use of a highly parallel
SIMD architecture (the SIMD mode), as well as achieves high flexibility by
morphing into a MIMD architecture (MIMD mode). In this paper, we evaluate
the effectiveness of the MIMD mode by using a white line detection algorithm
for open roads. Our evaluation shows that the algorithm can be processed in
real time (less than 33 ms) by using the MIMD mode to execute verification of
white line segments, which is a part of the algorithm not suitable to be executed
by the SIMD mode. We also show that the verification can be executed five
times faster by using region of interest (ROI) transfer instructions to efficiently
transfer the ROI of an image. Furthermore, we also measured the execution
time in the MIMD mode with changing the number of processing units (PUs)
used, from 2 to 4, 8, 16 and 32. The measured results show that the per-
formance improvement rate slows down when using more than 16 PUs in the
MIMD mode, mainly due to insufficient parallelism in the verification process.
Overall, a 10.68 times speedup was achieved by using 32 PUs in the MIMD
mode, compared with only using the SIMD mode.

1. Introduction

Vehicle safety systems based on image recognition technology are becoming
widespread in recent years 1),2). These systems must be a sufficiently high per-
formance to achieve real-time image recognition, and low power consumption
to satisfy the stringent thermal design requirements for vehicle environments.
They must also be highly programmable to support diverse image recognition
algorithms, thus achieving faster time to market and higher maintainability.

†1 System IP Core Research Laboratories, NEC Corporation

Various image recognition processors have been developed to satisfy these re-
quirements. The Vchip (Vision/Video Chip), for example, implements basic op-
erations for image recognition (such as an edge filter) as dedicated hardware 3).
By using the dedicated hardware, the Vchip can cost-effectively achieve high
performance and low power consumption for pre-defined operations which are
supported by the hardware, but it lacks flexibility to support diverse algorithms.
Visconti (vision-based sensing, control, and intelligence) consists of three 3-way
VLIW-type image recognition cores, with each core being able to simultaneously
execute one scalar instruction and two SIMD (8-bit, 8-way) instructions at each
clock cycle 4). Visconti can extract and utilize various granularities of parallelism
by using Multicore, VLIW, and SIMD instructions. Visconti can therefore flexi-
bly and effectively execute various types of image recognition algorithms, but the
peak performance of Visconti will be much lower than that of dedicated hardware
that uses the same amount of hardware resources.

The authors have developed a series of image recognition processors called
IMAP (Integrated Memory Array Processor) 5). IMAP processors employ a
highly parallel SIMD architecture and consist of a linear array of processing
elements (PEs), each of which is tightly coupled with a memory. Because all the
PEs execute the same instruction, the size of the circuit required for control can
be reduced and the size of the circuit used for operations (the number of PEs)
can be increased. However, as image recognition algorithms have become more
diversified and complicated in recent years, it is becoming more difficult to map
them onto a pure SIMD architecture.

To solve these issues, we have designed a processor architecture called the XC
core, which can dynamically switch between the SIMD and MIMD modes 6).
In addition to the conventional SIMD mode, the XC core also implements a
MIMD mode in which four PEs are reconfigured as one operation unit (PU:
Processing Unit), as shown in Fig. 1. Because each PU of the MIMD mode can
work independently, the XC core can flexibly and effectively execute algorithms
consisting of multiple independent tasks.

In this paper, the effectiveness of the XC core’s MIMD mode is shown by
evaluating a white line detection algorithm for open roads implemented in the XC
core. The remainder of the paper is structured as follows. Section 2 explains the

47 c© 2010 Information Processing Society of Japan



48 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

Fig. 1 Overview of the XC core architecture.

architecture of the XC core, and the region of interest (ROI) transfer instructions
implemented to efficiently transfer the ROI of an image. Section 3 describes the
detailed operations of the white line detection algorithm for open roads. In
Section 4, the algorithm is implemented in the SIMD and MIMD modes, and the
execution time in the SIMD mode is compared with that in the MIMD mode.
The performance characteristics of the MIMD mode are also evaluated based on
the number of PUs used to execute the algorithm. Finally, Section 5 presents the
conclusion of this paper.

2. Overview of the XC Core Architecture

This section gives an overview of the XC core architecture. Firstly the basic
structure of the XC core and an implementation that enables dynamic switching
between the SIMD and MIMD mode are described. Secondly, the region of
interest (ROI) transfer instructions that are implemented in each PU, and that
can transfer the ROI of an image efficiently are explained. Finally, the software
development environment for the XC core is described.

2.1 Basic Structures of the XC Core
As shown in Fig. 1, the XC core consists of a Control Processor (CP), and a

PE array that rings a number of Processing Elements (PEs) tightly coupled with
their own memory (RAM). Firstly, the basic structures of the CP and the PE

array are described.
I) Control Processor (CP) The CP has its own instruction and data caches,

and controls the operation of the whole XC core. In the SIMD mode, the CP
issues instructions to each PE, and in the MIMD mode, manages the state of
each PU (such as Run, Stop, or Finish). Moreover the CP has an instruction
fetch unit which can issue up to six instructions per clock cycle. And up to six
fetched instructions are issued to the CP, and up to five fetched instructions are
issued to each PEs. The CP also has a VLIW execution unit which can execute
up to six instructions simultaneously.

II) Processing Element (PE) Each PE has its own scratch-pad memory (RAM),
and has a VLIW execution unit which can simultaneously execute up to five
instructions sent from the CP instruction fetch unit. Each PE is also connected
to its two neighboring PEs via a data transfer path (DTP). By using the DTP,
each PE can exchange its own data with that of its neighboring PEs. Data burst
transfer, called line transfer, is also available for transferring data between the
external memory (Ext Mem) and each PE memory (RAM).

Next, we describe an implementation of the PUs, which work independently in
the MIMD mode. To realize the MIMD mode at low cost, the hardware of four
PEs is reused to realize one PU. The three main ways we reuse the hardware of
four PEs are summarized below.

1) The cache system of each PU is configured by reusing the PE’s memories
and register files. Four PE’s memories which are used as scratch pad memories
in the SIMD mode, are reused as the memories of the PU’s instruction and data
caches. The register files of three PEs are also reused to store the PU’s cache
tags. A hardware based cache coherence mechanism is not implemented, due to
the complexity of its implementaion and also the anticipated increase in memory
traffic.

2) The control and data paths of the SIMD and MIMD modes are shared. By
sharing a large number of instructions (about 70%) between the SIMD and MIMD
modes, the instruction decode unit, register file unit, and instruction execution
unit of one PE can be mostly reused for one PU.

3) The PU’s floating point path is configured by reusing the execution units of
the PEs. The execution units of three PEs that are not being used as the PU’s

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



49 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

data path are reused to configure a single-precision floating-point path for the
PU.

By reusing the hardware of four PEs in these ways, the additional hardware
costs for implementing the MIMD mode, including the costs for the ROI transfer
instructions described in Section 2.2, have been kept to approximately 10% of
the costs for the whole XC core 6).

Finally, we describe in detail how the XC core dynamically switches between
the SIMD and MIMD mode is described. The process for switching from the
SIMD mode to MIMD mode consists of three steps. Firstly the CP’s cforkinit
instruction, which consumes three clock cycles, is issued to specify which PUs are
to be activated, and to assign a memory space to each PU. Next, if more than
one PU requires the common instruction code (or data set), the CP’s cforkp (or
cforkd) instruction can be used to fill the instruction (or data) cache of multiple
PUs at the same time. Finally, the CP’s cfork instruction specifying an initial
program counter value is used to start execution of each PU. If the contents of
the RAM attached to each PE in the SIMD mode must be saved, such operation
should be executed before issuing the cforkp (or cforkd) and cfork instructions. In
contrast, the process for switching from the MIMD mode to SIMD mode consists
of only one step. When all PUs terminate their processing after explicitly writing
back data cache contents by using the cwb instruction, the CP’s cwrs instruction,
which consumes only one clock cycle, is issued to inactivate all PUs.

2.2 Region of Interest (ROI) Transfer Instructions
Conventional SIMD architecture is not suitable for executing image recognition

algorithms in which the size or content of the target region of an image is different
from that of other regions. To execute this kind of algorithm efficiently, the SIMD
architecture must reallocate the data within one target region among the PEs
in a rather complicated way to make all PEs busy. However such reallocation
will incur an additional processing time overhead. Furthermore, the execution
time required for the entire algorithm is dominated by the longest execution time
among the target regions.

Figure 2 shows one such algorithm, in which whether each target region of
interest (ROI) in an image includes a pedestrian or not is verified. The XC core
can execute such an algorithm efficiently, because each PU can independently

Fig. 2 Example of ROI-type operation.

verify each target region (ROI) in an image by using the MIMD mode. However,
it is not appropriate to execute this kind of algorithm, which deals with ROIs, by
using a normal cache system, because a normal cache system cannot efficiently
transfer the data within each ROI, resulting in a degrading the performance of
algorithm execution.

As shown in Fig. 3, a normal cache system transfers a rectangular ROI data
area in a cache manner, in which all the data included in each cache line from CL1
to CL5 is transferred. Therefore the data around the ROI will also be transferred.
Such unnecessary data transfer wastes the memory bandwidth between the cache
memory and the external memory, and lowers the cache utilization efficiency by
storing unnecessary data in the cache memory. Furthermore, because the PU’s
cache system is constructed in a cost-effective way by simply reusing the PEs’
register files to store the PU’s cache tags, the PU’s cache does not have sufficient
cache lines. Actually, the size of one PU’s cache line is 512 bytes, which is quite
larger than conventional microprocessors. It can therefore be determined that
the PU’s cache system is not suitable for ROI-type of data transfer.

To solve this issue, the XC core implements two ROI transfer instructions,
called roiread and roiwrite, which efficiently transfer just the data within each
ROI region. By using these ROI instructions, performance degradation owing to
unnecessary data transfer can be eliminated. As shown in Fig. 4, the two ROI
transfer instructions can transfer just the data within a ROI region (from d0 to

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



50 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

Fig. 3 Transferring ROI in a cache manner.

Fig. 4 Transferring ROI in a ROI manner.

d4), and store the data in consecutive locations in the cache memory. Two address
pointers are used during execution of the ROI transfer instructions, one for the
external memory, and the other for the PU’s data cache, each being updated
independently to each other. After the ROI transfer, the transferred data can be
accessed by using the address pointer for the PU’s data cache. Consequently, the
wasted memory bandwidth is reduced, and cache memory utilization is improved.

2.3 Software Development Environment
We have developed an integrated software development environment (IDE)

based on Eclipse 7) for programmers of the XC core. This environment is shown
in Fig. 5. The IDE combines all the tools necessary to develop applications, such
as a source code editor, an optimized XC compiler, and a graphical debugging
tool, etc. And all tools are seamlessly integrated in the IDE, so programmers
can easily develop their applications. Furthermore, two different programming
models are assumed to develop programes in the XC core, one for the SIMD

Fig. 5 Integrated software development environment of the XC core.

mode, and one for the MIMD mode. These models are described as follows.
I) SIMD mode programming model

In the SIMD mode, a data parallel extension of C called 1DC (one-dimensional
C) 8), is used to explicitly specify the code to be executed using the PE array.
In 1DC, entities associated with the PE array are declared by using a sep (or
separate) keyword. A sep data item possesses as many scalar elements as a
multiple of the number of PEs. Explicitly parallel operations are specified using
sep variables in 1DC expressions. Figure 6 shows the six primitive extensions
of 1DC from C. The SIMD programming model is based on the use of the
collection of all PE local data RAMs collected to form a 2-D memory plane,
where the source, destination, and work spaces are assumed to be stored. This
2-D memory plane is used as a large scratch-pad working area for the 1-D PE
array to work on in parallel or in a systolic way.

II) MIMD mode programming model
In the MIMD mode, the normal ANSI C is used for programming the CP and
the PUs. Also conventional POSIX Pthreads API-compatible functions, or native
thread functions are available for user thread programming. Message passing is

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



51 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

Fig. 6 Six primitive 1DC extended syntax forms.

supported by the typical “send” and “recv” instructions of the CP and the PUs.
Message types such as direct (one-to-one), broadcast (one-to-many), and inter-
ruption are available. Direct-messages are useful for synchronizing two PUs for
exchanging data. For example, in performing ROI region verification for detected
object candidates, the CP can post tasks as any-messages, each containing the
location information of the region, to the PUs. These any-messages are then re-
ceived by the PUs, which are waiting for new workloads. An interruption-message
can force the receiver PU or CP to branch to a program address specified in the
message body. Interruption-messages sent by the PUs to the CP can also be used
to implement semaphores, so as to centralize as well as sequentialize accesses to
shared resources or variables between tasks.

3. White Line Detection Algorithm for Open Roads

This section firstly provides an overview of the white line detection algorithm
for open roads which is used for evaluating the effectiveness of the XC core
architecture. Secondly, the process of verifying the white-line segment candidates,
which is a part of the white line detection algorithm, and which is not suitable
to be executed by a pure SIMD architecture, is explained.

3.1 Overview of the White Line Detection Algorithm
Figure 7 shows a flow chart of the algorithm, and Fig. 8 shows the image

Fig. 7 White line detection algorithm for open roads.

processing results. As shown in Fig. 7, the white line detection algorithm consists
mainly of the following seven subroutines.

(1) From each pixels of image data as shown in Fig. 8-a, white line features
are extracted as shown in Fig. 8-b, (2) Neighboring pixels whose extracted white
line features are higher than a threshold value are grouped and then the grouped
pixels are divided into white line segments as shown in Fig. 8-c, (3) Some of the
generated segments that are further judged to be non-white-line are eliminated,
as shown in Fig. 8-d, (4) Some of the verified segments are connected with each
other, based on the rule of the white line shapes defined by the road traffic
regulations, to generate white line connections, (5) The connected segments are
evaluated, based on how smoothly the neighboring segments are connected with
each other, the sum of the white line features, and the shape similarity between
the connected segments and the white lines estimated from the detection results
of previous frames, (6) Connected segments whose evaluated score is higher than

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



52 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

Fig. 8 Sample images of a proposed algorithm.

a threshold value, and higher than the other connected segments, are selected
as white lines (one for the left lane, and the other for the right lane) as shown
in Fig. 8-e, (7) The position of the detected white lines is used to update the
Kalman filter 9) coefficient used to estimate the future position of white lines. The
estimated positions of the white lines are used to verify the white line segments
or to evaluate the connected segments in the next image.

These seven subroutines are classified as either a data-intensive portion or a
control-intensive portion. Subroutines (1) and (2) are classified as data-intensive
portions, because a large amount of data has to be processed in the same way.
Thus subroutines (1) and (2) are suitable to be implemented in the SIMD mode.
On the other hand, subroutines (3) to (7) are classified as control-intensive por-
tions, because they include many branching sequences, which causes the differ-
ences in the processing time and processing code for each input data. Therefore
these subroutines are suitable to be implemented by the CP or in the MIMD
mode.

3.2 Verification of White-Line Segment Candidates
This sub-section provides a detailed explanation of subroutine (3) of the seven

subroutines of the white line detection algorithm shown in Fig. 7. Subroutine (3)

Fig. 9 Verification process of white line segment candidates.

is used to verify the white-line segment candidates. The reason for this detailed
explanation is that subroutine (3) performs a very important operation within
the control-intensive portion of the proposed algorithm. Actually subroutine (3)
takes up to 99 percent of the execution time in the control-intensive portion,
which consists of subroutines (3) to (7).

As shown in Fig. 9, subroutine (3) consists of the following six operations. (3-1)
The shape of each white-line segment candidate is analyzed to obtain the length,
width, and gravity center, (3-2, 3-3) Some of the candidates whose length or
width is less than a threshold value are eliminated, (3-4) Some of the candidates
whose position is far from the estimated white line position are eliminated, (3-5)
After calculating the linearity of each white-line segment candidate, some of the
candidates are eliminated if their linearity are less than a threshold value, After
calculating each candidate angle made by the candidate axis and camera one,
some candidates are eliminated if the angle is not allowed at that position when
considering the road shape defined by the road traffic regulations.

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



53 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

4. Evaluation of the Performance of the XC Core

In this section, the performance of the XC core’s MIMD mode is evaluated by
using a white line detection algorithm for open roads implemented in the XC
core. Firstly we consider how to implement the algorithm using the XC core.
Next, the performances of implementations using and without using the MIMD
mode are compared to show the effectiveness of the MIMD mode.

4.1 How to Implement a White Line Detection Algorithm for Open
Roads in the XC Core

Among seven subroutines of the white line detection algorithm shown in Fig. 7,
(1) Extraction of white line features, (2) Generation of white line segment can-
didates, and (3) Verification of white line segment candidates, were selected to
be implemented using the XC core, and their execution times were estimated.
As these three subroutines dominate a large portion (about 99%) of the whole
execution time consumed by the entire algorithm, it is possible to recognize the
characteristics of the XC core with respect to the algorithm, by analyzing the
results of implementing these subroutines in the XC core. How we implemented
subroutines (1) to (3) in the XC core is explained below.

Subroutine (1): Extraction of white line features applies the same filter to
all the pixels of a camera image to extract white line features. Because the
same operation is applied to a large amount of data, it is suitable to implement
subroutine (1) in the SIMD mode, where many pixels can be filtered in parallel
by allocating each pixel to each PE of the SIMD array.

Subroutine (2): Generation of white line segments, checks whether all the pixels
of the image resulting from subroutine (1) are higher than a threshold value.
Neighboring pixels that have passed the threshold test are grouped together to
generate white line segment candidates. Because the same operation is applied
to a large amount of data, it is suitable to implement subroutine (2) in the SIMD
mode, where many pixels can be threshold-tested and grouped in parallel, by
allocating each pixel to each PE of the SIMD array.

Subroutine (3): Verification of white line segments, checks whether the shapes
of all the white line segment candidates comply with the road traffic regulations,
and eliminates those candidates whose shapes do not comply. In this kind of veri-

fication, each candidate requires a different execution time, because the operation
for each candidate is terminated halfway, according to its shape characteristics
(size, angle, shape, etc.). Meanwhile, because each white line segment candidate
can be verified independently, it is suitable to implement subroutine (3) in the
MIMD mode. In the MIMD mode, each PU verifies each candidate indepen-
dently from the other PUs, and the CP dynamically manages the assignment of
candidates to PUs and collects the execution result from the PUs by using the
native thread functions, explained in Section 2.3.

In order to demonstrate the effectiveness of the MIMD mode of the XC core,
subroutine (3) was also implemented in the SIMD mode. The estimated execution
time using the SIMD mode was compared with that using the MIMD mode.
In the SIMD mode, it would be preferable to allocate each white line segment
candidate to each PE of the SIMD array in order to execute as many candidates
in parallel as possible. However, according to our estimation, transferring the
data of each candidate to each PE would incur a considerable overhead with
this kind of implementation. Consequently, for the SIMD mode, we chose an
implementation in which each candidate is verified sequentially by using the CP.

4.2 Results of Performance Evaluation
The white line detection algorithm for open roads was implemented in the

SIMD and MIMD mode by using the above methods. By using a cycle-based
simulator of the XC core and four different test scenes (VGA size) as shown in
Fig. 10, each execution time necessary for each scenes in the SIMD and MIMD
mode, were estimated and averaged. And each estimated execution time was
compared with the other ones. Furthermore, to efficiently verify the white line
segment candidates, which is a subroutine of the white line detection algorithm,
it was preferable to use the ROI transfer instructions explained in Section 2.2,
because verification is executed for each image region (ROI) of a verification
candidate. To demonstrate the effectiveness of the ROI transfer instructions,
the verification process was implemented using and without using these instruc-
tions, and their execution times were compared. Table 1 shows the hardware
specifications of the XC core used for this evaluation.

Figure 11 shows the averaged execution time distribution for four test scenes,
of the white line detection algorithm implemented using the XC core. As shown

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



54 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

Fig. 10 Four different test scenes for performance evaluation.

Table 1 Performance specifications of the XC core.

SIMD mode MIMD mode

Number of PE (PU) 128PE 32PU

Instruction provided
Instruction cache (32 KB,
2way-64entry) @CP

Instruction cache (8 KB,
2way-8entry) @PU

Data provided

Data cache (4 KB,
2way-16entry) @CP,
Scratchpad memory
(4 KB) @PE

Data cache (8 KB,
2way-8entry) @PU

Data path 5way-VLIW 3way-VLIW

Floating point path Not supported Supported

External memory Amount: 256 MB, Bandwidth: 13.8 Gbps

Operating frequency 108 MHz @ 90 nm CMOS

in Fig. 11, the algorithm can be processed in real time (less than 33 ms) by using
the MIMD mode to execute verification of white line segment candidates. The
execution time of verification using the SIMD mode was 14.97 ms, but using the
MIMD mode, this could be reduced to 6.58 ms when the ROI instructions were
not used, and 1.27 ms when they were used. Figure 11 demonstrates how the use
of the MIMD mode can improve the performance of the XC core. Furthermore,
verification process was executed five times faster by using the ROI instructions,
demonstrating that the ROI instructions improved the performance of the XC
core. We also evaluated the performance characteristics of the MIMD mode,

Fig. 11 Execution time of white line detection algorithm.

with changing the number of PUs used to execute verification of white line seg-
ment candidates. The verification execution time of the verification process was
measured with changing the number of PUs from 2 to 4, 8, 16 and 32.

Figure 12 shows the performance improvement in the MIMD mode compared
with the SIMD mode according to the number of PUs used, and when using
and not using the ROI instructions. Figure 12 also shows the performance in
the MIMD mode when a zero latency memory access is assumed, enabling us
to examine how data transfer contention affected the performance of MIMD
mode execution. Figure 12 shows that a significant performance improvement
can be achieved by using the MIMD mode. For example, the performance was
approximately 8.95 times faster when using 16 PUs, and 10.68 times faster when
using 32 PUs. Also the performance was up to five times faster when using
the ROI instructions. It is assumed that this is because the ROI instructions can
substantially reduce performance degradation caused by data transfer contention,
which increases as the number of PUs increases. The performance improvement
when using the ROI instructions scaled well up to 8 PUs, but for 16 PUs or

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



55 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

Fig. 12 Performance improvement by using the MIMD mode.

Table 2 Average percentage of detailed tasks configuring PU’s operation.

2PUs 4PUs 8PUs 16PUs 32PUs

I$ miss stall 15.39% 13.92% 13.04% 7.01% 2.98%
D$ miss stall 0.00% 0.00% 0.00% 0.00% 0.00%
Job waiting 2.87% 10.82% 13.60% 37.49% 51.22%

Program body 81.74% 75.26% 73.36% 55.50% 45.80%

32 PUs the improvement rate slowed down substantially. This is likely to be
due to the capacity of the memory bandwidth between the external memory and
PUs, which becomes insufficient to provide data to all PUs as the number of PUs
increases. But as shown in Fig. 12, when the number of PUs increases to more
than 16, the improvement rate falls away from that of the ideal case, in spite of
using a zero latency memory. In order to investigate the reason for such a slow
down in the performance improvement rate, the number of cycles consumed by
the PUs, was examined in detail, with the results shown in Table 2.

Table 2 lists the average percentage of cycles consumed by various detailed tasks
making up the PUs’ operations. These tasks include “instruction cache (I$) miss
stall”, “data cache (D$) miss stall”, “job waiting”, and “program body”. Table 2
suggests that the percentage of time consumed by “job waiting” increases, as the
number of PUs increases. This is especially true when 16 and 32 PUs are used.

Table 3 Percentage of cycles consumed by “broadcast candidates” task of CP.

2PUs 4PUs 8PUs 16PUs 32PUs

Broadcast candidates 2.00% 3.00% 7.00% 12.00% 17.00%

Therefore the following two possibilities can be considered, (1) Although there
are enough white line segment candidates to be simultaneously executed by the
PUs, the CP cannot broadcast enough candidates to make all the PUs busy, and
(2) Although the CP can broadcast enough white line segment candidates to
make all the PUs busy, there are not enough candidates to be broadcast to all
the PUs.

To verify which of these is correct, we measured the percentage of time con-
sumed by “broadcast candidates” task of the CP. The results are shown in
Table 3. Table 3 shows that the percentage of time consumed increases, as the
number of PUs that are used increases. But the percentage accounts for only
17% of all time consumed by the CP, even when the number of PUs used is
32. This shows that the CP has enough ability to broadcast candidates to all
the PUs. Thus, there are not enough candidates to keep 16 or 32 PUs busy.
We can therefore assume that possibility (2) is the reason why the performance
improvement rate slows down substantially when 16 or 32 PUs are used.

5. Conclusion

In this paper, we implemented a white line detection algorithm for open roads
in the XC core, and evaluated the performance of executing the algorithm to show
the effectiveness of the MIMD mode of the XC core. Our evaluation showed that
the algorithm could be processed in real time (less than 33 ms) by using the
MIMD mode to execute verification of white line segment candidates, which is
a part of the algorithm that is not suitable to be executed by the SIMD mode.
Meanwhile, it was demonstrated that verification could be executed five times
faster by using ROI instructions, which can efficiently transfer the ROI of an
image. Furthermore, the verification execution time in the MIMD mode was
measured with changing the number of PUs from 2 to 4, 8, 16 and 32. The
measured results showed that the performance improvement rate when using the
ROI instructions could scale well up to 8 PUs, and that the execution time was
approximately 8.95 times faster when using 16 PUs, and 10.68 times faster when

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan



56 Performance Evaluation of a Dynamically Switchable SIMD/MIMD Processor by Using an Image Recognition Application

using 32 PUs. Meanwhile, we investigated why the improvement rate slowed
down when more than 16 PUs were used. The investigation demonstrated that
the reason was that the verification of white line segment candidates does not have
sufficient parallelism to keep all the PUs busy. The above results showed that
the performance of image recognition applications can be significantly improved
by using the MIMD mode, in addition to the SIMD mode.

References

1) Kimura, Y., Kato, T., Ohta, M., Ninomiya, Y., Takagi, Y., Usami, M. and Tokoro,
S.: Stereo vision for obstacle detection, The 13th Intelligent Transportation Systems
World Congress (2006).

2) Tsuji, T., Hattori, H., Watanabe, M. and Nagaoka, N.: Development of night-vision
system, IEEE Trans. Intelligent Transportation Systems, Vol.3, Issue.3, pp.203–209
(2002).

3) Muramatsu, S., Otsuka, Y., Takenaga, H., Kobayashi, Y., Furusawa, I. and Monji,
T.: Image processing device for automotive vision systems, IEEE Intelligent Vehicle
Symposium, Vol.1, pp.121–126 (2002).

4) Tanabe, J., Taniguchi, Y., Miyamori, T., Miyamoto, Y., Takeda, H., Tarui, M.,
et al.: Visconti: multi-VLIW image recognition processor based on configurable
processor, IEEE Custom Integrated Circuits Conference, pp.185–188 (2003).

5) Kyo, S., Okazaki, S. and Arai, T.: An integrated memory array processor archi-
tecture for embedded image recognition systems, IEEE Trans. Comput., Vol.56,
Issue.5, pp.622–634 (2007).

6) Kyo, S., Koga, T., Hanno, L., Nomoto, S. and Okazaki, S.: A low-cost mixed-mode
parallel processor architecture for embedded systems, International Conference on
Supercomputing, pp.253–262 (2007).

7) http://www.eclipse.org/.
8) Kyo, S., Okazaki, S. and Arai, T.: An Integrated Memory Array Processor Ar-

chitecture for Embedded Image Recognition Systems, International Symposium on
Computer Architecture, pp.132–145 (2005).

9) Kalman, R.E.: A new approach to linear filtering and prediction problems, Trans-
actions of the ASME, J. Basic Engineering, Vol.82, pp.35–45 (1960).

(Received May 21, 2009)
(Revised September 4, 2009)
(Accepted October 31, 2009)
(Released February 15, 2010)

(Recommended by Associate Editor: Shinsuke Kobayashi)

Shohei Nomoto received his B.E. and M.E. degrees in systems
& information engineering from Tsukuba University in 2003 and
2005, respectively. He joined NEC Corporation in 2005 and is cur-
rently a research staff member at the System IP Core Research
Laboratories. His research interests include parallel processing
systems and processor architecture. He is a member of the Infor-
mation Processing Society of Japan (IPSJ).

Shorin Kyo received his B.E., M.E., and Ph.D. degrees in pre-
cision engineering from the University of Tokyo in 1987, 1989,
and 2004, respectively. He joined NEC Corporation in 1989 and
is currently a principal researcher in the System IP Core Research
Laboratories. He has been involved in research on parallel pro-
cessing system and processor architecture, parallel language and
compiler design, and image processing. Between 1994 and 1995,

he was a visiting researcher in the Department of Applied Physics at Delft Uni-
versity of Technology. He is a member of the Information Processing Society of
Japan (IPSJ) and the Institute of Electronics, Information and Communication
Engineers (IEICE).

Shinichiro Okazaki received his B.E. and M.E. degrees in
electronic engineering from Osaka University in 1982 and 1984,
respectively. He joined NEC Corporation in 1984 and is currently
a senior principal researcher in the System IP Core Research Lab-
oratories. He is engaged in research on image processing and par-
allel processing architecture. He is a member of the Institute of
Electronics, Information and Communication Engineers (IEICE).

IPSJ Transactions on System LSI Design Methodology Vol. 3 47–56 (Feb. 2010) c© 2010 Information Processing Society of Japan


