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線形分離オートマトンの最小化アルゴリズム

沼 井 裕 二 †1 宇田川 祥彰 †2 小 林 聡†1

本論文では，線形分離オートマトン（LSA）の最小化アルゴリズムを提示する．LSA

は有限オートマトンを拡張したモデルで，実ベクトル系列を受理する能力を持ち，各
状態には重み関数と閾値系列が付随する．この二つによって，各時点でのある状態か
らの遷移先状態が決定する．
以前の我々の論文では， LSA と，状態数最小の LSA との特徴付けのみを行った．

与えられた LSA M の状態数の最小化は，本論文のアルゴリズムによって可能とな
る．アルゴリズムの時間計算量は O((K + k) n2) である．K は M の各重みに割り
当てられた閾値系列の値の数の最大値であり，k は M のある状態から出て行く辺の
最大の本数であり，n は M の状態数である．
最後に， LSA の各状態における閾値系列の長さの最小化について論ずる．

Minimization Algorithm of
Linear Separation Automata

Yuji Numai ,†1 Yoshiaki Udagawa †2

and Satoshi Kobayashi †1

In this paper, we present a minimization algorithm of a linear separation au-
tomaton (LSA). An LSA is an extended model of a finite automaton. It accepts
a sequence of real vectors, and has a weight function and a threshold sequence
at every state, which determine the transition from some state to another at
each step.

In our previous paper, we characterized an LSA and the minimum state LSA.
The minimum state version for a given LSA M is obtained by the algorithm
presented in this paper. Its time complexity is O((K + k) n2), where K is the
maximum number of threshold values assigned to each weight, k is the max-
imum number of edges going out from a state of M , and n is the number of
states in M .

Moreover, we discuss on the minimization of the length of a threshold se-
quence at each state.

1. Introduction

A finite automaton can be extended to deal with real values in some sense. Such ex-

tensions include a hybrid automaton1),7) and a timed automaton3). Many researchers

utilize computational models that can deal with real values to solve various problems

including weather forecasting6), motion recognition4),5), and time-sequential image anal-

ysis10). Therefore, we believe that the establishment of the theory of automata that

can deal with real values is very important.

In our previous paper8), we theoretically analyzed a linear separation automaton

(LSA). It accepts a sequence of real vectors, and has a weight function and a threshold

sequence at every state, which determine the transition from some state to another at

each step. We proved Myhill-Nerode theorem for LSA, established the uniqueness of

the minimum state LSA for a given one, and characterized the minimum state LSA for

a given one.

This paper presents an algorithm to minimize the number of states of a given LSA M .

Its time complexity is O((K + k) n2), where K is the maximum number of threshold

values assigned to each weight, k is the maximum number of edges going out from a

state of M , and n is the number of states in M . We moreover discuss on the minimiza-

tion of the length of a threshold sequence at each state.

2. Preliminaries

In this section we introduce basic definitions and notation needed in this paper.

By R, we denote the set of real numbers. For a positive integer d, by Rd we denote

a d-dimensional vector space over R. For x, y ∈ Rd, x ⊗ y denotes the inner prod-

uct of x and y. We define (Rd)∗ as the set of all finite sequences of vectors in Rd.
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For a sequence α = ⟨x1, . . . , xn⟩ ∈ (Rd)∗, we denote the length of α by |α|, that is,

|α| = n. An element in (Rd)∗ of length 0 is called an empty sequence, and is denoted

by λ. For sequences α, β ∈ (Rd)∗, we denote the concatenation of α and β by αβ. For

α = ⟨x1, . . . , xn⟩ ∈ (R1)∗, the sequence α is said to be increasing if the inequality

xi < xi+1 holds for every i.

A partition π = {S1, . . . , Sk} of Rd (i.e., S1, . . . , Sk are mutually disjoint non-empty

subsets of Rd such that ∪i=1,...,kSi = Rd ) is said to be linearly separable iff there

exist w ∈ Rd and an increasing h = ⟨h1, . . . , hk−1⟩ ∈ (R1)∗ such that, for any x ∈ Rd,

hi−1 < w ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k)

holds, where h0 = −∞ and hk = ∞.

Consider equivalence relations ≡,≡1, and ≡2 over (Rd)∗. The number of the equiv-

alence classes of ≡ is called the index of ≡. An equivalence relation ≡1 is finer than

an equivalence relation ≡2 (or ≡2 is coarser than ≡1) iff x ≡1 y implies x ≡2 y for any

x and y. An equivalence relation ≡ is right invariant iff α ≡ β implies αγ ≡ βγ for

any α, β and γ.

Consider partitions π1 and π2 of Rd. A partition π1 is finer than a partition π2 (or

π2 is coarser than π1) iff for any block B1 ∈ π1, there exists a block B2 ∈ π2 such that

B1 ⊆ B2. We say that π1 is a refinement of π2 iff π1 is finer than π2.

Lemma 1. Let w, w′ be unit vectors in Rd such that w ̸= w′, and consider any h ∈ R.

There exists h′ ∈ R such that for any ε > 0, there exist x1, x2 ∈ Rd satisfying

h′ − ε ≤ w′ ⊗ x2 ≤ w′ ⊗ x1 = h′ and w ⊗ x1 = h < w ⊗ x2 ≤ h + ε .

�
This lemma means that w′ ⊗ x1 and w′ ⊗ x2 can be put together closely enough in

the interval [h′ − ε, h′], and that w ⊗ x1 and w ⊗ x2 are separated w.r.t. the threshold

value h.

3. Linear Separation Automata and their Theoretical Results

In this section we introduce a linear separation automaton (LSA) and give some

theoretical results, which have been proved in our previous paper8).

3.1 Overview

An LSA is an extended model of a finite automaton. It accepts a sequence of real
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Fig. 1 LSA M1.

vectors, and has a weight function and a threshold sequence at every state. The tran-

sition from the current state to another is determined by comparing the inner product

of the weight and input vectors with each element in the threshold sequence. Figure 1

is a state transition diagram of an LSA M1.

Consider a state transition diagram as in Figure 1, some interval I ⊆ R associated

with some state transition from a state p is constructed with the threshold sequence of

p. Let an interval I0 be associated with a state transition from a state q to r. If, in

the current state q, the inner product of the weight and input vectors is in I0, then the

next state is r.

Example 1. Consider an LSA M1 in Figure 1. The LSA M1 has the weight function

w, the threshold sequence h, and the state transition function δ. Let α = ⟨x1, x2, x3⟩
be an input sequence of vectors in R2 with x1 = (3

√
10, 2

√
10), x2 = (−

√
5, 2

√
5), and

x3 = (−3
√

10,−2
√

10). The inner product w(q1) ⊗ x1 = 11 is in the interval (10,∞),

which implies that δ(q1, x1) = q6. We see in the same way that δ(q6, x2) = q4 and

δ(q4, x3) = q4. The state q4 is a final state and thus the sequence α is accepted by M1.
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�
3.2 Definitions and Notation

An LSA M is formally defined as an 8-tuple

M = (d, Q, q0, F, w, h, s, δ) ,

where

d is a positive integer specifying the dimension of input vectors to M ,

Q is a finite set of states,

q0 is an initial state (q0 ∈ Q),

F is a finite set of final states (F ⊆ Q),

w is a weight function from Q to Rd such that w(q) is a unit vector for any q ∈ Q,

h is a threshold function from Q to (R1)∗ such that h(q) is increasing for every q ∈ Q,

and is denoted by h(q) = ⟨h(q)1, . . . , h(q)|h(q)|⟩, and

s is a sub-transition function from Q to Q∗, and is denoted by s(q) = ⟨s(q)1, . . . ,
s(q)|s(q)|⟩.

If |s(q)| ≥ 1, then the equality |h(q)| = |s(q)| − 1 holds for every q ∈ Q.

In order to improve the readability, we write iq = |h(q)| for any q ∈ Q.

δ is a state transition function from Q×Rd to Q; and is defined in the following way

by using w, h, and s. Consider any state q ∈ Q and vector x ∈ Rd. The definition of δ

is separated into three components.

First, in the case of |s(q)| = 0, the value δ(q, x) is undefined.

Secondly, suppose that |s(q)| = 1. The value δ(q, x) is defined as δ(q, x) = s(q)1.

Finally, assume that |s(q)| ≥ 2. The value δ(q, x) is defined as follows:

δ(q, x) =



s(q)1 if w(q) ⊗ x ≤ h(q)1

s(q)2 if h(q)1 < w(q) ⊗ x ≤ h(q)2
...

...

s(q)iq if h(q)iq−1 < w(q) ⊗ x ≤ h(q)iq

s(q)iq+1 if h(q)iq < w(q) ⊗ x .

Consider a state transition diagram as in Figure 1. Suppose that δ(q, x) = p holds

if h(q)i < w(q) ⊗ x ≤ h(q)i+1. In the diagram, the transition from q to p is associated

with the interval (h(q)i, h(q)i+1].

For α = ⟨x1, . . . , xl⟩ ∈ (Rd)∗, we write δ(p, α) = q if there exists a sequence

p1(= p), p2, . . . , pl+1(= q) of states such that δ(pi, xi) = pi+1 holds for any i. We

define the set of sequences accepted by an LSA M , denoted by L(M), as

L(M) = {α ∈ (Rd)∗ | δ(q0, α) ∈ F } .

A subset L of (Rd)∗ is said to be regular if there exists an LSA M such that L = L(M).

We define the size of M as the cardinality of Q, i.e., size(M) = |Q|.
A state q ∈ Q is said to be reachable if there exists α ∈ (Rd)∗ such that δ(q0, α) = q.

A state q ∈ Q is said to be unreachable if q is not reachable.

3.3 Theoretical Results

The theorems and lemmas in this subsection have been proved in 8).

Let ≡ be a right invariant equivalence relation over (Rd)∗, and consider an equiv-

alence class [α]≡ containing α ∈ (Rd)∗. An equivalence relation R([α]≡) over Rd

induced by [α]≡ is defined as follows:

x R([α]≡) y
def⇔ αx ≡ αy .

For any α and β with α ≡ β, the equality R([α]≡) = R([β]≡) holds, because ≡ is

right invariant.

We say that a right invariant equivalence relation ≡ over (Rd)∗ is right linearly

separable iff for any equivalence class [α]≡, there exists a finite linearly separable par-

tition of Rd that is finer than Rd/R([α]≡).

Definition 1 (Modified Myhill-Nerode Relation for LSAs). Let S ⊆ (Rd)∗

be a set of sequences. The equivalence relation ≡ over (Rd)∗ satisfying the following

conditions is called a modified Myhill-Nerode relation with respect to S.

( 1 ) The equivalence relation ≡ is right invariant.

( 2 ) The equivalence relation ≡ is of finite index.

( 3 ) The equivalence relation ≡ is right linearly separable.

( 4 ) The set S is a union of some equivalence classes of ≡.
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For any subset S of (Rd)∗, we define an equivalence relation ≈S over (Rd)∗ as follows:

α ≈S β
def⇔ ∀γ ∈ (Rd)∗ (αγ ∈ S iff βγ ∈ S) .

Theorem 1 (Myhill-Nerode Theorem for LSAs). Let S ⊆ (Rd)∗ be a set of

sequences. The following three statements are equivalent.

( 1 ) The set S is regular.

( 2 ) There exists a modified Myhill-Nerode relation with respect to S.

( 3 ) The equivalent relation ≈S is of finite index and right linearly separable.

�
Theorem 1 characterizes the class of languages accepted by an LSA. Moreover, the

equivalence relation ≈S is utilized to characterize the minimum state LSA.

Let S ⊆ (Rd)∗ be a set of sequences, and α be an element in (Rd)∗. Since ≈S is right

linearly separable, there exists a finite linearly separable partition π = {S1, . . . , Sk}
which is finer than the equivalence classes of R([α]≈S ) . Thus, there exist wα ∈ Rd

and hα = ⟨h1, . . . , hk−1⟩ ∈ (R1)∗ such that

hi−1 < wα ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k) ,

where h0 = −∞ and hk = ∞. We define

Mmin = (d, Qmin, q0min, Fmin, wmin, hmin, smin, δmin)

as follows:

Qmin = (Rd)∗/ ≈S , q0min = [λ]≈S , Fmin = {[α]≈S | α ∈ S } ,

δmin([α]≈S , x) = [αx]≈S , wmin([α]≈S ) = wα , hmin([α]≈S ) = hα .

Let M = (d, Q, q0, F, w, h, s, δ) and M ′ = (d, Q′, q′0, F
′, w′, h′, s′, δ′) be LSAs. We say

that M is isomorphic to M ′ iff there exists a bijection f from Q to Q′ satisfying the

following conditions:

( 1 ) f(q0) = q′0 .

( 2 ) f(δ(q, x)) = δ′(f(q), x) holds for any q ∈ Q and x ∈ Rd .

( 3 ) f(F ) = F ′ .

Theorem 2 (Uniqueness of Minimum State LSA). Let S be a regular subset of

(Rd)∗. The LSA Mmin is isomorphic to every minimum state LSA accepting S.

�

Let M = (d, Q, q0, F, w, h, s, δ) be an LSA accepting S with no unreachable states.

For any p, q ∈ Q, there exists α, β ∈ (Rd)∗ such that δ(q0, α) = p and δ(q0, β) = q. We

define the equivalence relation ∼ over Q as follows:

p ∼ q
def⇔ α ≈S β .

The states p and q are said to be indistinguishable iff p ∼ q. The states p and q

are said to be distinguishable iff p ̸∼ q.

For any p ∈ Q, by r(p) we denote a representative element of [p]∼ . We define an

LSA

M/ ∼= (d, Q′, q′0, F
′, w′, h′, s′, δ′) ,

where

Q′ = Q/ ∼ , q′0 = [q0]∼ , F ′ = {[q]∼ | q ∈ F} , δ′([q]∼, x) = [δ(r(q), x)]∼ ,

w′([q]∼) = w(r(q)) , h′([q]∼) = h(r(q)) .

Theorem 3 (Characterization of Minimum State LSA). Let M be an LSA. The

LSA M/ ∼ is a minimum state LSA for M such that L(M/ ∼) = L(M).

�

4. Minimization Algorithm

In this section, we deal with an algorithm to minimize a given LSA. This algorithm

is similar to that to minimize a given finite automaton.

4.1 Coarsest Refinement Approach

Let M = (d, Q, q0, F, w, h, s, δ) be an LSA. For a state q1, q2 ∈ Q, we write q1 ∼w q2

if w(q1) = w(q2). A state q1 is preceding to a state q2 with respect to a state q,

denoted by q1 ≺q q2, if there exists an integer i such that s(q)i = q1 and s(q)i+1 = q2.

For q ∈ Q, we define

δ(q) = { p | p ∈ s(q) } .

For a subset X of Q, we define

δ(X) = { p | q ∈ X, p ∈ δ(q) } .

Lemma 2. Consider q, q′ ∈ Q such that q ̸∼w q′ and |δ(q)| > 1. For any states
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p1, p2 with p1 ≺q p2, there exists x1, x2 ∈ Rd such that δ(q, xi) = pi (i = 1, 2) and

δ(q′, x1) = δ(q′, x2).

�
For a partition π of Q and q1, q2 ∈ Q, we write q1 ∼(π) q2 if there exists B ∈ π such

that q1, q2 ∈ B. For a subset X of Q, we define

W (X) = {w(q) | q ∈ X } .

For a subset X of Q and ω ∈ W (Q), we define

Xω = { q ∈ X | w(q) = ω } .

For any ω ∈ W (Q), we also define

H(ω) = {h(q)i | q ∈ Qω, 1 ≤ i ≤ iq, s(q)i ̸= s(q)i+1 } ∪ {∞} .

Example 2 below helps to understand these complex definitions.

For ω ∈ W (Q) and v ∈ H(ω) , we define the function δω,v from Qω to Q as follows:

δω,v(q) = δ(q, x) for some x ∈ Rd with ω ⊗ x = v .

We define the set of functions δ as follows:

δ = { δω,v | ω ∈ W (Q), v ∈ H(ω) } .

In the sequel, for simple description of the algorithm, we often use graph represen-

tation of mappings f ∈ δ and δ : Q → 2Q, i.e., f is represented as a graph containing

edges between q1 and q2 such that q2 = f(q1), and δ is represented as a graph containing

edges between q1 and q2 such that q2 ∈ δ(q1).

Example 2. Consider an LSA M1 in Figure 1. We have W (Q) = {w1, w2},
H(w1) = {−10, 0, 5, 10,∞}, and H(w2) = {20,∞}. A part of Functions in the set

δ are represented in Figure 2.

�
Theorem 4 (Characterization of Partition Q/ ∼). Let M = (d, Q, q0, F, w, h, s, δ)

be an LSA. The partition Q/ ∼ is a coarsest refinement π of π0 = {F, Q − F} which

satisfies the following conditions:

(C1) ∀B ∈ π ∀f ∈ δ ∃B′ ∈ π such that f(B) ⊆ B′ ,

(C2) ∀B ∈ π ( |W (B)| > 1 ⇒ ∃B′ ∈ π such that δ(B) ⊆ B′ ) .

�
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Fig. 2 Graphs in δ for the weight w2 .

4.2 Minimization Algorithm

Our algorithm uses two primitive refinement operations split1 and split2; the former

is for the condition (C1), and the latter is for (C2).

For a set S ⊆ Q, f ∈ δ, and a partition π of Q, the operation split1(S, f, π) is defined

as follows:

find all blocks B ∈ π such that f(B)∩S ̸= ∅ and f(B) ̸⊆ S. Define B1 = B ∩ f−1(S)

and B2 = B − B1, and split B ∈ π into the blocks B1 and B2, which results in the

refinement of π.

For a set S ⊆ Q and a partition π, split2(S, π) is defined as follows:

find all blocks B ∈ π such that δ(B) ∩ S ̸= ∅, δ(B) ̸⊆ S and |W (B)| > 1, and split

B into some smaller blocks defined in the following way; Let B′ be the set of states

q ∈ B such that δ(q) ∩ S ̸= ∅ and δ(q) ̸⊆ S. Define B1 = {q ∈ B − B′ | δ(q) ⊆ S} and

B2 = (B −B′)−B1. For each ω ∈ W (B′), consider B′
ω. Then, split B ∈ π into B1, B2

and B′
ω’s for all ω ∈ W (B′), which results in the refinement of π.

These operations are also illustrated in Figure 3 and Figure 4.
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Fig. 3 split1(S, f, π).
Fig. 4 split2(S, π).

Now, we present an algorithm to minimize a given LSA, Algorithm 1. This algorithm

checks the existence of a block B with which splitting operations (split2 first, and then

split1) can be applied to the current partition. This process is continued until no more

refinement is possible.

Algorithm 1 Minimization Algorithm for LSA

Input: An LSA M = (d, Q, q0, F, w, h, s, δ)

Output: π

1: let π = {F, Q − F};
2: loop

3: if ∃B ∈ π such that split2(B, π) ̸= π then

4: replace π with split2(B, π);

5: else if ∃B ∈ π, ∃ f ∈ δ such that split1(B, f, π) ̸= π then

6: replace π with split1(B, f, π);

7: else

8: output π and halt;

9: end if

10: end loop
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Fig. 5 Minimum state LSA of M1.
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Fig. 6 Optimized version of LSA in Figure 5.

4.3 Example Run

We show an example run of Algorithm 1 for the input M1 in Figure 1.

Let π = {B1, B2}, where

B1 = {q2, q4}, B2 = {q1, q3, q5, q6, q7, q8, q9, q10, q11, q12}.
First, split2(B1, π) constructs the new partition π1 = {B1, B3, B4}, where

B1 = {q2, q4}, B3 = {q5, q6, q7, q8}, B4 = {q1, q3, q9, q10, q11, q12}.
Next, split2(B4, π1) constructs the new partition π2 = {B1, B3, B5, B6}, where

B1 = {q2, q4}, B3 = {q5, q6, q7, q8}, B5 = {q1, q3}, B6 = {q9, q10, q11, q12}.
Next, split2(B5, π2) constructs the new partition π3 = {B1, B3, B5, B7, B8}, where

B1 = {q2, q4}, B3 = {q5, q6, q7, q8}, B5 = {q1, q3}, B7 = {q9, q10}, B8 = {q11, q12}.
Finally, split1(B8, δw2,20, π3) constructs the new partition π4 = {B1, B3, B5, B7, B9,

B10}, where

B1 = {q2, q4}, B3 = {q5, q6, q7, q8}, B5 = {q1, q3}, B7 = {q9, q10}, B9 = {q11}, B10 = {q12}.
No more refinement is possible. Therefore Algorithm 1 outputs π4 and halts.

The minimum state LSA for M1 with the set π4 of states is in Figure 5.

4.4 Correctness of Algorithm

We give some basic properties of these operations:

Lemma 3. A partition π satisfies (C1) if and only if split1(B, f, π) = π for every block
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B ∈ π and f ∈ δ. A partition π satisfies (C2) if and only if split2(B, π) = π for every

block B ∈ π.

�
Lemma 4. If π2 is a refinement of π1 and split1(S, f, π1) = π1 holds, then

split1(S, f, π2) = π2 holds. If π2 is a refinement of π1 and split2(S, π1) = π1 holds,

then split2(S, π2) = π2 holds.

�
Lemma 5. The equalities split1(S1, f, π) = π and split1(S2, f, π) = π imply

split1(S1 ∪ S2, f, π) = π. The equalities split2(S1, π) = π and split2(S2, π) = π im-

ply split2(S1 ∪ S2, π) = π.

�
Lemma 6. If π1 is a refinement of π2 and split2(S, π2) = π2 holds, then split1(S, f, π1)

is a refinement of split1(S, f, π2).

�
Lemma 7. Let π1 be a partition satisfying (C1) and S be a union of some blocks in

π1. If π1 is a refinement of π2, then split2(S, π1) is a refinement of split2(S, π2).

�
Lemma 8. Algorithm 1 maintains the invariant that any coarsest refinement of the

initial partition {F, Q−F} satisfying (C1) and (C2) is also a refinement of the current

partition π.

�
The following theorem shows the correctness of Algorithm 1.

Theorem 5 (Correctness of Algorithm 1). Let M = (d, Q, q0, F, w, h, s, δ) be an

LSA, and n = |Q|. Algorithm 1 for the input M is correct and terminates after at

most n − 1 refinement steps, having computed the coarsest refinement of {F, Q − F}
satisfying (C1) and (C2).

Proof. Since the number of blocks of a partition of Q is less than or equal to n, and

since the number of blocks increases at each refinement step, the algorithm terminates

at most n − 1 refinement steps. Lemma 3 implies that the final partition πf satisfies

(C1) and (C2). Moreover, Lemma 8 implies that πf should be the coarsest refinement

of {F, Q − F} satisfying (C1) and (C2).

Let us discuss the time complexity of Algorithm 1. We define

K = max{ |H(ω)| | ω ∈ W (Q) }
and

k = max{ |δ(q)| | q ∈ Q } .

The following theorem holds.

Theorem 6 (Time Complexity of Algorithm 1). Let M = (d, Q, q0, F, w, h, s, δ)

be an LSA, and n = |Q|. The time complexity of Algorithm 1 for the input M is

O((K + k) n2).

Proof. Let m = (K + k)n, i.e., m is the upper bound of the total number of edges con-

tained in the graphs f ∈ δ and in the graph δ. It is straightforward to see that finding

a block B satisfying the if-conditions (at lines 3 and 5) and refining π afterwards can

be done in time O(m).

Moreover, the upper bound of the number of refining π is n − 1.

Hence the time complexity of Algorithm 1 is O(mn) = O((K + k) n2).

5. Minimization of Length of Threshold Sequences

Up to now, we discussed on the minimization of the number of states for a given

LSA, and not on that of the length of a threshold sequence at each state. In actuality,

different minimum state LSAs for a given LSA might have different length of threshold

sequences at some states.

In this subsection, we will elucidate some important properties of LSAs related to

the threshold sequence, and minimize the length of a threshold sequence at each state

of an LSA.

Let M = (d, Q, q0, F, w, h, s, δ) be an LSA. Consider q ∈ Q and x, y ∈ Rd such that

δ(q, x) = s(q)i and δ(q, y) = s(q)i+1. If s(q)i = s(q)i+1, then the threshold value

h(q)i is not necessary for the linear separation. Therefore it is better to remove such
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unnecessary threshold values.

For any q ∈ Q, we say that q is optimized iff s(q)i−1 ̸= s(q)i holds for any i. We

also say that M is optimized iff q is optimized for any q ∈ Q.

Lemma 9. Let M = (d, Q, q0, F, w, h, s, δ) and M ′ = (d, Q′, q′0, F
′, w′, h′, s′, δ′) be

LSAs. If M is isomorphic to M ′ w.r.t. the isomorphism f , then w(q) = w′(f(q)) holds

for any q ∈ Q such that |δ(q)| > 1.

�
For any q ∈ Q, we define

H(q) = {h(q)i | s(q)i ̸= s(q)i+1, 1 ≤ i ≤ iq} .

All the unnecessary threshold values in h(q) are removed from H(q).

The following theorem shows that the optimized minimum state LSA for a given one

is uniquely determined.

Theorem 7 (Minimization of Length of Threshold Sequences). Let M =

(d, Q, q0, F, w, h, s, δ) and M ′ = (d, Q′, q′0, F
′, w′, h′, s′, δ′) be LSAs. If M is isomor-

phic to M ′ w.r.t. the isomorphism f , then H(q) = H(f(q)) holds for any q ∈ Q.

�
Now, we can say that the optimized minimum state LSA for a given one is uniquely

determined because some optimized minimum state LSAs have the same weight func-

tion and the set of threshold values at every corresponding state.

In order to optimize an LSA M = (d, Q, q0, F, w, h, s, δ), it is enough to remove all

the threshold values h(q)i such that s(q)i = s(q)i+1 for any integer i and rewrite δ

according to such changes. Let k be the maximum number of edges going out from

q ∈ Q, and let n = |Q|. This procedure can be done in time O(kn).

Example 3. The optimized version of the LSA in Figure 5 is illustrated in Figure 6.

�

6. Conclusions

In this paper, we presented an algorithm to minimize an LSA M . Its time complexity

is O((K + k) n2), where K is the maximum number of threshold values assigned to each

weight, k is the maximum number of edges going out from a state of M , and n is the

number of states in M . We moreover discussed on the minimization of the length of a

threshold sequence at each state.

Some algorithms to learn an original finite automaton uses a minimization algorithm

as in 2)，9). Therefore the algorithm to minimize an LSA in this paper will play an

important role in the theory of learning an LSA. The development of the theory of

learning an LSA is one of the important future works.
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