N Vol.2010-MPS-77 No.4
THBAL LA 2R 2010/3/4
IPSJ SIG Technical Report

WS A— M M ORIMETZILTY XA
B =T FwEN R Nk Hafl

AL T, LA — N~ hY (LSA) OF/MET NV T XA%$8RT 5. LSA
WBHRA— MY MU ERBERUZETIVC, BRI MVRINEZZET N2/, &
REBIZIZE AR BERANAMET S, ZO-2I2&>T, &EEATOH B IREN
5DBBIREBNRET S,

PARTOF 4 DX TIE, LSA &, REHEEG/ND LSA L OREITOAEIT> 7.
x50z LSA M OREHROR/MEIK, KiXO7 N IT) AAIZE>TafEL 2
5. 7IIY ALOREFHEREIZ O(K +k)n?) THD. K I M OFKEAIIEY
MTHONZBUERFIDEDOBDBRKMETHY, k ik M OHDIRENSHTITAD
BRROABTHY, nid M ORERTHD.

WEIZ, LSA OFREBIZEIT 2 MIERIDOEIOR/MEIZDWTHT 5.

Minimization Algorithm of
Linear Separation Automata

Yusr Numar it Yosaiakr Upacawa 12
and SATosHr KoBayasnr f!

In this paper, we present a minimization algorithm of a linear separation au-
tomaton (LSA). An LSA is an extended model of a finite automaton. It accepts
a sequence of real vectors, and has a weight function and a threshold sequence
at every state, which determine the transition from some state to another at
each step.

In our previous paper, we characterized an LSA and the minimum state LSA.
The minimum state version for a given LSA M is obtained by the algorithm
presented in this paper. Its time complexity is O((K + k) n2), where K is the
maximum number of threshold values assigned to each weight, k is the max-
imum number of edges going out from a state of M, and n is the number of
states in M.

Moreover, we discuss on the minimization of the length of a threshold se-
quence at each state.

1. Introduction

A finite automaton can be extended to deal with real values in some sense. Such ex-

D7) and a timed automaton® . Many researchers

tensions include a hybrid automaton
utilize computational models that can deal with real values to solve various problems
including weather forecastingﬁ), motion recogniti0n4)‘5), and time-sequential image anal-

10) " Therefore, we believe that the establishment of the theory of automata that

ysis
can deal with real values is very important.

In our previous paper8>, we theoretically analyzed a linear separation automaton
(LSA). It accepts a sequence of real vectors, and has a weight function and a threshold
sequence at every state, which determine the transition from some state to another at
each step. We proved Myhill-Nerode theorem for LSA, established the uniqueness of
the minimum state LSA for a given one, and characterized the minimum state LSA for
a given one.

This paper presents an algorithm to minimize the number of states of a given LSA M.
Its time complexity is O((K + k)n?), where K is the maximum number of threshold
values assigned to each weight, k is the maximum number of edges going out from a
state of M, and n is the number of states in M. We moreover discuss on the minimiza-

tion of the length of a threshold sequence at each state.

2. Preliminaries

In this section we introduce basic definitions and notation needed in this paper.
By R, we denote the set of real numbers. For a positive integer d, by R% we denote
a d-dimensional vector space over R. For 2,4 € R%, 2 ® y denotes the inner prod-

uct of z and y. We define (R%)* as the set of all finite sequences of vectors in R.

11 BERGB(E KPR PSS ISR) T A K
Department of Computer Science, Graduate School of Electro-Communications, The University
of Electro-Communications

T2 TR 71714 7T A&t
NTT-IT Corporation

(© 2010 Information Processing Society of Japan

TEERALER A SO
IPSJ SIG Technical Report

For a sequence a = (z1,...,z,) € (R%)*, we denote the length of a by |a|, that is,
|a] = n. An element in (R%*)* of length 0 is called an empty sequence, and is denoted
by A. For sequences a, 3 € (R%)*, we denote the concatenation of & and 3 by a3. For
a = (z1,...,2,) € (RY*, the sequence « is said to be increasing if the inequality
z; < xit1 holds for every 1.

A partition 7 = {S1,..., Sk} of R (ie., S1,..., Sk are mutually disjoint non-empty
subsets of R¢ such that Uiz1,... k9% = R?) is said to be linearly separable iff there
exist w € R® and an increasing h = (h1,..., hx—1) € (R')* such that, for any = € R?,

hioit<w®z<h; & z€8; (i=1,...,k)
holds, where hg = —oco and hj = oo.

Consider equivalence relations =, =1, and =2 over (Rd)*. The number of the equiv-
alence classes of = is called the index of =. An equivalence relation =; is finer than
an equivalence relation =, (or =; is coarser than =1) iff x =1 y implies x =2 y for any
z and y. An equivalence relation = is right invariant iff « = 8 implies ary = (v for
any «, 3 and 7.

Consider partitions m; and 72 of R%. A partition 7 is finer than a partition m» (or
w2 is coarser than 1) iff for any block By € 1, there exists a block Bz € 72 such that
By C By. We say that m is a refinement of 7o iff 71 is finer than ma.

Lemma 1. Let w,w’ be unit vectors in R? such that w # w’, and consider any h € R.
There exists b’ € R such that for any e > 0, there exist z1, z2 € R? satisfying
W-—e<wz<uw @zi=h and w@zi=h<w®zs<h+e.

(]

This lemma means that w’ ® z1 and w’ ® z2 can be put together closely enough in
the interval [’ — e, k], and that w ® z1 and w ® z2 are separated w.r.t. the threshold

value h.
3. Linear Separation Automata and their Theoretical Results

In this section we introduce a linear separation automaton (LSA) and give some
theoretical results, which have been proved in our previous paperS).
3.1 Overview

An LSA is an extended model of a finite automaton. It accepts a sequence of real

Vol.2010-MPS-77 No.4
2010/3/4

(20, o)

-10,0]

Fig.1 LSA M;.

vectors, and has a weight function and a threshold sequence at every state. The tran-
sition from the current state to another is determined by comparing the inner product
of the weight and input vectors with each element in the threshold sequence. Figure 1
is a state transition diagram of an LSA M;.

Consider a state transition diagram as in Figure 1, some interval I C R associated
with some state transition from a state p is constructed with the threshold sequence of
p. Let an interval Iy be associated with a state transition from a state ¢ to r. If, in
the current state ¢, the inner product of the weight and input vectors is in Ip, then the
next state is r.

Example 1. Consider an LSA M; in Figure 1. The LSA M; has the weight function
w, the threshold sequence h, and the state transition function ¢. Let o = (1,22, x3)
be an input sequence of vectors in R? with z1 = (3v/10,2v/10), 22 = (—+/5,2v/5), and
x3 = (—=3v/10, —21/10). The inner product w(qi) ® z1 = 11 is in the interval (10, c0),
which implies that §(¢1,21) = gs. We see in the same way that d(gs,z2) = ¢4 and
0(qa,w3) = qa. The state g4 is a final state and thus the sequence « is accepted by M;.

(© 2010 Information Processing Society of Japan

TEERALER A SO
IPSJ SIG Technical Report

3.2 Definitions and Notation
An LSA M is formally defined as an 8-tuple
M = (d,Q,q0, F,w,h,s,0) ,

where

d is a positive integer specifying the dimension of input vectors to M,

Q is a finite set of states,

qo is an initial state (qo € Q),

F is a finite set of final states (F C @),

w is a weight function from Q to R such that w(q) is a unit vector for any q € Q,

h is a threshold function from @ to (R')* such that h(q) is increasing for every q € Q,
and is denoted by h(q) = (h(q)1,-..,h(q)|n(g)), and

s is a sub-transition function from @ to Q*, and is denoted by s(q) = (s(¢)1,- .-,
5(a)s(q)1)-

If |s(q)] > 1, then the equality |h(q)| = |s(¢)| — 1 holds for every g € Q.

In order to improve the readability, we write iq = |h(q)| for any q € Q.

§ is a state transition function from Q x R? to Q; and is defined in the following way
by using w, h, and s. Consider any state ¢ € Q and vector z € R®. The definition of &
is separated into three components.

First, in the case of |s(q)| = 0, the value d(q,z) is undefined.

Secondly, suppose that |s(¢)| = 1. The value d(q,) is defined as 6(g,) = s(¢)1.

Finally, assume that |s(q)| > 2. The value (g, x) is defined as follows:

s(a)h if w(q) ® x < h(g)

5(q)2 it h(g) <w(q) @z < h(q)2

5(q)i, if h(q)ig—1 <w(q) ® z < h(q)s,

8(@)igt1 i h(g)i, <w(@)®w .
Consider a state transition diagram as in Figure 1. Suppose that §(¢,2) = p holds

if h(q)i < w(q) ® x < h(q)it+1. In the diagram, the transition from ¢ to p is associated

Vol.2010-MPS-77 No.4
2010/3/4

with the interval (h(q):, h(q)i+1].

For a = (z1,...,2;) € (RY*, we write §(p,a) = ¢ if there exists a sequence
p1(= p),p2,...,pi41(= q) of states such that d(p;, ;) = pi+1 holds for any i. We
define the set of sequences accepted by an LSA M, denoted by L(M), as

L(M) ={ae (RY* | 6(go,a) € F} .
A subset L of (R%)" is said to be regular if there exists an LSA M such that L = L(M).
We define the size of M as the cardinality of Q, i.e., size(M) = |Q)|.

A state ¢ € Q is said to be reachable if there exists a € (R?)* such that §(qo, @) = q.

A state ¢ € Q is said to be unreachable if g is not reachable.

3.3 Theoretical Results

The theorems and lemmas in this subsection have been proved in 8).

Let = be a right invariant equivalence relation over (R?)*, and consider an equiv-
alence class [a]= containing a € (R?*)*. An equivalence relation R([a]=) over R?

induced by [a]= is defined as follows:

z R([a)=) v € ar= ay .
For any « and 8 with o = 3, the equality R([a]=) = R([f]=) holds, because = is

right invariant.

We say that a right invariant equivalence relation = over (Rd)* is right linearly
separable iff for any equivalence class [a]=, there exists a finite linearly separable par-
tition of R* that is finer than R?/R([a]=).

Definition 1 (Modified Myhill-Nerode Relation for LSAs). Let S C (R%)*
be a set of sequences. The equivalence relation = over (Rd)* satisfying the following
conditions is called a modified Myhill-Nerode relation with respect to S.

(1) The equivalence relation = is right invariant.

(2) The equivalence relation = is of finite index.

(3) The equivalence relation = is right linearly separable.

(4)

The set S is a union of some equivalence classes of =.

(© 2010 Information Processing Society of Japan

TEERALER A SO
IPSJ SIG Technical Report
a
For any subset S of (R%)*, we define an equivalence relation ~5 over (R%)* as follows:
arnsB & vye®Y) (ayeSiff fyeSs) .
Theorem 1 (Myhill-Nerode Theorem for LSAs). Let S C (R%)* be a set of
sequences. The following three statements are equivalent.
(1) The set S is regular.
(2) There exists a modified Myhill-Nerode relation with respect to S.
(3) The equivalent relation ~g is of finite index and right linearly separable.
|

Theorem 1 characterizes the class of languages accepted by an LSA. Moreover, the
equivalence relation ~g is utilized to characterize the minimum state LSA.

Let S C (R%)* be a set of sequences, and a be an element in (R?)*. Since ~g is right
linearly separable, there exists a finite linearly separable partition = = {Si,...,Sk}
which is finer than the equivalence classes of R([a]~g) . Thus, there exist wa, € R?
and ho = (h1,...,he—1) € (RY)* such that

hici <wa®zxz<h; & z€8 (i=1,...,k),
where ho = —oo and hy = co. We define
Muin = (d, Qmin, omin, Fmin, Wmin, Amin, Smin, Omin)

as follows:

Qmin = (Rd)*/ s, qOmin = [MES ,

5min([a]zsvm) = [ax]zs)

Fain = {[a]xs [@€ S},
hmin([@]xg) = ha

wmin([a]xs) = wa

Let M = (d,Q, qo, F,w, h,s,8) and M’ = (d,Q’, q5, F',w', h',s',8") be LSAs. We say
that M is isomorphic to M’ iff there exists a bijection f from Q to Q' satisfying the
following conditions:

(1) f(g0) =ao -
(2) f(8(q,x)) =8 (f(q),) holds for any ¢ € Q and 2 € R* .
(3) F(F)=F" .
Theorem 2 (Uniqueness of Minimum State LSA). Let S be a regular subset of
(Rd)*. The LSA Mmpin is isomorphic to every minimum state LSA accepting S.
O

Vol.2010-MPS-77 No.4
2010/3/4

Let M = (d,Q,qo, F,w, h,s,d§) be an LSA accepting S with no unreachable states.
For any p,q € Q, there exists a, 8 € (R*)* such that §(qo, @) = p and 6(qo, 8) = q. We
define the equivalence relation ~ over @) as follows:

p~q o ~s [.

The states p and ¢ are said to be indistinguishable iff p ~ q. The states p and ¢

are said to be distinguishable iff p £ q.

For any p € @, by 7(p) we denote a representative element of [p]. . We define an
LSA
M) ~= (d, @y, F' ! 15, 6)
where
Q=Q/~, d=lwl , F={d~laeF}, §(dez)=I5(ra)D)~ ,
w'(lg~) = w(r(@) , R (lg~) = h(r(g)) -
Theorem 3 (Characterization of Minimum State LSA). Let M be an LSA. The
LSA M/ ~ is a minimum state LSA for M such that L(M/ ~) = L(M).
a

4. Minimization Algorithm

In this section, we deal with an algorithm to minimize a given LSA. This algorithm
is similar to that to minimize a given finite automaton.

4.1 Coarsest Refinement Approach

Let M = (d,Q, qo, F,w, h,s,0) be an LSA. For a state q1,¢2 € Q, we write g1 ~w g2
if w(q1) = w(g2). A state q1 is preceding to a state ¢ with respect to a state g,
denoted by q1 <4 g2, if there exists an integer i such that s(q); = ¢1 and s(q)i+1 = qo.
For q € @, we define

6(q) ={plpes(a} .
For a subset X of @, we define
6(X)={plgeX,pei(g} .

Lemma 2. Consider q,q¢ € @Q such that ¢ %, ¢ and |6(q)] > 1. For any states

(© 2010 Information Processing Society of Japan

TEERALER A SO
IPSJ SIG Technical Report
p1,p2 With p1 <, pe, there exists x1,z2 € R? such that d(q,z;) = p; (3 = 1,2) and
(S(Q,, 1’1) = 6((]/7 $2)-
O
For a partition 7 of Q and ¢1,q2 € Q, we write q1 ~(x) g2 if there exists B € m such
that g1,g2 € B. For a subset X of @, we define
W(X)={w(@)|qe X} .
For a subset X of @ and w € W(Q), we define
Xo={qeX|w(g=w}.
For any w € W(Q), we also define
H(w) ={h(q)i|q€Qu,1<1i<iqg, 5(q)i # 5(q)it1 } U{oo} .

Example 2 below helps to understand these complex definitions.

For w € W(Q) and v € H(w) , we define the function d,,, from Q. to Q as follows:
bw,0(q) = 0(q,z) for some z € R? with w@z=uv .
We define the set of functions & as follows:
6= {0ww |weW(Q),ve Hw)} .

In the sequel, for simple description of the algorithm, we often use graph represen-
tation of mappings f € 6 and § : Q — 29, i.e., f is represented as a graph containing
edges between ¢1 and g2 such that g2 = f(q1), and § is represented as a graph containing
edges between ¢1 and g2 such that g2 € §(q1).

Example 2. Consider an LSA M; in Figure 1. We have W(Q) = {w1, w2},
H(wy) = {-10,0,5,10,00}, and H(w2) = {20,00}. A part of Functions in the set
& are represented in Figure 2.

|
Theorem 4 (Characterization of Partition @/ ~). Let M = (d,Q, qo, F,w, h, s,9)
be an LSA. The partition @/ ~ is a coarsest refinement m of mo = {F,Q — F'} which
satisfies the following conditions:
(C1) VBer Vfeé 3B € wsuch that f(B) C B,
(C2) VBen (|W(B)|>1 = 3B’ €x such that §(B)C B") .

Vol.2010-MPS-77 No.4
2010/3/4

0
—@
/
J]
@ @ ‘ &
8 5
Ows,20 Owy 00

Fig. 2 Graphs in & for the weight ws .

4.2 Minimization Algorithm

Our algorithm uses two primitive refinement operations split; and splita; the former
is for the condition (C1), and the latter is for (C2).

For aset S C Q, f € 0, and a partition 7 of Q, the operation splity (S, f,) is defined

as follows:

find all blocks B € 7 such that f(B)NS # @ and f(B) € S. Define By = BN f~1(9)
and B2 = B — Bi, and split B € 7 into the blocks By and Bz, which results in the

refinement of .

For a set S C @ and a partition , split2(S,) is defined as follows:

find all blocks B € 7 such that §(B) NS # 0, §(B) € S and |[W(B)| > 1, and split
B into some smaller blocks defined in the following way; Let B’ be the set of states
q € B such that 6(q) NS # 0 and §(q) € S. Define By = {qg € B— B’ | §(q) C S} and
By = (B — B’) — B;. For each w € W(B'), consider B[,. Then, split B € 7 into B1, B

and B.,’s for all w € W(B'), which results in the refinement of 7.

These operations are also illustrated in Figure 3 and Figure 4.

(© 2010 Information Processing Society of Japan

TEERALER A SO
IPSJ SIG Technical Report

split B into By, B, and BL’s (we W(B'))

split B into By and B

Fig.3 split1(S, f, 7).

Fig. 4 splita(S,).

Now, we present an algorithm to minimize a given LSA, Algorithm 1. This algorithm
checks the existence of a block B with which splitting operations (splits first, and then
split1) can be applied to the current partition. This process is continued until no more

refinement is possible.

Algorithm 1 Minimization Algorithm for LSA
Input: An LSA M = (d,Q, qo, F,w, h,s,0)
Output: 7
1 let m={F,Q— F};
2: loop
if 3B € 7 such that splita(B,) # 7 then
replace m with splita(B, 7);
else if 3B € 7, 3 f € § such that split1 (B, f,n) # 7 then
replace m with split1 (B, f,7);
else
output 7 and halt;
end if
10: end loop

© ® I @ g B ©»

Vol.2010-MPS-77 No.4
2010/3/4

(~oc,-10] (~oc,-10]

2 1

“FE

3
s o P -
R T] 0T

Fig.5 Minimum state LSA of M. Fig. 6 Optimized version of LSA in Figure 5.

4.3 Example Run
We show an example run of Algorithm 1 for the input M; in Figure 1.

Let m = {B1, B2}, where
By ={q2,q4}, B2 = {q1,93, 95, q6, 47, 43, 99, 910, q11, Q12 }-
First, splita(B1,) constructs the new partition m1 = {Bi, B3, B4}, where
B1 ={q2,q4}, Bs = {g5, 46,97, s}, Ba = {q1, 43,90, q10, q11, q12}-
Next, splita(Ba,m1) constructs the new partition 7o = {B1, Bs, Bs, B}, where
Bi ={q2,q1}, Bs = {45, 46, a7, 4s}, Bs = {q1, 43}, Bs = {a0, 10, q11, a2 }-
Next, splita(Bs,m2) constructs the new partition 73 = {Bi1, Bs, Bs, B7, Bs}, where
B1 ={q2,q1}, Bs = {45, 46,97, a8}, Bs = {a1, 43}, Br = {q0, qo}, Bs = {qu1, q12}-
Finally, spliti(Bs, dw,,20,73) constructs the new partition 74 = {Bi, Bs, Bs, Bz, B,
Bio}, where
B1 ={g2,q4}, Bs = {45, 6,97, 95}, Bs = {q1, g3}, Br = {q0, q10}, Bo = {qu1}, B1o = {q12}-
No more refinement is possible. Therefore Algorithm 1 outputs 74 and halts.
The minimum state LSA for M; with the set w4 of states is in Figure 5.
4.4 Correctness of Algorithm
We give some basic properties of these operations:

Lemma 3. A partition 7 satisfies (C1) if and only if split1 (B, f,) = m for every block

(© 2010 Information Processing Society of Japan

TEERALER A SO
IPSJ SIG Technical Report
B cmand f €6. A partition 7 satisfies (C2) if and only if splita(B,) = 7 for every
block B € 7.
O
Lemma 4. If 7w is a refinement of m and spliti(S, f,m1) = m holds, then
split1(S, f,m2) = m2 holds. If w2 is a refinement of 71 and splita(S,71) = m1 holds,
then splita (S, m2) = w2 holds.
a
Lemma 5. The equalities split1(S1, f,m) = =« and split1(Se, fym) = =« imply
split1(S1 U Sa, f,m) = w. The equalities split2(S1,7) = 7 and splite(S2,7) = 7 im-
ply split2(S1 U Sa,m) = .
|
Lemma 6. If m is a refinement of w2 and split2(S, 72) = w2 holds, then spliti(S, f,m1)
is a refinement of split1(S, f,m2).
O
Lemma 7. Let m be a partition satisfying (C1) and S be a union of some blocks in
m1. If w1 is a refinement of 72, then split2(S,71) is a refinement of splita (S, m2).
|
Lemma 8. Algorithm 1 maintains the invariant that any coarsest refinement of the
initial partition {F, @ — F'} satisfying (C1) and (C2) is also a refinement of the current
partition .
O
The following theorem shows the correctness of Algorithm 1.
Theorem 5 (Correctness of Algorithm 1). Let M = (d,Q, qo, F,w, h,s,d) be an
LSA, and n = |Q|. Algorithm 1 for the input M is correct and terminates after at
most n — 1 refinement steps, having computed the coarsest refinement of {F,Q — F'}
satisfying (C1) and (C2).

Proof. Since the number of blocks of a partition of @ is less than or equal to n, and
since the number of blocks increases at each refinement step, the algorithm terminates
at most n — 1 refinement steps. Lemma 3 implies that the final partition 7y satisfies

(C1) and (C2). Moreover, Lemma 8 implies that 7y should be the coarsest refinement

Vol.2010-MPS-77 No.4
2010/3/4

of {F,Q — F} satisfying (C1) and (C2). O

Let us discuss the time complexity of Algorithm 1. We define
K = max{|H(w)| |weW(Q)}
and
k=max{[0(¢)] |la€Q} .
The following theorem holds.

Theorem 6 (Time Complexity of Algorithm 1). Let M = (d,Q, qo, F,w, h, s,9)
be an LSA, and n = |Q|. The time complexity of Algorithm 1 for the input M is
O((K + k)n?).

Proof. Let m = (K + k)n, i.e., m is the upper bound of the total number of edges con-
tained in the graphs f € ¢ and in the graph . It is straightforward to see that finding
a block B satisfying the if-conditions (at lines 3 and 5) and refining 7 afterwards can
be done in time O(m).

Moreover, the upper bound of the number of refining 7« is n — 1.

Hence the time complexity of Algorithm 1 is O(mn) = O((K + k) n?). O

5. Minimization of Length of Threshold Sequences

Up to now, we discussed on the minimization of the number of states for a given
LSA, and not on that of the length of a threshold sequence at each state. In actuality,
different minimum state LSAs for a given LSA might have different length of threshold
sequences at some states.

In this subsection, we will elucidate some important properties of LSAs related to
the threshold sequence, and minimize the length of a threshold sequence at each state
of an LSA.

Let M = (d,Q, qo, F,w, h,s,5) be an LSA. Consider ¢ € Q and z,y € R? such that

0(q,z) = s(q)i and 6(q,y) = s(q)it1- If s(q¢)i = s(q)i+1, then the threshold value

h(q): is not necessary for the linear separation. Therefore it is better to remove such

(© 2010 Information Processing Society of Japan

TEERALER A SO

IPSJ SIG Technical Report
unnecessary threshold values.

For any g € @, we say that ¢ is optimized iff s(q);—1 # s(¢); holds for any i. We
also say that M is optimized iff ¢ is optimized for any q € Q.

Lemma 9. Let M = (d,Q,qo, F,w,h,s,6) and M' = (d,Q’,q,, F',w',h',s',8") be
LSAs. If M is isomorphic to M’ w.r.t. the isomorphism f, then w(q) = w’(f(q)) holds
for any ¢ € Q such that |6(q)| > 1.
O
For any ¢q € @, we define
H(q) = {h(a)i | 5(0): # s(@)isn, 1 <0< i} -
All the unnecessary threshold values in h(q) are removed from H(q).
The following theorem shows that the optimized minimum state LSA for a given one
is uniquely determined.
Theorem 7 (Minimization of Length of Threshold Sequences). Let M =
(d,Q,qo0, F,w,h,s,6) and M' = (d,Q’,q0, F',w',h',s",8") be LSAs. If M is isomor-
phic to M’ w.r.t. the isomorphism f, then H(q) = H(f(q)) holds for any ¢ € Q.
d
Now, we can say that the optimized minimum state LSA for a given one is uniquely
determined because some optimized minimum state LSAs have the same weight func-

tion and the set of threshold values at every corresponding state.

In order to optimize an LSA M = (d,Q, qo0, F,w, h, s,9), it is enough to remove all
the threshold values h(q); such that s(q); = s(q)i+1 for any integer i and rewrite §
according to such changes. Let k be the maximum number of edges going out from
q € @, and let n = |Q|. This procedure can be done in time O(kn).

Example 3. The optimized version of the LSA in Figure 5 is illustrated in Figure 6.
a

6. Conclusions

In this paper, we presented an algorithm to minimize an LSA M. Its time complexity

is O((K + k) n?), where K is the maximum number of threshold values assigned to each

Vol.2010-MPS-77 No.4
2010/3/4

weight, k is the maximum number of edges going out from a state of M, and n is the
number of states in M. We moreover discussed on the minimization of the length of a

threshold sequence at each state.

Some algorithms to learn an original finite automaton uses a minimization algorithm
as in 2), 9). Therefore the algorithm to minimize an LSA in this paper will play an
important role in the theory of learning an LSA. The development of the theory of

learning an LSA is one of the important future works.

References

1) Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J. and Yovine, S.: The Algorithmic Analysis of Hybrid
Systems, Theoretical Computer Science, Vol.138, No.1, pp.3-34 (1995).

2) Dupont, P.: Incremental Regular Inference, Proceedings of the Third International
Colloquium on Grammatical Inference (ICGI-96), pp.222-237 (1996).

3) Lynch, N. and Vaandrager, F.: Forward and Backward Simulations for Timing-
Based Systems, Proceedings of the Real-Time: Theory in Practice, pp.397—446
(1992).

4) Matsunaga, T. and Oshita, M.: Recognition of Walking Motion Using Support
Vector Machine, ISICE2007, pp.337-342 (2007).

5) Matsunaga, T. and Oshita, M.: Automatic estimation of motion state for motion
recognition using SVM, IPSJ SIG Technical Report, Vol.2008-CG-133, pp.31-36
(2008).

6) Mohri, T. and Tanaka, H.: Weather Prediction by Memory-Based Reasoning, Jour-
nal of Japanese Society for Artificial Intelligence, Vol.10, No.5, pp.798-805 (1995).

7) N.Lynch, F.V.: Hybrid I/O automata, Information and Computation, Vol.185,
No.1, pp.103-157 (2003).

8) Numai, Y., Udagawa, Y. and Kobayashi, S.: Theory of Minimizing Linear Sepa-
ration Automata, IPSJ SIG Technical Report, Vol.2009-MPS-76, pp.1-8 (2009).

9) Oncina, J. and Garcia, P.: Inferring Regular Languages in Polynomial Updated
Time, Pattern Recognition and Image Analysis, Series in Machine Perception €
Artificial Intelligence, Vol.1, pp.49-61 (1992).

10) Yamato, J., Ohya, J. and Ishii, K.: Recognizing human action in time-sequential
images using hidden Markov model, Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp.379-385 (1992).

(© 2010 Information Processing Society of Japan

