ooooooooog
IPSJ SIG Technical Report

gobooboobooobuobuoboboobod

ooo ooft O O o of2
O o o o2 o o o ot

0000000000000000000000000000000000000
0000000000000000D0000000000000000000000
000000000000000 k0000000000000000000000
00 nO00000000000000000000 O(2.62% - poly(n)) 00000
000000000000D00000000000000000000000000
000D0000D0000D0000000000000000000 POOOOOO
O(m?P)y0DO0O0O00O000O0D0000

Exact Algorithms for Computing Tree Edit Distance
between Unordered Trees

TaTsuya AkuTsu,’! Dar Fukacawa,
ATSUHIRO TAaKASU™? and TAKEYUKI TAMURAT!

This article (non-reviewed technical report) presents a fixed-parameter algo-
rithm for the tree edit distance problem for unordered trees under the unit cost
model that works in O(2.62F - poly(n)) time where the parameter k is the maxi-
mum bound of the edit distance and n is the maximum size of input trees. This
article also presents a polynomial time algorithm for the case where the maxi-
mum outdegree of the largest common subtree is bounded by a constant. When
the maximum outdegree is bounded by D, the algorithm works in O(nZD) time.

t1 0000 0DOD000 DOoOoo0oooooooooooo

Bioinformatics Center, Institute for Chemical Research, Kyoto University
200000000

National Institute of Informatics

Vol.2010-AL-129 No.2
2010/3/5

1. Introduction

Tree pattern matching plays an important role in such application areas as computa-

tional biology, XML databases and image analysis!)"!?).

Though various measures have
been proposed for computing the similarity between trees, the edit distance between
rooted trees has been well-studied.

For the tree edit distance problem for ordered trees, Tai developed an O(n®) time
algorithm®", from which several improvements followed. Recently, Demaine et al. de-
veloped an O(n3) time algorithm and showed that this bound is optimal under some
computation strategy3).

However, in some applications, it is preferable to regard input trees as unordered
trees. At least, in many applications, more flexible matching can be made possible if
input trees are regarded as unordered trees. Unfortunately, Zhang et al. proved that the
tree edit distance problem for unordered trees is NP-hard'?. Furthermore, Zhang and
Jiang proved that it is MAX SNP-hardl3), which means that there exists no polynomial
time approximation scheme unless P=NP.

Some optimal algorithms were proposed for restricted cases™ 194 Shasha et al.
developed a fixed-parameter algorithm when the parameter is the number of leaves'?).
Halldérsson and Tanaka developed a polynomial time algorithm for the case of bounded
number of branching nodes” . Zhang developed a polynomial time algorithm under re-
stricted editing operations'®. For a related tree inclusion problem, Kilpeldinen and
Mannila showed that it is solved in polynomial time if the maximum degree is bounded
by a constant”. However, the above cases do not cover all important cases and thus it
is worthy to develop polynomial time algorithms for other cases.

In this article, we present a fixed-parameter algorithm that works in O(2.62" - poly(n))
time where the parameter k is the edit distance and n is the maximum size of input
trees. We also present polynomial time algorithms for the case in which the maximum
degree of the largest common subtree (based on editing operations) is bounded by a

constant. Due to space limitation, some of the proofs are omitted in this article.

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

2. Preliminaries

We briefly review the definitions of tree edit distance, edit distance mapping and
largest common subtree (see also Fig. 1) for rooted, labeled and unordered trees!):12:13),

Let T be a rooted unordered tree where each node v has a label £(v) over an alphabet
Y. r(T) and V(T') denote the root of T" and the set of nodes in T, respectively. For a
node v € V(T), T — v denotes the tree obtained by deleting v from T, p(v) denotes the
parent of v, chd(v) denotes the set of children of v, deg(v) denotes the outdegree of v,
anc(v) denotes the set of ancestors of v, des(v) denotes the set of descendants of v. It
should be noted that deg(v) = |chd(v)| holds.

T'(v) denotes the subtree induced by v and its descendants. For a subtree T’ of T,
T — T’ denotes the tree obtained by deleting all nodes in 7" from T. The depth of a
node v is the length of the path from the root to v and is denoted by depth(v). For a
set of nodes {vi,v2,...,vn} C V(T), LCA({v1,v2,...,vs}) denotes the lowest common
ancestor of v1,va,...,vp. If T1 and T» are isomorphic including label information, we
write T1 = T>. In the analysis of algorithms, n denotes max{|V (11)|, |V (12)|}.

An edit operation on a tree T is either a deletion, an insertion, or a substitution,
where each operation is defined as follows (see also Fig. 1):

Deletion: Delete a non-root node v in T" with parent u, making the children of v
become children of u. The children are inserted in the place of v into the set of the
children of wu.

Insertion: Inverse of delete. Insert a node v as a child of w in T', making v the parent
of some of the children of .

Substitution: Change the label of a node v in T'.

We assign a cost for each editing operation: 7(a,b) denotes the cost of substituting a

node with label a to label b, y(a,€) denotes the cost of deleting a node labeled with a,

and (e, a) denotes the cost of inserting a node labeled with a.

The edit distance between two unordered trees 77 and 75 is defined as the cost of
the minimum cost sequence of editing operations that transforms 77 to T>. We use
dist(T1,T2) to denote the edit distance between 77 and T>. In this article, we adopt

the following standard assumption so that dist(T1,7T2) becomes a distance metrict?:

Vol.2010-AL-129 No.2
2010/3/5

largest common subtree

Fig.1 Example of tree edit operation, mapping, and largest common subtree under the unit cost
model. T is obtained from T} by deletion of node (labeled with) e, insertion of node k and
substitution of node f. The corresponding mapping M is shown by broken curves. The largest
common subtree is shown in the right-hand side, where the labels of the original nodes are

shown in place of the original node pairs. The node labeled (f,g) is not included in the usual

largest common subtreel3) .

v(a,b) > 0 for any (a,b) € &' x &', y(a,a) = 0 for any a € &', vy(a,b) = v(b,a) for
any (a,b) € ¥’ x X' y(a,c) < v(a,b) + v(b,c) for any a,b,c € &' x ¥/ x ¥/, where
¥ = X U {e}. We call T» a subtree of T} if T is obtained from T only by deletion
operations*!.

It is known that there exists a close relationship between the edit distance and the
edit distance mapping (or just mapping)V*?. M C V(T1) x V(T3) is called a mapping
if the following conditions are satisfied for any two pairs (vi,w1), (v2,w2) € M: v1 = v
iff w1 = we, v1 is an ancestor of vy iff wi is an ancestor of we. Let I1 and I2 be the sets
of nodes in V(T1) and V(T%) not appearing in M, respectively. Then, it is known)!?
that the following relation holds:

dist(T1, T2) = min ST w),)+ Y e t@) + D y(eu), o))

vely vels (u,v)eM

Here we define a score function f(u,v) for (u,v) € V(11) x V(T2) by

*1 We also use the subtree for denoting a subgraph of a tree. However, the meaning of the subtree
is clear from the context and thus there is no confusion.

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

flu,v) =(l(u), €) + (e, £(v)) = v(L(u), £(v)).
It is seen that f(u,v) = f(v,u) > 0 holds. It should also be noted that under the
unit cost model (i.e., v(a,b) = 1 for all £(a) # £(b)), f(v,v) = 2 and f(u,v) = 1
hold for f(u) # £(v).

score(M) = Z<u wen £ (). Let Mopr be the mapping with the maximum score.

Let score(M) be the score of a mapping M defined by

Then, we can see from the definition that the following property holds:
dist(Th, T2) = Z y(l(u),€) + Z (e, €(v)) — score(Mopr).
weV(Ty) veEV(Ta)

If M consists of pairs of identical labels, the subtree obtained by deleting nodes not
appearing in M from T} is isomorphic to the subtree obtained by deleting nodes not
appearing in M from T>. Such a tree is called a common subtree between 11 and T». In
this article, a subtree of 71 (or T3) induced by the nodes appearing in M is also called
a common subtree even if M contains some pairs of non-identical labels. The largest
common subtree (LCST, in short) is defined as the common subtree with the maximum
score.

Though the edit distance problem for unordered trees is NP-hard, it can be solved (in

exponential time) using a dynamic programming (DP) algorithm®7.

For a forest (i.e.,
a set of unordered trees) F, roots(F') denotes a set of the roots of trees in F'. We define

0(F1, F2) between two unordered forests Fi and F» by the following DP procedure:

SFLa= Y y(lw).e),

uw€V (Fy)
SeF) = D (e lw),
vEV (Fa)
minueroos(ry {8(F1 = u, F2) +(E(w),)},
i roots(y {5(F, Fe =) (6 L)}
MiN(y v)eroots(F1) xroots(Fz) 10(F1 — Ti(u), F2 — Tz (v))
HO(T1(u) = w Ta(v) = v) + 7 (€(w), £(0))}

5(F1,F2) = min

Then, it is seen that dist(T1,T2) = §(71,T2) holds from 1)0 7).

Vol.2010-AL-129 No.2
2010/3/5

3. Fixed-Parameter Algorithm

In this section, we present an O(2.62" - poly(n)) time algorithm for the tree edit dis-
tance problem between two unordered trees, where the parameter is the edit distance.
Though we consider the unit cost model here for simplicity, the algorithm can be ex-
tended for a more general case in which costs of edit operations are integers. For details
of fixed-parameter algorithms, refer to 5)0 6).

The following lemmas (proofs omitted) are important for developing the fixed param-
eter algorithm.

Lemma3.1 (See also Fig. 2) Let r1 and 72 be the roots of 71 and T respectively.
Suppose that for any pair (u,v) € chd(r1) X chd(rz), dist(Ti(u),T2(v)) > 1 holds. Sup-
pose that u is an arbitrary child of 71 or r2 such that |T'(u)| is the largest, where we
assume w.l.o.g. that u € chd(r1). Then, one of the following holds, where M is the
optimal edit distance mapping:

e 1 does not appear in M,

e (u,v) € M for some child v of 2, where dist(T1(u),Ta(v)) > 1,

e (u,v) € M for some descendant v of some child of rz, where dist(T1(u), T2(v)) > 1.

Lemma3.2 Let z1,...,z;, and yi1,...,y1, be children of r(71) and r(7%), respec-
tively. If Ti(z;) = T2(y;) holds, dist(T1,T2) = dist(Th — Ti(x:), T> — T2(y;)) holds.

Before presenting an O(2.62" - poly(n)) time algorithm, we begin with an O(2F -
k! - poly(n)) time algorithm because it is easier to understand. The following is a
pseudocode of this simpler algorithm, where it works in a recursive manner and de-
cides whether or not dist(T1,T>) < k holds for given trees 71 and T». In the pro-
cedure, we let mindist(u,v) = argmin, {FpDist0(T1(u), T2(v),h) = TRUE}, where
mindist(u,v) = oo if FpDist0(T1(u), T>(v),h) = FALSE for all h. We can assume
that this value can be computed before computation of FpDistO(T1,T»,k) by execu-
tion of FpDistO(T1(u),Ta(v), h) for h =0, ...,k for all (u,v) € des(r(T1)) x des(r(1z))
in a bottom up manner (i.e., results of FpDistO(T1(u),T>(v),h) are stored in a DP
table). We can also assume £(r(T1)) = £(r(72)). Otherwise, it is enough to execute
FpDist0(T1, T2,k — 1) instead of FpDist0(T1, T, k).

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

Procedure FpDistO(T1,Ts, k)
if k < 0 then return FALSE;
if |T1| =0 or |T2| = 0 then
if max(|T1|,|T2|) < k then return TRUE else return FALSE;
if |Th| = |T2| = 1 then
if v(£(r(T1)),€(r(T2))) < k then return TRUE else return FALSE;
if T (zi) = T2 (y;) for some z; € chd(r(T1)), y; € chd(r(1>)) then
return FpDist0(Ty — T1(z:), Te — T=(y5), k);
Wi «— 0; Wa — 0;
while |W1| < k and |[W2| < k do
Let w be the node in chd(r1) U chd(rz) — W1 — W2 such that |T'(w)] is
the largest;
if such a node does not exist then (#1)
if |W1| # |W2| then return FALSE;
Compute the minimum weight bipartite matching between W7 and Ws
where weight(u,v) = mindist(u,v);
if the minimum cost < k then return TRUE else return FALSE;
if w € chd(r(T1)) and FpDistO(Ty — w, Tz, k — 1) is TRUE

then return TRUE; (#2)
if w € chd(r(T2)) and FpDistO(T1,T> — w,k — 1) is TRUE
then return TRUE; (#3)

if w € chd(r(T1)) then W, — W1 U{w} else Wa — Wy U{w};
return FALSE;

Theorem3.3 FpDistO(Ti, T, k) decides whether or not dist(T1,7T2) < k holds in
O(2F - k! - poly(n)) time.
Proof. First, we show the correctness of the algorithm. If either |T1| = 0, |T2| = 0
or |T1| = |T2| = 1 holds, the algorithm obviously returns the correct value (TRUE or
FALSE). If T1(x;) =~ T2(y;) holds, the correctness follows from induction on the total
size of trees and Lemma 3.2. Otherwise, dist(T1(z;),T2(y;)) > 1 must hold for all pairs

(l‘i,yj)-

Vol.2010-AL-129 No.2
2010/3/5

Fig.2 Three cases considered in Lemma 3.1.

Suppose that part (#1) is executed. Then, all the children of r(71) and r(T%) are
included in W1 U Wa. Since deletion of any child should have been taken care by (#2)
and (#3), FALSE should be returned if |[W1| # |W2| holds. Otherwise, there must exist
a one-to-one mapping between chd(r(T1)) and chd(r(Tz)). Then, dist(T1,T>) < k holds
if and only if the weight of the minimum weight matching is at most k.

Suppose that some of the children of r(T%) or r(T%) is deleted in the optimal mapping,
then such a node should have been correctly taken care by (#2) or (#3).

Suppose that |Wi| > k or |W2| > k holds. We can assume w.l.o.g. that [Wi| > k
holds. Since we can assume that no node in W7 U Wa is deleted, each node u in W1
is mapped to some node in W2, or some child v of r(732) or its descendant such that

v ¢ Wa. If u is mapped to a node in W, it contributes to the total distance by at least

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

1 because all isomorphic pairs (T1(x;),T2(y;))s are removed beforehand. Otherwise,
|T1(u)| > |T2(v)| holds and thus we can see from Lemma 3.1 that u contributes to the
total distance by at least 1. Thus, FALSE should be output in this case. This completes
the proof of the correctness of FpDist0(T1, Tz, k).

Next, we analyze the time complexity. Let f(k,n) be the time complexity of
FpDistO(T1,T2, k), where n = max(|T1|,|T2|). If either T3] = 0, |T2] = 0 or
|T1| = |T2] = 1 holds, FpDist0(T1,T>, k) takes O(1) time. Ti(xz;) = T2(y;) can be
tested in O(1) time per pair if we pre-process Ti and T5 in linear time so that the
signature (with O(logn) bits) of each Tj(v) is computed® . Therefore, whether or not
such a pair exists can be tested in O(n?) time. Execution of the while loop can be done
in O(kn) time in total except minimum weight matching and recursive call of FpDist0.
Minimum weight bipartite matching can be done in O(k®) (< O(n®)) time?. There-
fore, we have f(k,n) < 2k- f(k —1,n) + O(n®). From this, we can show that f(k,n) is
O(2% - k! - n®) as follows:

flhon) <OM®) - [142k+2k-2(k — 1) +2k-2(k—1) - 2(k — 2) + - + 2" - &!]
<o) 142422+ 425K < O [2" K],

where we can assume that f(0,n) is O(n) because the tree isomorphism problem can
be solved in O(n) time®. Here, it should be noted that FpDist0 should be executed
k+1 (< O(n)) times for O(n?) pairs. Hence, the total time complexity is O(2" - k! - n°).
O

Now, we present our main algorithm which we call FpDist. This algorithm is almost
the same as the original F'pDist0 except that we inherit the sets Wi and W> of the
caller. By inheriting the sets W1 and Wa, we can reduce the number of iterations in
the while loops. The following is the pseudo code of FpDist0, where it is invoked as
FpDist(Ty, T, k,0,0).

Procedure FpDist(T1, T2, k, W1, Wa)
if £ < 0 then return FALSE;
if |[T1| =0 or |T2| = 0 then
if max(|T1|,|T2|) < k then return TRUE else return FALSE;

Vol.2010-AL-129 No.2
2010/3/5

if |T1| = |T2| = 1 then
if y(£(r(T1)),4(r(T2))) < k then return TRUE else return FALSE;
if T (xs) = T>(y;) for some xz; € chd(r(T1)), y; € chd(r(12)) then
return FpDist(Ty — Ti(z:), T — Ta(y;), k, W1, Wa); ()
while |W1| < k and |[W2| <k do
Let w be the node in chd(r1) U chd(rz) — W1 — Wa such that|T'(w)] is
the largest;
if such a node does not exist then (#1)
if |W1| # |W2| then return FALSE;
Compute the minimum weight bipartite matching between W7 and W»
where weight(u,v) = mindist(u,v);
if the minimum cost < k then return TRUE else return FALSE;
if w € chd(r(T1)) and FpDist(T1 — w, T2,k — 1, W1, W>) is TRUE

then return TRUE; (#2)
if w € chd(r(T2)) and FpDist(T1,T> — w,k — 1, W1, W>) is TRUE
then return TRUE; (#3)

if w € chd(r(T1)) then W1 — Wi U{w} else Wy — W2 U {w};
return FALSE;

Theorem3.4 FpDist(T1,T2,k) decides whether or not dist(Th,T2) < k holds in
0(2.62F - poly(n)) time.
Proof. We omit the proof of the correctness and analyze the time complexity only.

Let g(k,n,s) denote the time complexity of FpDist(T1, T2, k, W1, W2), where n =
max(|T1|,|T2|) and s = |Wi| + |[W2|. The total time complexity is given by g(k,n,0).
There exists a polynomial G(n) that satisfies g(k,n,s) < G(n) for s > 2k since the
algorithm does not execute the while loop in such a case. For the other cases, we have
the following inequality:

g(k,n,s) <glk—1,n,8)+glk—1,n,s+1)+---+g(k—1,n,2k) +T(n)

where T'(n) is another polynomial which satisfies T'(n) = O(n®). We can prove
g(k,n,2k —i) < Fiyo - G(n) + Fit1 - T(n), where F; is the i-th Fibonacci number,

by mathematical induction.

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

g9(k,n, 2k)
g(kv n, 2k — 1)

g(k—1,n,2k) + T'(n) < G(n) + T(n),

<
<glk—1,n,2k —1)+ g(k—1,n,2k) + T(n) < 2G(n) + T(n),

=0

< Zg(k —1,n,2k — §) + 2G(n) + T(n)

=2

=Y gl —1,n,2(k 1) = j) +2G(n) + T(n)

< i{Fjw -G(n) + Fjt1-T(n)} +2G(n) + T'(n)

= Fit2 - G(n) + Fig1-T(n).

The last equality comes from Z;ZO F; = Fi42 — 1. Hence the total time complexity is
g(k,n,0) = Fory2-G(n)+ Fart1-T(n) = O(2.62% - poly(n)) since Fay, < % . (%)2’c =
0(2.62%). o

4. Algorithms for Bounded Degree LCST

Though the edit distance problem is NP-hard for unordered trees, we can obtain an
exact solution in polynomial time if the maximum degree of the corresponding LCST
(i.e., LCST obtained from an optimal mapping) is bounded by a constant. In this sec-
tion, we first present a basic algorithm and then present improved algorithms, where
we only need to assume that the distance satisfies the conditions on a distance metric.

4.1 Basic Algorithm

The basic algorithm is quite simple and is based on a simple DP procedure. As
explained in Section 2, computation of the edit distance is equivalent to computation
of the LCST. Therefore, we focus on computation of the LCST in this section. For
z € V(T1) and y € V(T3), let Sp(z,y) be the size of LCST between T1(z) and T2 (y)
under the condition that the maximum outdegree (i.e., maximum deg(v)) of LCST is

at most D. For the simplicity, we begin with the case of D = 2. The following is a DP

Vol.2010-AL-129 No.2

2010/3/5
procedure of the algorithm.
f(w7y)7 —(*1)
ma‘le,(L‘QEdES(Z),yl,yzEdES(y>{SQ ($1, yl) + SQ($2, y2) + f(ZL‘, y)}7
— (%2
Sa(z,y) = max (x2)
maxy, Edes(z),yledes(z){SQ ($1, yl) + f($, y)}7 _(*3)
maxy, edes(y) Sa(z, 1), —(*4)
maXy, cdes(z) S2(wlay)7 _(*5)

where 1 ¢ des(z2) U {x2}, z2 ¢ des(z1) U {z1}, y1 ¢ des(y2) U {y2} and y2 ¢
des(y1) U {y1} must hold. It is to be noted that the maximum degree of T1 and T»
need not be bounded. Let BdDists denote the above DP algorithm. Then, we have
the following theorem.

Theorem4.1 BdDists computes the edit distance in O(n®) time if the maximum
outdegree of the corresponding largest common subtree is at most 2.

Proof. We consider an optimal mapping M between T4 (z) and T2(y). Then, either one
of the following must hold:

(i) =« corresponds to vy,

(ii) =z corresponds to a descendant of y,

(iii) y corresponds to a descendant of x.

It is to be noted that either = or y must appear in M. Otherwise, we can increase or
keep the score of LCST by adding (z,y) to M since f(x,y) > 0 holds for any pair of
nodes (z,y).

If z and y are leaves, LCST is clearly computed by (*1) and the other parts are not
executed. Otherwise, cases (ii) and (iii) are covered by (*4) and (*5), respectively. For
case (i), there are two possibilities:

e the root of LCST(T1(x),T>(y)) has two children,

e the root of LCST(T1(x),T2(y)) has only one child.

Then, the former case is covered by (*2) and the latter case is covered by (*3). There-
fore, BdDisto correctly computes LCST if D = 2.
Next, we analyze the time complexity. Clearly, Sa(x,%y) must be computed for O(n?)

pairs. For each pair, O(n*) combinations of four children are examined in (*2), where

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

O(1) time is enough per combination. Since (*2) is the most time consuming part, the
total time complexity is O(n?) x O(n?) = O(n®). O]

We can easily extend BdDists for arbitrary fixed D. The following is the DP algo-
rithm, which is denoted by BdDistp.

Sp(z,y) =

max
a maxyledes(y) SD(w7yl)7

maXg, edes(x) SD ($1, y)7

where z; ¢ des(z;) U{z;} and y; ¢ des(y;) U {y;} must be satisfied for any i # j.
Clearly, we have:

Corollary4.2 BdDistp computes the edit distance between two unordered trees in
O(n?*2P) time if the maximum outdegree of the corresponding largest common subtree
is at most D, where D is a constant.

4.2 Improvements

Though BdDistp works in polynomial time, it is not practical because the time com-
plexity is O(n®) even for D = 2. For the case of D = 2, we can develop an improved
algorithm that works in O(n?) time.

Theorem4.3 The edit distance between two unordered trees can be computed in
O(n2) time if the maximum outdegree of the corresponding largest common subtrees is
at most 2.

It is very unclear whether or not this result can be extended for the cases of D > 2.
Therefore, it is worthy to try to develop a simple and improved algorithm based on
another idea. Here, we present an algorithm (called LcaBdDistp) using the lowest
common ancestor, which works in O(n*”) time for a fixed D. The following proposi-
tion directly follows from the definition of tree edit distance mapping.

Proposition4.4 If (z1,y1), (z2,y2),...,(xh,yn) are the children of (z,y) in the
LCST, z and y are common ancestors of x1,z2,...,x, and y1,y2, . - ., Yn, respectively.

Based on this proposition, we can compute Sp(z,y) by using the following procedure,
where LC A(z) is defined as p(z).

Vol.2010-AL-129 No.2
2010/3/5

Procedure LecaBdDistp(Th,T>2)
for all (z,y) € V(T1) x V(T2) do Sp(z,y) — f(z,y);
for all h € {1,...,D} do
for all z1,...,zp such that z; ¢ des(x;) U {z;} holds for all i # j do
Zq — LCA(z1,...,2p);
for all y1,...,yn such that y; ¢ des(y;) U {y;} holds for all ¢ # j do
Yo +— LCA(y1,...,yn);
for all (z,y) such that z € anc(za) U{z.} and y € anc(ya.) U {y} do
Sp(x,y) «— max{Sp(z,y),Sp(x1,y1) + - -+ Sp(xn,yn) + f(z,y)};

In the above, the ordering of combinations is not specified. But, it must be ordered
so that Sp(xs,y:) is used only after its final value is determined. For that purpose, it
is enough to partially sort the combinations by using the post ordering of their LCAs.

Though this algorithm still needs O(n?*”*?) time, we can reduce O(n?) factor. For
that purpose, we use an additional DP table S5~ (x,y) which stores the score of LCST
between T1(x) and T>(y) under the condition that x corresponds to y but f(z,y) is not
counted in S5 (z,y). This means that = or y can be mapped to another node in later

updates. The following is a pseudocode for the improved algorithm using S, (z, y).

Procedure LeaBdDist2p(Th,T»)
for all (z,y) € V(T1) x V(I2) do Sp(z,y) < f(z,y); Sp~ (z,y) < 0;
for all h € {1,...,D} do
for all z1,...,z), such that z; ¢ des(x;) U {z;} holds for all 7 # j do
o — LCA(z1,...,2p);
for all y1,...,yn such that y; ¢ des(y;) U {y;} holds for all i # j do
Ya — LCA(y1, ..., yn);
if h =1 then
for all z € anc(zq) U{z.} and y € anc(ya) U {ya} do
Sp(z,y) — max{Sp(z,y), S~ (za; ya) + (2, 9)};
for all x € anc(z,) and y € anc(ya) do
Sp(x,y) «+ max{Sp(z,y), Sp(Ta,ya) + f(2,9)};
else S, (z,y) «— max{S;™ (z,y), Sp(z1,y1) + - -+ Sp(zn,yn) + f(zs, ys)};

© 2010 Information Processing Society of Japan

ooooooooog
IPSJ SIG Technical Report

It is to be noted that the case of h = 1 (i.e., (z1,y1)) must be examined after all
the cases of h > 2 such that (z4,y.) = (z1,y1) are examined. It is straight-forward to
arrange the combinations in such a way.

The correctness of the improved algorithm directly follows from the definitions of
Sp(z,y) and S;~ (x,y). It is also straight-forward to see that the time complexity is
O(n?P) since examination of O(n?) ancestor pairs are avoided in the improved algo-
rithm.

Theorem4.5 LcaBdDist2p computes the edit distance between two unordered
trees in O(n2D) time if the maximum outdegree of the corresponding largest common

subtrees is at most D, where D is a constant such that D > 2.
5. Concluding Remarks

We have presented an O(2.62" - poly(n)) time algorithm and an O(n*”) time algo-
rithm for the edit distance problem for unordered trees, where k is the maximum bound
of the edit distance and D is the maximum degree of the largest common subtree. For
the former algorithm, improvement of exponential factor is left as an open problem.
However, the factor of 2.62% is not large for moderate values of k. Therefore, it might
be possible to develop a practical algorithm for comparing similar unordered trees based
on this algorithm along with existing heuristics®. Such a development is left as future
work. For the latter algorithm, it is unclear whether we can develop a fixed-parameter
algorithm when D is regarded as a parameter. Therefore, deciding the complexity on

D is left as an open problem.

References

1) Bille, P.: A survey on tree edit distance and related problem, Theoretical Computer
Science, Vol.337, pp.217-239 (2005).

2) Cormen, T.H., Leiserson, C.E., Rivest, R. and Stein, C.: Introduction to Algo-
rithms, second ed., The MIT Press (2001).

3) Demaine, E., Mozes, S., Rossman, B. and Weimann, O.: An optimal decomposition
algorithm for tree edit distance, Proc. 34/th International Colloguium on Automata,
Languages and Programming, LNCS, Vol.4596, pp.146-157 (2007).

4) Dinitz, Y., Itai, A. and Rodeh, M.: On an algorithm of Zemlyachenko for subtree

Vol.2010-AL-129 No.2
2010/3/5

isomorphism, Information Processing Letters, Vol.70, pp.141-146 (1999).

5) Downey, R.G. and Fellows, M.R.: Parameterized Complezity, Springer (1999).

6) Flum, J. and Grohe, M.: Parameterized Complezity, Springer (2006).

7) Halldérsson, M.M. and Tanaka, K.: Approximation and special cases of common
subtrees and editing distance, Proc. 7th International Symposium on Algorithms
and Computation, LNCS, Vol.1178, pp.75-84 (1996).

8) Horesh, T., Mehr, R. and Unger, R.: Designing an A* algorithm for calculating
edit distance between rooted-unordered trees, Journal of Computational Biology,
Vol.13, pp.1165-1176 (2006).

9) Kilpeldinen, P. and Mannila, H.: Ordered and unordered tree inclusion, SIAM
Journal on Computing, Vol.24, pp.340-356 (1995).

10) Shasha, D., Wang, J.T-L., Zhang, K. and Shih, F.Y.: Exact and approximate al-
gorithms for unordered tree matching, IEEE Transactions on Systems, Man, and
Cybernetics, Vol.24, pp.668-678 (1994).

11) Tai, K-C.: The tree-to-tree correction problem, Journal of ACM, Vol.26, pp.422—
433 (1979).

12) Zhang, K., Statman, R. and Shasha, D.: On the editing distance between unordered
labeled trees, Information Processing Letters, Vol.42, pp.133-139 (1992).

13) Zhang, K. and Jiang, T.: Some MAX SNP-hard results concerning unordered la-
beled trees, Information Processing Letters, Vol.49, pp.249-254 (1994).

14) Zhang, K.: A constrained edit distance between unordered labeled trees, Algorith-
mica, Vol.15 pp.205-222 (1996).

© 2010 Information Processing Society of Japan

