
IPSJ SIG Technical Report

A self-stabilizing distributed algorithm for

the multicoloring problem in dynamic networks

Hirotsugu Kakugawa †1 and Yukiko Yamauchi †2

The problem of channel (frequency) assignment is an important problem in
wireless networks such as cellular networks and wireless LANs. In this paper,
we consider a problem of multiple channel assignment to each node in a wireless
network, and we formalize this problem as the multicoloring problem of a graph;
each node is assigned a set of colors and no two neighbor nodes share the same
color. We propose a self-stabilizing distributed algorithm for the multicoloring
problem. By the self-stabilizing property, our algorithm is adaptive to topology
changes, it tolerates any kind and any finite number of transient faults, and
it does not require global reset to recompute multicoloring. Additionally, our
algorithm has several desirable properties for dynamic distributed systems.

1. Introduction

The problem of channel (frequency) assignment is an important problem in
wireless networks such as cellular networks and wireless LANs. In this paper, we
consider a problem of multiple channel assignment to each node or access point
in a wireless network. We formalize this problem as the multicoloring problem of
a graph in such a way that a node is an access point, an edge is an interference
relation between a pair of access points, and a set of colors assigned to each node
corresponds to a set of channels (frequencies) assigned to each access point. This
problem is a generalization of the coloring problem that is a formulation of the
(single) channel assignment problem.

Autonomous distributed channel assignment is an crucial issue in wireless net-
works, especially, wireless LANs and wireless mesh networks. Recently, such wire-
less networks are getting popular, and many access points (APs) are deployed

†1 Graduate School of Information Science and Technology, Osaka University, Japan
†2 Graduate School of Information Science, Nara Institute of Science and Technology, Japan

densely without coordination. Although channel assignment can be optimized
and managed within an organization, neighboring organizations are not always
cooperative, and as a result, a channel conflict problem arises. A centralized
algorithm for channel assignment requires a computing resource for the compu-
tation of combinatorial optimization and it is difficult to make each organization
to cooperate with neighboring organizations. Hence, a desired approach to solve
this problem is to let each AP select channels autonomously in a distributed
manner. In this paper, we propose an autonomous distributed algorithm for this
problem based on a theoretical framework called self-stabilization.

The concept of self-stabilization is proposed by Dijkstra1) as one of theoretical
basises of autonomous fault-tolerant distributed algorithm. Starting from arbi-
trarily initial system state (global state of a distributed system), a self-stabilizing
distributed algorithm autonomously recovers to correct system state. Here, “ar-
bitrary” initial system state means that the initial state of each node can be
completely at random. Hence, a self-stabilizing distributed algorithm has the
following three important properties.
• It tolerates any kind and any number of transient faults. By transient fault,

we mean a soft error such as message loss, message corruption, and memory
corruption. The system state becomes arbitrary by transient faults, however,
self-stabilization guarantees recovery from such arbitrary system state.

• It is adaptive to changes of network topology such as deployment and re-
moval of nodes, and connection and disconnection of communication links.
Although such events lead a distributed system to an incorrect system state,
self-stabilization guarantees that the system state reaches a correct one for
new topology.

• It does not require synchronized initialization of nodes. Although a non-self-
stabilizing distributed algorithm requires that all the nodes must be initial-
ized in a synchronized manner when it is started, a self-stabilizing algorithm
does not require any initialization; this is because it can start from arbitrary
initial system state.

1.1 Related works
Since the problem of assignment of single channel for each access point is for-

malized by the problem of node coloring of a graph, there are many literature in

1 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

IPSJ SIG Technical Report

various problem settings.
In 2)–5), self-stabilizing algorithms for the (single-)coloring problem are pro-

posed. To the best knowledge of authors, there is no literature that proposes
a self-stabilizing distributed algorithm for the multicoloring problem. The al-
gorithm proposed in 2) works on planer graphs and uses with six colors. The
algorithm proposed in 3) works on bipartite graphs. The algorithm proposed in
4) works in arbitrary graph topology, uses ∆ + 1 colors, where ∆ is the maxi-
mum degree of a node in the graph, and convergence time is O(n∆), where n

is the number of nodes. The algorithm proposed in 5) works in arbitrary graph
topology, uses ∆ + 1 colors, and convergence time is linear to n.

Although the original definition of self-stabilization guarantees convergence
(i.e., recovery) to a correct system state from arbitrary initial system state caused
by any scale of faults, it does not guarantee any property (1) until convergence
is finished, and (2) even if small topology change occurs when the system state
is correct, for example. To enhance the property of self-stabilization in such
dynamic networks, following extensions are proposed in the literature: supersta-
bilization6), output stability7),8), and safe convergence9).

1.2 Contribution of this paper
In this paper, we propose a self-stabilizing distributed algorithm for the multi-

coloring problem with superstabilization, output stability, and safe convergence
properties. To the best of our knowledge, this is the first one. Our algorithm
adopts a high-level computational model and many technical details required for
implementation are not considered. However, our algorithm gives a theoretical
basis of autonomy of distributed algorithms for multichannel assignment.

1.3 Organization of this paper
In section 2, definition of self-stabilization and problem statement are given.

In section 3, we propose a self-stabilizing multicoloring algorithm. Proofs are
omitted due to space limitation, and they will be found in the full version. In
section 4, we discuss the number of available colors for self-stabilizing algorithms
based on local-greedy strategy. Then, we discuss the behavior of the proposed
algorithm when the number of colors is small. In section 5, we show that mul-
ticoloring property is maintained by dynamic change of network, and we show
superstabilization, output stability, and safe convergence of the proposed algo-

rithm. In section 6, we give concluding remarks.

2. Definitions

Let V be a set of processes and E be a set of bidirectional links of a distributed
system. Then, a network topology of a distributed system is represented by a
graph G(V,E). We assume that each process Pi ∈ V is given a set of neighboring
process Ni = {Pj ∈ V : (Pi, Pj) ∈ E}, and each Pi can communicate each
Pj ∈ Ni. Let the degree of Pi denoted by δi be |Ni|, and the maximum degree
denoted by ∆ be maxPi∈V δi.

2.1 Self-stabilization
Each process Pi maintains a set of local variables. Let qi be a local state (a

tuple of all local variables) of process Pi. A tuple (q1, q2, . . . , qn) of local states of
all the processes, where n = |V |, is a configuration (global state) of a distributed
system. Let Γ be the set of all configurations.

An algorithm at each process Pi is given as a finite set of guarded commands
in the following form:

Grd1 → Act1; Grd2 → Act2; · · · GrdL → ActL;
Each Grd` (` = 1, 2, ..., L) is called a guard and it is a predicate on Pi’s local
state and local states of its neighboring processes. For communication model, we
assume that each process can read local states of neighbors, which is called the
state-reading model. Although a process can read local states of neighbors, it can
update its local state only. We say that Pi is enabled in configuration γ ∈ Γ if
and only if at least one guard of Pi is true in γ. If Pi is not enabled, we say that
Pi is disabled. Each Actk is called action or move which updates the local state
of Pi, and the next local state is computed from the current local state of Pi and
those of its neighboring processes.

For local computation, we assume the composite atomicity model: a scheduler
selects an enabled process and let it execute one of the corresponding action in
an atomic step. This type of execution scheduler is known as the central daemon.

For any configuration γ, let γ′ be a configuration that follows γ by selecting
a process. Then, we denote by γ → γ′ the transition relation between config-
urations. We denote by γ

∗→ γ′ if and only if γ0(= γ) → γ1, γ1 → γ2, . . . ,
γl−1 → γl(= γ′) for some l ≥ 0. We say γ′ is reachable from γ if and only if

2 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

IPSJ SIG Technical Report

γ
∗→ γ′ holds.
A computation starting from configuration γ0 is a (possibly infinite) sequence

of configuration E = γ0, γ1, γ2, . . . such that γt+1 is the next configuration of γt,
i.e., γt → γt+1 for each t ≥ 0. A computation terminates if there is no enabled
process. Otherwise, a computation is infinite. Note that there may be more than
one process to be selected in each configuration because there may be more than
one enabled processes. Hence, huge number of computations are possible because
of the choice of process by the central daemon.

Definition 1 (Self-stabilization1)) An algorithm is self-stabilizing with re-
spect to Λ ⊆ Γ if and only if the following two conditions hold.
• Convergence. Starting from any initial configuration γ ∈ Γ, computation

eventually reaches a configuration in Λ.
• Closure. Starting from any initial configuration γ ∈ Λ, any configuration

reachable from γ is in Λ.
Each γ ∈ Λ is called a legitimate configuration. 2

We assume that the central daemon is unfair, i.e., there is no fairness in selec-
tion of processes for execution, and the central daemon selects an enabled process
for execution arbitrarily in order to prevent convergence. Hence, an algorithm
must guarantee convergence for any (malicious) scheduling.

2.2 Problem statement
The number of request of colors at each process is represented by a function

w. Let wmax = maxPi∈V w(Pi). Let C be a set of colors, and we assume that
|C| ≥ (∆ + 1)wmax holds. (Later, we consider a case |C| < (∆ + 1)wmax.)

Definition 2 (Multicoloring10)) For a network G(V,E) and a set of colors
C, a function f , which assigns to each Pi ∈ V a subset of colors f(Pi) ⊆ C, is a
multicoloring if and only if ∀(Pi, Pj) ∈ E : f(Pi) ∩ f(Pj) = ∅. 2

Definition 3 (Proper multicoloring10)) For a vertex weighted network
G(V,E,w) and a set of colors C, a function f , which assigns to each Pi ∈ V

a subset f(Pi) ⊆ C, is a proper multicoloring if and only if
• f is multicoloring, and
• ∀Pi ∈ V : |f(Pi)| = w(Pi). 2

Definition 4 (The distributed proper multicoloring problem) For a ver-

tex weighted network G(V,E,w) and a set of colors C, the distributed proper
multicoloring problem is a problem such that
• Each Pi ∈ V maintains a local variable fi(⊆ C),
• Each Pi ∈ V computes a multicolor assignment in fi, and
• Collection of fi is a proper multicoloring, that is, the function f , where

f(Pi) = fi for each Pi ∈ V , is a proper multicoloring for G(V,E,w) and C.
2

2.3 Extensions of self-stabilization for dynamic networks
Self-stabilization does not guarantee safety and stability of a system during

convergence after transient faults and topology changes. Superstabilization6),
output stability7),8), and safe convergence9) are extensions of self-stabilization to
enhance safety and stability in dynamic networks.

2.3.1 Superstabilization
Superstabilization6) is one of the extensions of self-stabilization for dynamic

networks. It guarantees some property of the output of a system immediately
after a fault or a topology change that occurs in a legitimate configuration. In
6), the concept of superstabilization is explained as this: an algorithm is super-
stabilizing if the following two conditions are satisfied. (1) It is self-stabilizing.
(2) When it is started in a legitimate configuration and a topology change occurs,
the passage predicate holds and continues to hold until the computation reaches a
legitimate state. Here, a passage predicate is a global safety predicate for outputs
of processes that a system maintains during convergence after a topology change
in a legitimate configuration.

An interrupt statement is given in an algorithm description. When a topology
change event occurs, the interrupt statement is atomically invoked with the event
at a process on which the event is incident. Although the interrupt statement
is executed locally by a process that detects a topology change event, a passage
predicate is globally maintained.

2.3.2 Output stability
Output stable7),8) self-stabilization is one of the extensions of self-stabilization

for dynamic networks in such a way that the number of output changes is limited,
which contributes to stability of input of protocols in upper layers and stability
of output for users. A self-stabilizing algorithm is output stable7),8) if and only if

3 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

IPSJ SIG Technical Report

the number of changes of output variables of processes to stabilize again depends
on the number of topology changes and processes hit by transient faults that
occur in a legitimate configuration.

For output stability, the following performance measures are used. Locally tem-
poral instability is the maximum (worst) number of times a process changes the
value of its output variables after an external event until the system reaches a
legitimate configuration. Temporal instability is the maximum (worst) number
of times processes change the value of its output variables after an external event
until the system reaches a legitimate configuration. Spatial instability is the max-
imum (worst) number of processes that changes the value of their output variables
after an external event until the system reaches a legitimate configuration.

2.3.3 Safe convergence
A safe converging9) self-stabilization is one of the extensions of self-stabilization

in such a way that, starting from arbitrary initial configuration in Γ, any com-
putation quickly reaches a configuration in ΛF (⊆ Γ), and then, with keeping
configurations are in ΛF , a computation eventually reaches a configuration in
ΛO(⊆ ΛF ⊆ Γ). Each configuration in ΛF (resp. ΛO) is called a feasibly legiti-
mate (resp. optimally legitimate) configuration. A set of feasible configuration
ΛF specifies a safety during convergence; any configuration is guaranteed to be
in ΛF in a computation from ΛF to ΛO, i.e., safety is maintained during the
period.

3. The proposed algorithm

In this section, we present a self-stabilizing distributed algorithm SSMCol. The
formal description of the proposed algorithm is shown in Fig. 1.

3.1 The main idea
The algorithm is based on the following idea.
• Rule 1: If Pi finds that assignments of colors conflict with neighbors, Pi re-

assigns its colors in such a way that there is no color conflict with neighbors.
• Rule 2: If Pi finds that assignment of colors is different from an assignment

computed from available colors, especially, more colors are available, Pi re-
assigns its colors in such a way that there is no color conflict.

Based on this idea, the algorithm offers self-stabilization property; color con-

flicts are eliminated soon, and then, each process assigns colors to eventually
achieve a proper multicoloring. This idea is also the basis of safe convergence
property of the algorithm; color conflicts are eliminated as soon as possible,
and without introducing new color conflicts, a proper multicoloring is eventually
achieved. Here, safety property is that there is no color conflicts, and a metric for
optimization is the maximality of the number of colors assigned to each process.

3.2 Technical details
Each process Pi maintains a local variable fi(⊆ C). Let γ ∈ Γ be any configu-

ration. By fγ
i , we denote the value of fi in configuration γ. We define a function

fγ in such a way that fγ(Pi) ≡ fγ
i for each Pi ∈ V . When configuration γ is

clear from context, we simply write f instead of fγ , and write fi instead of fγ
i .

Similarly, we denote by Y γ
i the value of Yi in γ, and we simply write Yi instead

of Y γ
i if γ is clear from context.

As defined in Fig. 1, the color selection function Selecti(X) for each Pi has the
following property. Once a color set fi is assigned, Selecti returns a color set that
contains fi as a subset as long as all the colors in fi is available. These properties
are enough for not only the closure property, but also the convergence property
of the algorithm.

By Λ, we denote a set of proper multicoloring configurations with respect to
Select. The set Λ is a set of legitimate configurations of the algorithm.

3.3 Proof of correctness and performance
We show that SSMCol is self-stabilizing with respect to Λ. For each Pi ∈ V ,

we say that Pi is locally multicoloring in configuration γ if and only if ∀Pj ∈ Ni :
(fγ

i ∩ fγ
j = ∅). It is easy to see that the function fγ is a multicoloring if and only

if, for each Pi ∈ V , Pi is locally multicoloring in γ. It is also easy to see that
the function fγ is a proper multicoloring if and only if fγ is a multicoloring and
|fγ

i | = w(Pi) holds for each Pi ∈ V .
We say that a configuration γ ∈ Γ is a multicoloring if and only if the function

fγ is a multicoloring. We say that a configuration γ ∈ Γ is a proper multicoloring
if and only if the function fγ is a proper multicoloring. We say that a configu-
ration γ ∈ Γ is a multicoloring with respect to function Select if and only if γ is
a multicoloring and fγ

i = Selecti(C\Y γ
i) holds for each Pi ∈ V . We say that a

configuration γ ∈ Γ is a proper multicoloring with respect to Select if and only if

4 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

IPSJ SIG Technical Report

Constant
C — A set of colors, |C| ≥ (∆ + 1)wmax, where wmax = maxPi∈V w(Pi).
Ni (⊆ V) — A set of neighbors of Pi.
wi (≡ w(Pi)) — The weight of Pi.

Local variable
fi ⊆ C — Color assignment (a set of colors) of Pi.

Macro definition
Yi ≡

∪
Pj∈Ni

fj — A set of colors used by neighbors.
Selecti(X) Returns deterministically

X ′(⊆ X) such that fi ⊆ X ′ and |X ′| = w(Pi) if (fi ⊆ X) ∧ (|X| > w(Pi)),
X ′(⊆ X) such that fi ⊆ X ′ and |X ′| = |X| if (fi ⊆ X) ∧ (|X| ≤ w(Pi)),
X ′(⊆ X) such that |X ′| = w(Pi) if (fi 6⊆ X) ∧ (|X| > w(Pi)), and
X otherwise.

Action
Rule 1: Re-assign colors in case of a conflict.

(fi ∩ Yi 6= ∅) →
fi := Selecti(C\Yi);

Rule 2: Assign more colors if possible.
(fi ∩ Yi = ∅) ∧ (fi 6= Selecti(C\Yi)) →

fi := Selecti(C\Yi);

Fig. 1 Algorithm SSMCol, a description for each Pi ∈ V .

γ is a multicoloring with respect to Select and it is a proper multicoloring.
Next lemma shows sufficiency of the number of colors for color assignment in

a local-greedy manner.
Lemma 1 For each Pi and any configuration γ ∈ Γ such that |fγ

i (Pi)| ≤
w(Pi) for each Pi ∈ V , |C\Y γ

i | ≥ w(Pi) and |Selecti(C\Y γ
i)| = w(Pi) hold if Pi

invokes Selecti in γ. 2

First, we show the closure property of the algorithm, i.e., the algorithm termi-
nates if and only if a proper multicoloring is computed and colors are assigned
by Select i for each Pi.

Lemma 2 For any configuration γ, no process is enabled in γ if and only if

fγ is a proper multicoloring with respect to Select. 2

Next, we show convergence of the algorithm. Convergence proceeds in three
phases as follows.
• Phase 1: Starting from any configuration γ0, any computation eventually

reaches a configuration γ1 in which fγ1 is a multicoloring which may not be
proper.

• Phase 2: Then, starting from γ1, any computation eventually reaches a con-
figuration γ2 in which fγ2 is a multicoloring and |fγ2(Pi)| ≤ w(Pi) for each
Pi.

• Phase 3: Finally, starting from γ2, any computation eventually reaches a
configuration γ3 in which fγ3 is a proper multicoloring.

Theorem 1 SSMCol is a self-stabilizing algorithm for the distributed proper
multicoloring problem with respect to Λ. 2

We show the performance, i.e., the convergence time, of SSMCol.
Theorem 2 Convergence time of SSMCol is O(n2wmax) steps. 2

Theorem 3 Convergence time of SSMCol is O(1) rounds. 2

4. On the number of colors

In this subsection, we discuss the behavior of SSMCol when the number of
available colors is limited. Such a setting is realistic in a real environment.

We first show the necessary number of colors for local-greedy strategy.
Theorem 4 Any self-stabilizing algorithm for the distributed proper multi-

coloring problem based on a local-greedy strategy, (∆ + 1)wmax is necessary for
the number of colors. 2

We show that the proposed algorithm SSMCol assigns colors as many as pos-
sible (up to w(Pi) for each Pi) and converges, even if the number of colors is
smaller than the above lower bound. In a practical setting, this is the case.
Specifically, we discuss a case when |C| < (∆ + 1)wmax, i.e., the total number of
colors is less than the number that is required to achieve proper multicoloring by
a local-greedy strategy.

We introduce the concept of a maximal multicoloring as follows.
Definition 5 For a vertex weighted network G(V,E,w) and a set of colors

C, a function f , which assigns to each Pi ∈ V a subset f(Pi) ⊆ C, is a maximal

5 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

IPSJ SIG Technical Report

multicoloring if and only if
• f is multicoloring,
• ∀Pi ∈ V : |f(Pi)| ≤ w(Pi), and
• ∀Pi ∈ V : (|f(Pi)| < w(Pi)) ⇒ (C = f(Pi) ∪ (∪Pj∈Nif(Pj))) 2

Definition 6 For a vertex weighted network G(V,E,w) and a set of colors
C, the distributed maximal multicoloring problem is a problem such that each
Pi ∈ V computes a multicolor assignment fi ⊆ C in such a way that the function
f , where f(Pi) = fi for each Pi ∈ V , is a maximal multicoloring for G(V,E,w)
and C. 2

By ΛM , we denote a set of maximal multicoloring configurations with respect
to Select. The set ΛM is a set of legitimate configurations of the algorithm in the
setting with small number of colors.

Theorem 5 SSMCol is a self-stabilizing algorithm for the distributed max-
imal multicoloring problem with respect to ΛM , when |C| < (∆ + 1)wmax 2

Theorem 6 Convergence time of SSMCol to ΛM is O(n2wmax) steps, and
O(1) rounds. 2

5. Dynamic networks

In this section, we consider dynamic change of a network such as changes of
network topology and weight vector. For each weighted network G = (V,E,w),
by Λ(V,E,w) (resp., ΛM (V,E,w)), we denote a set of legitimate configurations
of SSMCol for the proper (resp., maximal) multicoloring problem.

In the problem of the proper (resp., maximal) multicoloring, a safety property
of an algorithm is that there is no color conflict, and a liveness property of an
algorithm is that a proper (resp., maximal) multicoloring is eventually obtained.

Lemma 3 presented below states that, in any computation that starts from a
multicoloring configuration, even if removal of processes and links and change of
weight vector occur arbitrary times continuously or intermittently in the com-
putation, safety is always guaranteed. If such events stops, by self-stabilization,
any computation eventually reaches a proper (or maximal) multicoloring config-
uration, and hence liveness property is guaranteed.

The next two lemmas show a basic property of SSMCol that are used to show
superstabilization and output stability of SSMCol.

Interrupt statement
fi := Selecti(C\Yi);

Fig. 2 The interrupt action for SSMCol, for each Pi ∈ V .

Lemma 3 Let a weighted network G (resp., G′) be G = (V,E,w) (resp.,
G′ = (V ′, E′, w′), where V ′ ⊆ V and E′ ⊆ E. Assume |C| ≥ (∆ + 1)wmax holds,
where ∆ is the maximum degree in G and G′. Let γ be any multicoloring config-
uration on G, and assume that network changes from G to G′ in γ. Starting from
γ, any computation eventually reaches a configuration λ′ ∈ Λ(V ′, E′, w′), and,
multicoloring is maintained in any configuration in the subsequent computation.
2

In case the number of colors is small, we have the following result.
Lemma 4 Let a weighted network G (resp., G′) be G = (V,E,w) (resp.,

G′ = (V ′, E′, w′), where V ′ ⊆ V and E′ ⊆ E. Assume |C| < (∆ + 1)wmax

holds, where ∆ is the maximum degree in G and G′. Let γ be any multicoloring
configuration on G, and assume that network changes from G to G′ in γ. Starting
from γ, any computation eventually reaches a configuration λ′ ∈ ΛM (V ′, E′, w′),
and multicoloring is maintained in any configuration in the computation. 2

In the following subsections, we show that during the convergence after a topol-
ogy change in a legitimate configuration, SSMCol promises special adaptability:
superstabilization, output stability, and safe convergence.

5.1 Superstabilization of SSMCol
In this subsection, we discuss superstabilization of SSMCol. Fig. 2 presents the

interrupt statement to make SSMCol superstabilizing. The interrupt statement
is invoked immediately when a topology change event occurs. Superstabiliza-
tion time is the maximum number of steps or rounds to bring a configuration
legitimate by a topology change event that occurs in a legitimate configuration.

Theorem 7 SSMCol is superstabilizing for the proper and maximal multi-
coloring problem, and the superstabilizing time is O(∆2wmax) steps and O(1)
rounds. 2

5.2 Output stability of SSMCol
In this subsection, we discuss output stability of SSMCol.

6 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

IPSJ SIG Technical Report

Theorem 8 SSMCol is output stable for the proper and maximal multicol-
oring problem, and the locally temporal instability is O(wmax), the temporal
instability is O(∆2wmax), and the spatial instability is O(∆2). 2

Note that a color (channel) assigned to a process is canceled (preempted) at
most once when an external event occurs because conflicting colors are canceled,
and then, available colors are added as many as necessary or possible. Although
the number of changes of the output variable fi for each Pi by an external event
(the local temporal instability) is O(wmax), the effect to applications in the upper
layer is very small.

5.3 Safe convergence of SSMCol
In this subsection, we discuss safe convergence of SSMCol. Let ΛF be a set

of multicoloring configurations. Let ΛO = Λ be a set of proper multicoloring
configurations with respect to Select. Note that a relation ΛO ⊆ ΛF ⊆ Γ holds.

Theorem 9 SSMCol is a self-stabilizing algorithm with safe convergence for
the distributed proper multicoloring problem with respect to (ΛF , ΛO). Con-
vergence time to ΛF is O(n2wmax) steps, and then, within O(n2wmax) steps,
computation reaches a configuration in ΛO. 2

From Theorem 5, we have the following corollary.
Corollary 1 SSMCol is a self-stabilizing algorithm with safe convergence

with respect to (ΛF ,ΛM). for the distributed maximal multicoloring problem for
any color set C. 2

6. Conclusion

In this paper, we proposed a distributed algorithm for the multicoloring prob-
lem. Our algorithm has self-stabilizing, superstabilizing, output stable, and safe
converging properties that are useful in dynamic distributed systems. In addi-
tion, our distributed algorithm is a local algorithm in a sense that each process
communicates only its direct neighboring processes, and hence no centralized
control is necessary.

When the number of available colors are limited, some nodes may not be as-
signed any color because our algorithm is based on a local-greedy strategy. An
extension of our algorithm to solve this problem by the idea of borrowing is a
future task. Although we assumed a strong computational model (the state-

reading model and the central daemon) in this paper, design of an algorithm
assuming weaker computational model, such as the message passing model with
probabilistic message loss, is also left as a future work.

Acknowledgments This work is supported in part by Grant-in-Aid for
Scientific Research ((B) 19300012) of JSPS, Grand-in-Aid for Young Scientists
((Start-up) 21800031) of JSPS, and Kayamori Foundation of Informational Sci-
ence Advancement.

References

1) Dijkstra, E.: Self-Stabilizing Systems in Spite of Distributed Control, Communi-
cations of the ACM, Vol.17, No.11, pp.643–644 (1974).

2) Ghosh, S. and Karaata, M.: A self-stabilizing algorithm for coloring planar graphs,
Distributed Computing, Vol.7, pp.55–59 (1993).

3) Sur, S. and Srimani, P.: A self-stabilizing algorithm for coloring bipartite graphs,
Information Sciences, Vol.69, pp.219–227 (1993).

4) Gradinariu, M. and Tixeuil, S.: Self-stabilizing Vertex Coloring of Arbitrary
Graphs, Proceedings of the 4th International Conference on Principles of Distributed
Systems (OPODIS), pp.55–70 (2000).

5) Hedetniemi, S.T., Jacobs, D.P. and Srimani, P.K.: Linear time self-stabilizing
colorings, Information Processing Letters, Vol.87, No.5, pp.251–255 (2003).

6) Dolev, S. and Herman, T.: Superstabilizing protocols for dynamic distributed sys-
tems, Chicago Journal of Theoretical Computer Science, Vol.3, No.4 (1997).

7) Yamauchi, Y., Ooshita, F., Kakugawa, H. and Masuzawa, T.: Output stability of
self-stabilizing protocols against topology changes and transient faults, Proceedings
of the 8th International Conference on Applications and Principles of Information
Science (APIS) (2009).

8) Yamauchi, Y., Kamei, S., Ooshita, F., Kakugawa, H. and Masuzawa, T.: Output
stability of self-stabilizing protocols against topology changes and transient faults,
In preparation for submission to a journal.

9) Kakugawa, H. and Masuzawa, T.: A Self-Stabilizing Minimal Dominating Set Algo-
rithm with Safe Convergence, Proceedings of the 8th IPDPS Workshop on Advances
in Parallel and Distributed Computational Models (APDCM), p.263 (2005).

10) Narayanan, L.: Channel Assignment and Graph Multicoloring, Handbook of Wire-
less Networks and Mobile Computing, John Wiley & Sons, Inc., New York, NY,
USA, chapter4, pp.71–94 (2002).

7 c© 2010 Information Processing Society of Japan

Vol.2010-MPS-77 No.10
2010/3/4

