WEKO3
アイテム
Enumerating Colored and Rooted Outerplanar Graphs
https://ipsj.ixsq.nii.ac.jp/records/68035
https://ipsj.ixsq.nii.ac.jp/records/68035d628de7c-6394-450e-a796-4d4291679701
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2010 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2010-02-26 | |||||||
タイトル | ||||||||
タイトル | Enumerating Colored and Rooted Outerplanar Graphs | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Enumerating Colored and Rooted Outerplanar Graphs | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Department of Applied Mathematics and Physics, Kyoto University | ||||||||
著者所属 | ||||||||
Department of Applied Mathematics and Physics, Kyoto University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Applied Mathematics and Physics, Kyoto University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Applied Mathematics and Physics, Kyoto University | ||||||||
著者名 |
Jiexun, Wang
× Jiexun, Wang
|
|||||||
著者名(英) |
Jiexun, Wang
× Jiexun, Wang
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | An outerplanar graph is a graph that admits a planar embedding such that all vertices appear on the boundary of its outer face. Given a positive integer n and a color set C with K ≥ 1 colors, we consider the problem of enumerating all colored and rooted outerplanar graphs with at most n vertices without repetition. We design an efficient algorithm that can generate all required graphs in O(1) time per each and in O(n) space. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | An outerplanar graph is a graph that admits a planar embedding such that all vertices appear on the boundary of its outer face. Given a positive integer n and a color set C with K ? 1 colors, we consider the problem of enumerating all colored and rooted outerplanar graphs with at most n vertices without repetition. We design an efficient algorithm that can generate all required graphs in O(1) time per each and in O(n) space. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN1009593X | |||||||
書誌情報 |
研究報告アルゴリズム(AL) 巻 2010-AL-129, 号 5, p. 1-8, 発行日 2010-02-26 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |