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無順序木の編集距離計算のための厳密アルゴリズム

阿久津 達也†1 深 川 大 路†2

高 須 淳 宏†2 田 村 武 幸†1

本稿では無順序木の編集距離を計算するためのいくつかのアルゴリズムを示す．一
つは，各編集操作に単位コストが割り当てられる場合の固定パラメータ・アルゴリズ
ムである．そして最大の編集距離 k を固定パラメータとし，大きい方の入力木のサイ
ズを n とする時，このアルゴリズムの時間計算量が O(2.62k · poly(n)) となること
を示す．もう一つは，最大共通部分木の最大出次数が定数で抑えられた場合について
の多項式時間アルゴリズムであり，出次数（子の個数）の最大値を D とした場合に
O(n2D) 時間で動作することを示す．
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This article (non-reviewed technical report) presents a fixed-parameter algo-
rithm for the tree edit distance problem for unordered trees under the unit cost
model that works in O(2.62k ·poly(n)) time where the parameter k is the maxi-
mum bound of the edit distance and n is the maximum size of input trees. This
article also presents a polynomial time algorithm for the case where the maxi-
mum outdegree of the largest common subtree is bounded by a constant. When
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1. Introduction

Tree pattern matching plays an important role in such application areas as computa-

tional biology, XML databases and image analysis1),10). Though various measures have

been proposed for computing the similarity between trees, the edit distance between

rooted trees has been well-studied.

For the tree edit distance problem for ordered trees, Tai developed an O(n6) time

algorithm11), from which several improvements followed. Recently, Demaine et al. de-

veloped an O(n3) time algorithm and showed that this bound is optimal under some

computation strategy3).

However, in some applications, it is preferable to regard input trees as unordered

trees. At least, in many applications, more flexible matching can be made possible if

input trees are regarded as unordered trees. Unfortunately, Zhang et al. proved that the

tree edit distance problem for unordered trees is NP-hard12). Furthermore, Zhang and

Jiang proved that it is MAX SNP-hard13), which means that there exists no polynomial

time approximation scheme unless P=NP.

Some optimal algorithms were proposed for restricted cases7),10),14). Shasha et al.

developed a fixed-parameter algorithm when the parameter is the number of leaves10).

Halldórsson and Tanaka developed a polynomial time algorithm for the case of bounded

number of branching nodes7). Zhang developed a polynomial time algorithm under re-

stricted editing operations14). For a related tree inclusion problem, Kilpeläinen and

Mannila showed that it is solved in polynomial time if the maximum degree is bounded

by a constant9). However, the above cases do not cover all important cases and thus it

is worthy to develop polynomial time algorithms for other cases.

In this article, we present a fixed-parameter algorithm that works in O(2.62k ·poly(n))

time where the parameter k is the edit distance and n is the maximum size of input

trees. We also present polynomial time algorithms for the case in which the maximum

degree of the largest common subtree (based on editing operations) is bounded by a

constant. Due to space limitation, some of the proofs are omitted in this article.
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2. Preliminaries

We briefly review the definitions of tree edit distance, edit distance mapping and

largest common subtree (see also Fig. 1) for rooted, labeled and unordered trees1),12),13).

Let T be a rooted unordered tree where each node v has a label �(v) over an alphabet

Σ. r(T ) and V (T ) denote the root of T and the set of nodes in T , respectively. For a

node v ∈ V (T ), T − v denotes the tree obtained by deleting v from T , p(v) denotes the

parent of v, chd(v) denotes the set of children of v, deg(v) denotes the outdegree of v,

anc(v) denotes the set of ancestors of v, des(v) denotes the set of descendants of v. It

should be noted that deg(v) = |chd(v)| holds.

T (v) denotes the subtree induced by v and its descendants. For a subtree T ′ of T ,

T − T ′ denotes the tree obtained by deleting all nodes in T ′ from T . The depth of a

node v is the length of the path from the root to v and is denoted by depth(v). For a

set of nodes {v1, v2, . . . , vh} ⊆ V (T ), LCA({v1, v2, . . . , vh}) denotes the lowest common

ancestor of v1, v2, . . . , vh. If T1 and T2 are isomorphic including label information, we

write T1 ≈ T2. In the analysis of algorithms, n denotes max{|V (T1)|, |V (T2)|}.
An edit operation on a tree T is either a deletion, an insertion, or a substitution,

where each operation is defined as follows (see also Fig. 1):

Deletion: Delete a non-root node v in T with parent u, making the children of v

become children of u. The children are inserted in the place of v into the set of the

children of u.

Insertion: Inverse of delete. Insert a node v as a child of u in T , making v the parent

of some of the children of u.

Substitution: Change the label of a node v in T .

We assign a cost for each editing operation: γ(a, b) denotes the cost of substituting a

node with label a to label b, γ(a, ε) denotes the cost of deleting a node labeled with a,

and γ(ε, a) denotes the cost of inserting a node labeled with a.

The edit distance between two unordered trees T1 and T2 is defined as the cost of

the minimum cost sequence of editing operations that transforms T1 to T2. We use

dist(T1, T2) to denote the edit distance between T1 and T2. In this article, we adopt

the following standard assumption so that dist(T1, T2) becomes a distance metric1),12):
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Fig.1 Example of tree edit operation, mapping, and largest common subtree under the unit cost

model. T2 is obtained from T1 by deletion of node (labeled with) e, insertion of node k and

substitution of node f. The corresponding mapping M is shown by broken curves. The largest

common subtree is shown in the right-hand side, where the labels of the original nodes are

shown in place of the original node pairs. The node labeled (f,g) is not included in the usual

largest common subtree13).

γ(a, b) ≥ 0 for any (a, b) ∈ Σ′ × Σ′, γ(a, a) = 0 for any a ∈ Σ′, γ(a, b) = γ(b, a) for

any (a, b) ∈ Σ′ × Σ′, γ(a, c) ≤ γ(a, b) + γ(b, c) for any a, b, c ∈ Σ′ × Σ′ × Σ′, where

Σ′ = Σ ∪ {ε}. We call T2 a subtree of T1 if T2 is obtained from T1 only by deletion

operations�1.

It is known that there exists a close relationship between the edit distance and the

edit distance mapping (or just mapping)1),12). M ⊆ V (T1)× V (T2) is called a mapping

if the following conditions are satisfied for any two pairs (v1, w1), (v2, w2) ∈M : v1 = v2

iff w1 = w2, v1 is an ancestor of v2 iff w1 is an ancestor of w2. Let I1 and I2 be the sets

of nodes in V (T1) and V (T2) not appearing in M , respectively. Then, it is known1),12)

that the following relation holds:

dist(T1, T2) = min
M

⎧⎨
⎩

∑
v∈I1

γ(�(v), ε) +
∑
v∈I2

γ(ε, �(v)) +
∑

(u,v)∈M

γ(�(u), �(v))

⎫⎬
⎭ .

Here we define a score function f(u, v) for (u, v) ∈ V (T1)× V (T2) by

�1 We also use the subtree for denoting a subgraph of a tree. However, the meaning of the subtree

is clear from the context and thus there is no confusion.
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f(u, v) = γ(�(u), ε) + γ(ε, �(v))− γ(�(u), �(v)).

It is seen that f(u, v) = f(v, u) ≥ 0 holds. It should also be noted that under the

unit cost model (i.e., γ(a, b) = 1 for all �(a) �= �(b)), f(v, v) = 2 and f(u, v) = 1

hold for �(u) �= �(v). Let score(M) be the score of a mapping M defined by

score(M) =
∑

(u,v)∈M
f(u, v). Let MOP T be the mapping with the maximum score.

Then, we can see from the definition that the following property holds:

dist(T1, T2) =
∑

u∈V (T1)

γ(�(u), ε) +
∑

v∈V (T2)

γ(ε, �(v))− score(MOP T ).

If M consists of pairs of identical labels, the subtree obtained by deleting nodes not

appearing in M from T1 is isomorphic to the subtree obtained by deleting nodes not

appearing in M from T2. Such a tree is called a common subtree between T1 and T2. In

this article, a subtree of T1 (or T2) induced by the nodes appearing in M is also called

a common subtree even if M contains some pairs of non-identical labels. The largest

common subtree (LCST, in short) is defined as the common subtree with the maximum

score.

Though the edit distance problem for unordered trees is NP-hard, it can be solved (in

exponential time) using a dynamic programming (DP) algorithm1),7). For a forest (i.e.,

a set of unordered trees) F , roots(F ) denotes a set of the roots of trees in F . We define

δ(F1, F2) between two unordered forests F1 and F2 by the following DP procedure:

δ(F1, ε) =
∑

u∈V (F1)

γ(�(u), ε),

δ(ε, F2) =
∑

v∈V (F2)

γ(ε, �(v)),

δ(F1, F2) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minu∈roots(F1) {δ(F1 − u, F2) + γ(�(u), ε)} ,

minv∈roots(F2) {δ(F1, F2 − v) + γ(ε, �(v))} ,

min(u,v)∈roots(F1)×roots(F2) {δ(F1 − T1(u), F2 − T2(v))

+δ(T1(u)− u, T2(v)− v) + γ(�(u), �(v))} .

Then, it is seen that dist(T1, T2) = δ(T1, T2) holds from 1)，7).

3. Fixed-Parameter Algorithm

In this section, we present an O(2.62k · poly(n)) time algorithm for the tree edit dis-

tance problem between two unordered trees, where the parameter is the edit distance.

Though we consider the unit cost model here for simplicity, the algorithm can be ex-

tended for a more general case in which costs of edit operations are integers. For details

of fixed-parameter algorithms, refer to 5)，6).

The following lemmas (proofs omitted) are important for developing the fixed param-

eter algorithm.

Lemma3.1 (See also Fig. 2) Let r1 and r2 be the roots of T1 and T2 respectively.

Suppose that for any pair (u, v) ∈ chd(r1)× chd(r2), dist(T1(u), T2(v)) ≥ 1 holds. Sup-

pose that u is an arbitrary child of r1 or r2 such that |T (u)| is the largest, where we

assume w.l.o.g. that u ∈ chd(r1). Then, one of the following holds, where M is the

optimal edit distance mapping:

• u does not appear in M ,

• (u, v) ∈M for some child v of r2, where dist(T1(u), T2(v)) ≥ 1,

• (u, v) ∈M for some descendant v of some child of r2, where dist(T1(u), T2(v)) ≥ 1.

Lemma3.2 Let x1, . . . , xl1 and y1, . . . , yl2 be children of r(T1) and r(T2), respec-

tively. If T1(xi) ≈ T2(yj) holds, dist(T1, T2) = dist(T1 − T1(xi), T2 − T2(yj)) holds.

Before presenting an O(2.62k · poly(n)) time algorithm, we begin with an O(2k ·
k! · poly(n)) time algorithm because it is easier to understand. The following is a

pseudocode of this simpler algorithm, where it works in a recursive manner and de-

cides whether or not dist(T1, T2) ≤ k holds for given trees T1 and T2. In the pro-

cedure, we let mindist(u, v) = argminh{FpDist0(T1(u), T2(v), h) = TRUE}, where

mindist(u, v) = ∞ if FpDist0(T1(u), T2(v), h) = FALSE for all h. We can assume

that this value can be computed before computation of FpDist0(T1, T2, k) by execu-

tion of FpDist0(T1(u), T2(v), h) for h = 0, . . . , k for all (u, v) ∈ des(r(T1))× des(r(T2))

in a bottom up manner (i.e., results of FpDist0(T1(u), T2(v), h) are stored in a DP

table). We can also assume �(r(T1)) = �(r(T2)). Otherwise, it is enough to execute

FpDist0(T1, T2, k − 1) instead of FpDist0(T1, T2, k).
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Procedure FpDist0(T1, T2, k)

if k < 0 then return FALSE;

if |T1| = 0 or |T2| = 0 then

if max(|T1|, |T2|) ≤ k then return TRUE else return FALSE;

if |T1| = |T2| = 1 then

if γ(�(r(T1)), �(r(T2))) ≤ k then return TRUE else return FALSE;

if T1(xi) ≈ T2(yj) for some xi ∈ chd(r(T1)), yj ∈ chd(r(T2)) then

return FpDist0(T1 − T1(xi), T2 − T2(yj), k);

W1 ← ∅; W2 ← ∅;
while |W1| ≤ k and |W2| ≤ k do

Let w be the node in chd(r1) ∪ chd(r2)−W1 −W2 such that |T (w)| is
the largest;

if such a node does not exist then (#1)

if |W1| �= |W2| then return FALSE;

Compute the minimum weight bipartite matching between W1 and W2

where weight(u, v) = mindist(u, v);

if the minimum cost ≤ k then return TRUE else return FALSE;

if w ∈ chd(r(T1)) and FpDist0(T1 − w, T2, k − 1) is TRUE

then return TRUE; (#2)

if w ∈ chd(r(T2)) and FpDist0(T1, T2 − w, k − 1) is TRUE

then return TRUE; (#3)

if w ∈ chd(r(T1)) then W1 ←W1 ∪ {w} else W2 ←W2 ∪ {w};
return FALSE;

Theorem3.3 FpDist0(T1, T2, k) decides whether or not dist(T1, T2) ≤ k holds in

O(2k · k! · poly(n)) time.

Proof. First, we show the correctness of the algorithm. If either |T1| = 0, |T2| = 0

or |T1| = |T2| = 1 holds, the algorithm obviously returns the correct value (TRUE or

FALSE). If T1(xi) ≈ T2(yj) holds, the correctness follows from induction on the total

size of trees and Lemma 3.2. Otherwise, dist(T1(xi), T2(yj)) ≥ 1 must hold for all pairs

(xi, yj).

T1

u

T2

u

T1 dist > 0

v

dist > 0
T2T1

u

v

Fig.2 Three cases considered in Lemma 3.1.

Suppose that part (#1) is executed. Then, all the children of r(T1) and r(T2) are

included in W1 ∪W2. Since deletion of any child should have been taken care by (#2)

and (#3), FALSE should be returned if |W1| �= |W2| holds. Otherwise, there must exist

a one-to-one mapping between chd(r(T1)) and chd(r(T2)). Then, dist(T1, T2) ≤ k holds

if and only if the weight of the minimum weight matching is at most k.

Suppose that some of the children of r(T1) or r(T2) is deleted in the optimal mapping,

then such a node should have been correctly taken care by (#2) or (#3).

Suppose that |W1| > k or |W2| > k holds. We can assume w.l.o.g. that |W1| > k

holds. Since we can assume that no node in W1 ∪W2 is deleted, each node u in W1

is mapped to some node in W2, or some child v of r(T2) or its descendant such that

v /∈ W2. If u is mapped to a node in W2, it contributes to the total distance by at least
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1 because all isomorphic pairs (T1(xi), T2(yj))s are removed beforehand. Otherwise,

|T1(u)| ≥ |T2(v)| holds and thus we can see from Lemma 3.1 that u contributes to the

total distance by at least 1. Thus, FALSE should be output in this case. This completes

the proof of the correctness of FpDist0(T1, T2, k).

Next, we analyze the time complexity. Let f(k, n) be the time complexity of

FpDist0(T1, T2, k), where n = max(|T1|, |T2|). If either |T1| = 0, |T2| = 0 or

|T1| = |T2| = 1 holds, FpDist0(T1, T2, k) takes O(1) time. T1(xi) ≈ T2(yj) can be

tested in O(1) time per pair if we pre-process T1 and T2 in linear time so that the

signature (with O(log n) bits) of each Ti(v) is computed4). Therefore, whether or not

such a pair exists can be tested in O(n2) time. Execution of the while loop can be done

in O(kn) time in total except minimum weight matching and recursive call of FpDist0.

Minimum weight bipartite matching can be done in O(k3) (≤ O(n3)) time2). There-

fore, we have f(k, n) ≤ 2k · f(k − 1, n) + O(n3). From this, we can show that f(k, n) is

O(2k · k! · n3) as follows:

f(k, n) ≤ O(n3) ·
[
1 + 2k + 2k · 2(k − 1) + 2k · 2(k − 1) · 2(k − 2) + · · ·+ 2k · k!

]
≤ O(n3) ·

[
(1 + 2 + 22 + · · ·+ 2k) · k!

]
≤ O(n3) ·

[
2k+1 · k!

]
,

where we can assume that f(0, n) is O(n) because the tree isomorphism problem can

be solved in O(n) time4). Here, it should be noted that FpDist0 should be executed

k +1 (≤ O(n)) times for O(n2) pairs. Hence, the total time complexity is O(2k ·k! ·n6).

�
Now, we present our main algorithm which we call FpDist. This algorithm is almost

the same as the original FpDist0 except that we inherit the sets W1 and W2 of the

caller. By inheriting the sets W1 and W2, we can reduce the number of iterations in

the while loops. The following is the pseudo code of FpDist0, where it is invoked as

FpDist(T1, T2, k, ∅, ∅).

Procedure FpDist(T1, T2, k, W1, W2)

if k < 0 then return FALSE;

if |T1| = 0 or |T2| = 0 then

if max(|T1|, |T2|) ≤ k then return TRUE else return FALSE;

if |T1| = |T2| = 1 then

if γ(�(r(T1)), �(r(T2))) ≤ k then return TRUE else return FALSE;

if T1(xi) ≈ T2(yj) for some xi ∈ chd(r(T1)), yj ∈ chd(r(T2)) then

return FpDist(T1 − T1(xi), T2 − T2(yj), k, W1, W2); (*)

while |W1| ≤ k and |W2| ≤ k do

Let w be the node in chd(r1) ∪ chd(r2)−W1 −W2 such that|T (w)| is
the largest;

if such a node does not exist then (#1)

if |W1| �= |W2| then return FALSE;

Compute the minimum weight bipartite matching between W1 and W2

where weight(u, v) = mindist(u, v);

if the minimum cost ≤ k then return TRUE else return FALSE;

if w ∈ chd(r(T1)) and FpDist(T1 − w, T2, k − 1,W1, W2) is TRUE

then return TRUE; (#2)

if w ∈ chd(r(T2)) and FpDist(T1, T2 − w, k − 1,W1, W2) is TRUE

then return TRUE; (#3)

if w ∈ chd(r(T1)) then W1 ← W1 ∪ {w} else W2 ←W2 ∪ {w};
return FALSE;

Theorem3.4 FpDist(T1, T2, k) decides whether or not dist(T1, T2) ≤ k holds in

O(2.62k · poly(n)) time.

Proof. We omit the proof of the correctness and analyze the time complexity only.

Let g(k, n, s) denote the time complexity of FpDist(T1, T2, k, W1, W2), where n =

max(|T1|, |T2|) and s = |W1| + |W2|. The total time complexity is given by g(k, n, 0).

There exists a polynomial G(n) that satisfies g(k, n, s) ≤ G(n) for s > 2k since the

algorithm does not execute the while loop in such a case. For the other cases, we have

the following inequality:

g(k, n, s) ≤ g(k − 1, n, s) + g(k − 1, n, s + 1) + · · ·+ g(k − 1, n, 2k) + T (n)

where T (n) is another polynomial which satisfies T (n) = O(n3). We can prove

g(k, n, 2k − i) ≤ Fi+2 · G(n) + Fi+1 · T (n), where Fi is the i-th Fibonacci number,

by mathematical induction.
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g(k, n, 2k) ≤ g(k − 1, n, 2k) + T (n) ≤ G(n) + T (n),

g(k, n, 2k − 1) ≤ g(k − 1, n, 2k − 1) + g(k − 1, n, 2k) + T (n) ≤ 2G(n) + T (n),

g(k, n, 2k − i) ≤
i∑

j=0

g(k − 1, n, 2k − j) + T (n)

≤
i∑

j=2

g(k − 1, n, 2k − j) + 2G(n) + T (n)

=

i−2∑
j=0

g(k − 1, n, 2(k − 1)− j) + 2G(n) + T (n)

≤
i−2∑
j=0

{Fj+2 ·G(n) + Fj+1 · T (n)}+ 2G(n) + T (n)

= Fi+2 ·G(n) + Fi+1 · T (n).

The last equality comes from
∑i

j=0
Fj = Fi+2 − 1. Hence the total time complexity is

g(k, n, 0) = F2k+2 ·G(n)+F2k+1 ·T (n) = O(2.62k ·poly(n)) since F2k ≤ 1√
5
·( 1+

√
5

2
)2k =

O(2.62k). �

4. Algorithms for Bounded Degree LCST

Though the edit distance problem is NP-hard for unordered trees, we can obtain an

exact solution in polynomial time if the maximum degree of the corresponding LCST

(i.e., LCST obtained from an optimal mapping) is bounded by a constant. In this sec-

tion, we first present a basic algorithm and then present improved algorithms, where

we only need to assume that the distance satisfies the conditions on a distance metric.

4.1 Basic Algorithm

The basic algorithm is quite simple and is based on a simple DP procedure. As

explained in Section 2, computation of the edit distance is equivalent to computation

of the LCST. Therefore, we focus on computation of the LCST in this section. For

x ∈ V (T1) and y ∈ V (T2), let SD(x, y) be the size of LCST between T1(x) and T2(y)

under the condition that the maximum outdegree (i.e., maximum deg(v)) of LCST is

at most D. For the simplicity, we begin with the case of D = 2. The following is a DP

procedure of the algorithm.

S2(x, y) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x, y), −(∗1)

maxx1,x2∈des(x),y1,y2∈des(y){S2(x1, y1) + S2(x2, y2) + f(x, y)},
−(∗2)

maxx1∈des(x),y1∈des(x){S2(x1, y1) + f(x, y)}, −(∗3)

maxy1∈des(y) S2(x, y1), −(∗4)

maxx1∈des(x) S2(x1, y), −(∗5)

where x1 /∈ des(x2) ∪ {x2}, x2 /∈ des(x1) ∪ {x1}, y1 /∈ des(y2) ∪ {y2} and y2 /∈
des(y1) ∪ {y1} must hold. It is to be noted that the maximum degree of T1 and T2

need not be bounded. Let BdDist2 denote the above DP algorithm. Then, we have

the following theorem.

Theorem4.1 BdDist2 computes the edit distance in O(n6) time if the maximum

outdegree of the corresponding largest common subtree is at most 2.

Proof. We consider an optimal mapping M between T1(x) and T2(y). Then, either one

of the following must hold:

(i) x corresponds to y,

(ii) x corresponds to a descendant of y,

(iii) y corresponds to a descendant of x.

It is to be noted that either x or y must appear in M . Otherwise, we can increase or

keep the score of LCST by adding (x, y) to M since f(x, y) ≥ 0 holds for any pair of

nodes (x, y).

If x and y are leaves, LCST is clearly computed by (*1) and the other parts are not

executed. Otherwise, cases (ii) and (iii) are covered by (*4) and (*5), respectively. For

case (i), there are two possibilities:

• the root of LCST (T1(x), T2(y)) has two children,

• the root of LCST (T1(x), T2(y)) has only one child.

Then, the former case is covered by (*2) and the latter case is covered by (*3). There-

fore, BdDist2 correctly computes LCST if D = 2.

Next, we analyze the time complexity. Clearly, S2(x, y) must be computed for O(n2)

pairs. For each pair, O(n4) combinations of four children are examined in (*2), where
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O(1) time is enough per combination. Since (*2) is the most time consuming part, the

total time complexity is O(n2)×O(n4) = O(n6). � �
We can easily extend BdDist2 for arbitrary fixed D. The following is the DP algo-

rithm, which is denoted by BdDistD.

SD(x, y) =

max

⎧⎪⎨
⎪⎩

maxh=0,...,D

{
maxx1,...,xh∈des(x),y1,...,yh∈des(y)

[(∑h

i=1
SD(xi, yi)

)
+ f(x, y)

]}
,

maxy1∈des(y) SD(x, y1),

maxx1∈des(x) SD(x1, y),

where xi /∈ des(xj) ∪ {xj} and yi /∈ des(yj) ∪ {yj} must be satisfied for any i �= j.

Clearly, we have:

Corollary4.2 BdDistD computes the edit distance between two unordered trees in

O(n2+2D) time if the maximum outdegree of the corresponding largest common subtree

is at most D, where D is a constant.

4.2 Improvements

Though BdDistD works in polynomial time, it is not practical because the time com-

plexity is O(n6) even for D = 2. For the case of D = 2, we can develop an improved

algorithm that works in O(n2) time.

Theorem4.3 The edit distance between two unordered trees can be computed in

O(n2) time if the maximum outdegree of the corresponding largest common subtrees is

at most 2.

It is very unclear whether or not this result can be extended for the cases of D > 2.

Therefore, it is worthy to try to develop a simple and improved algorithm based on

another idea. Here, we present an algorithm (called LcaBdDistD) using the lowest

common ancestor, which works in O(n2D) time for a fixed D. The following proposi-

tion directly follows from the definition of tree edit distance mapping.

Proposition4.4 If (x1, y1), (x2, y2), . . . , (xh, yh) are the children of (x, y) in the

LCST, x and y are common ancestors of x1, x2, . . . , xh and y1, y2, . . . , yh, respectively.

Based on this proposition, we can compute SD(x, y) by using the following procedure,

where LCA(x) is defined as p(x).

Procedure LcaBdDistD(T1, T2)

for all (x, y) ∈ V (T1)× V (T2) do SD(x, y)← f(x, y);

for all h ∈ {1, . . . , D} do

for all x1, . . . , xh such that xi /∈ des(xj) ∪ {xj} holds for all i �= j do

xa ← LCA(x1, . . . , xh);

for all y1, . . . , yh such that yi /∈ des(yj) ∪ {yj} holds for all i �= j do

ya ← LCA(y1, . . . , yh);

for all (x, y) such that x ∈ anc(xa) ∪ {xa} and y ∈ anc(ya) ∪ {ya} do

SD(x, y)← max{SD(x, y), SD(x1, y1) + · · ·+ SD(xh, yh) + f(x, y)};

In the above, the ordering of combinations is not specified. But, it must be ordered

so that SD(xi, yi) is used only after its final value is determined. For that purpose, it

is enough to partially sort the combinations by using the post ordering of their LCAs.

Though this algorithm still needs O(n2D+2) time, we can reduce O(n2) factor. For

that purpose, we use an additional DP table S−−
D (x, y) which stores the score of LCST

between T1(x) and T2(y) under the condition that x corresponds to y but f(x, y) is not

counted in S−−
D (x, y). This means that x or y can be mapped to another node in later

updates. The following is a pseudocode for the improved algorithm using S−−
D (x, y).

Procedure LcaBdDist2D(T1, T2)

for all (x, y) ∈ V (T1)× V (T2) do SD(x, y)← f(x, y); S−−
D (x, y)← 0;

for all h ∈ {1, . . . , D} do

for all x1, . . . , xh such that xi /∈ des(xj) ∪ {xj} holds for all i �= j do

xa ← LCA(x1, . . . , xh);

for all y1, . . . , yh such that yi /∈ des(yj) ∪ {yj} holds for all i �= j do

ya ← LCA(y1, . . . , yh);

if h = 1 then

for all x ∈ anc(xa) ∪ {xa} and y ∈ anc(ya) ∪ {ya} do

SD(x, y)← max{SD(x, y), S−−
D (xa, ya) + f(x, y)};

for all x ∈ anc(xa) and y ∈ anc(ya) do

SD(x, y)← max{SD(x, y), SD(xa, ya) + f(x, y)};
else S−−

D (x, y)← max{S−−
D (x, y), SD(x1, y1) + · · ·+ SD(xh, yh) + f(xb, yb)};
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It is to be noted that the case of h = 1 (i.e., (x1, y1)) must be examined after all

the cases of h ≥ 2 such that (xa, ya) = (x1, y1) are examined. It is straight-forward to

arrange the combinations in such a way.

The correctness of the improved algorithm directly follows from the definitions of

SD(x, y) and S−−
D (x, y). It is also straight-forward to see that the time complexity is

O(n2D) since examination of O(n2) ancestor pairs are avoided in the improved algo-

rithm.

Theorem4.5 LcaBdDist2D computes the edit distance between two unordered

trees in O(n2D) time if the maximum outdegree of the corresponding largest common

subtrees is at most D, where D is a constant such that D ≥ 2.

5. Concluding Remarks

We have presented an O(2.62k · poly(n)) time algorithm and an O(n2D) time algo-

rithm for the edit distance problem for unordered trees, where k is the maximum bound

of the edit distance and D is the maximum degree of the largest common subtree. For

the former algorithm, improvement of exponential factor is left as an open problem.

However, the factor of 2.62k is not large for moderate values of k. Therefore, it might

be possible to develop a practical algorithm for comparing similar unordered trees based

on this algorithm along with existing heuristics8). Such a development is left as future

work. For the latter algorithm, it is unclear whether we can develop a fixed-parameter

algorithm when D is regarded as a parameter. Therefore, deciding the complexity on

D is left as an open problem.
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