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An Efficient Vector Transfer for Sparse Matrix-Vector

Multiplication on Distributed Memory Systems

Hiroshi Nakashima,†1 Toshiyuki Fukuhara†2

and Takeshi Iwashita†1

This paper proposes an efficient algorithm to exchange fragments of a vector
distributed among processes which repeatedly perform sparse matrix-vector
multiplication in parallel and in a block-decomposed manner. The idea to
reduce the communication cost for the exchange is to combine non-contiguous
fragments of a vector residing in a process and required by another process to
multiply the fragments by the submatrix in the receiver process. That is, the
sender may send fragments and gaps between them forming a larger fragment,
rather than sending each fragment individually or packing fragments into a
single vector before sending. The key feature of our algorithm is to find the
optimum assortment of combining, individual sending and packing based on
dynamic programming from given fragments and non-linear cost functions. Our
preliminary evaluation with artificially generated sparse matrices shows the
optimum assortment is up to 1.5 times as fast as simple packing.

1. Introduction

Sparse matrix-vector multiplication is a frequently used kernel operation in nu-
merical and scientific programs including those implementing iterative methods
to solve linear equations and to find eigenvalues. These iterative methods typi-
cally repeats wi+1 = Avi with a fixed sparse matrix A and vectors vi and wi+1

from which the multiplier vector of the next iteration step vi+1 is derived.
Parallelizing the programs and methods with sparse matrix-vector multipli-

cation of large dimension is inevitable not only to accelerate them but also to
simply accommodate the large size matrices and vectors in a computing system.
The latter requirement usually leads us to decompose the matrix and vectors
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into submatrices and subvectors to make each of them reside in a portion of
distributed memory and thus to assign the computation of a submatrix and sub-
vectors to the process corresponding to the memory portion. For example, a
row-wise block-decomposition assigns a set of contiguous rows of A to a process
which should naturally have the corresponding part of the product vector w. The
process may also have a part of the multiplier vector v rather than the whole of
it exploiting the sparseness of the matrix A. That is, the process only requires a
part of components of v which corresponds to the non-zero entries of A.

The problem in giving a process its necessary components of v is that the
components can be distributed in many processes because a component is usually
derived from the corresponding component of w by the process having it. A
simple but spatially and temporally inefficient solution is to use an all-gather
type communication so that every process is given the whole of v regardless of
its necessity. More sophisticated and efficient solution is to analyze the matrix
A prior to the iterative multiplications to have a kind of flow graph representing
every sender/receiver pair for each subset of v’s components which the receiver
requires and the sender has.

Since the v’s components which a receiver needs are not necessary to be con-
tiguous but may form a set of fragments, we have to determine how a sender
sends the fragments to the receiver. A simple way is to send each fragment in-
dividually potentially causing a flood of small messages. Another simple tactics
is to pack the components into a buffer for sending to minimize the number of
messages paying the cost of copying. In addition, we found the third option in
which fragments are combined together with the gaps between them to form a
large message without copying.

Since the message transfer time with each of three tactics above depends on the
number of fragments and the size of each fragment and each gap, the best solution
is an assortment of the tactics applied to sets of fragments. For example, the
individual sending will be apply to large fragments, while packing and combining
should have advantage for a series of smaller fragments separated by large and
small gaps respectively.

Our primary contribution described in this paper is the proposal of an algo-
rithm based on dynamic programming to find the optimum assortment, which is
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discussed in Section 3 after we define the problem more formally in Section 2.
The implementation of the algorithm and its performance are then shown in
Section 4. Finally we conclude the paper in Section 5.

2. Problem Definition

Let A be a sparse square matrix of N ×N having entries a(i, j) (i, j ∈ [1, N ]),
and v be a N -dimensional vector having components v(i) (i ∈ [1, N ]). Then A

and v are decomposed into P submatrices and subvectors as

A =

 A1

...
AP

 v =

 v1

...
vP

 (1)

so that each submatrix Ap having Np rows and Np-dimensional subvector vp are
assigned to the process p ∈ [1, P ] (see Fig. 1).

A process p performs a part of the matrix-vector multiplication w = Av,
namely wp = Apv to produce the Np-dimensional subvector wp of the product
vector w. For this operation, the process p needs a set of components of v namely
Vp = {v(i) | a(i, j) ̸= 0, Kp < i ≤ Kp+1, 1 ≤ j ≤ N} where Kp =

∑p−1
q=0 Np.

The component set Vp is divided into disjunct subsets V 1
p , . . . , V P

p such that
V q

p = {v(i) ∈ Vp |Kq < i ≤ Kq+1} to form the set of components to be sent from
the process q to p.

Now let us concentrate on the sender/receiver process pair q and p to simplify
the notations and let V = V q

p . Let I be the set of indices of the components in
V , i.e., I = {i | v(i) ∈ V }. The ascendingly ordered sequence i1, . . . , ik (k = |I|)
of indices in I is divided into disjunct index fragments ϕ(1), . . . , ϕ(m) such that
I =

∪m
j=1 ϕ(j) and each of them has contiguous indices. That is, each ϕ(j)

satisfies the followings where h(j) = minϕ(j) and s(j) = |ϕ(j)|.
∀i ∈ ϕ(j) : h(j) ≤ i < h(j) + s(j) (2)

∀j ∈ [1,m−1] : h(j) + s(j) < h(j + 1) (3)
Then, with each index fragment ϕ(j), we define the fragment of vector compo-
nents f(j) = {v(i) | i ∈ ϕ(j)}.

Vector components in a contiguos sequence of fragments, or chunk, from f(j)
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Fig. 1 Example of A× v, fragments, chunks and assortments

to f(k − 1), i.e., F (j, k) =
∪k−1

l=j f(l) can be transferred from the process q to p

as a single message by one of the following ways. One way is to pack them into
a message buffer of

∑k−1
l=j s(l) components and send the contents of the buffer

minimizing the message size while paying the cost of copying. The other way is
to combine the fragments without copying to have a message including not only
them but gaps between them, making message size h(k − 1) + s(k − 1) − h(j)
larger than required.

The cost to transfer a fragment or a chunk is defined as follows. Let CT (n) be
the non-decreasing function of n to give the time to transfer a message having
n vector components from q to p, and CC(n) be that to give the time to copy
n contiguous components from the vector store to the buffer for packing. With
these cost functions, we can define the costs of the packing and combining transfer
of a chunk F (j, k) from q to p, namely Cpack (j, k) and Ccomb(j, k) as follows.

Cpack (j, k) = CT

k−1∑
i=j

s(i)

 +
k−1∑
i=j

CC(s(i)) (4)

Ccomb(j, k) = CT (h(k − 1) + s(k − 1)− h(j)) (5)
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Note that the second term of the equation (5) above is the sum of copying costs
of the fragments rather than the cost for the sum of fragment sizes, because we
have to take care of the overhead incurred in each fragment copy.

Then C(j, k) = min(Cpack (j, k), Ccomb(j, k)) gives us the cost to send F (j, k) as
a single message. Note that C(j, j+1) = Ccomb(j, j+1) = CT (s(j)) is the transfer
cost of the single fragment f(j), and their sum over F (j, k), i.e.,

∑k−1
i=j C(i, i+1)

can be smaller than C(j, k). In general, the minimum transfer cost for a fragment
sequence is given by a series of packing/combining transfers of its subsequences,
i.e., chunks.

Now we define our problem as follows: from a given fragments f(1), . . . , f(m),
find the set of chunks F (j1, j2), . . . , F (jn, jn+1), or the assortment of the frag-
ments, where j1 = 1, jn+1 = m + 1, and ji < ji+1 for all i ∈ [1, n], such that∑n

i=1 C(ji, ji+1) is minimized.

3. Algorithm

To solve the minimization problem defined in the previous section, we introduce
a subproblem defined as follows.

Cmin(n, k) = min
j2,...,jn

{
n∑

i=1

C(ji, ji+1)
∣∣∣∣ j1 = 1, jn+1 = k + 1, ji ≤ ji+1

}
(6)

The cost Cmin(n, k) above means the minimum transfer cost for fragments f(1),
. . . , f(k) with at most n chunks which are F (ji, ji+1) with all ji such that i ∈ [1, n]
to give the minimum but excluding those ji = ji+1 because F (ji, ji) means a
empty chunk by definition and thus C(ji, ji) = 0. It is clear that Cmin(1, k) =
C(1, k) from the definition above, and also that Cmin(m, m) gives the minimum
cost for the original problem.

Since C(ji, ji+1) can be calculated from any other C(ji′ , ji′+1), the definition
above can be rewritten with the formulation similar to that presented in Ref. 1)
as follows.

Cmin(n, k) = min
1≤j≤k

{Cmin(n− 1, j) + C(j, k)} (7)

From the recurrence above and the obvious facts that Cmin(n, k) = Cmin(k, k)
for any n > k and C(j, j) = 0 for any j by definition, we have the following code

based on dynamic programming technique.
for k = 1 to m do Cmin(1, k)← C (1, k);
for n = 2 to m do begin

for k = n to m do begin
cmin ← Cmin(n − 1, k); jmin ← k ;
for j = k − 1 downto n − 1 do begin

c = Cmin(n − 1, j ) + C (j , k);
if c < cmin then begin

cmin ← c; jmin ← j ;
end

end
Cmin(n, k)← cmin; Jmin(n, k)← jmin

end
end

The code above give us the optimum assortment of fragments by a sequence of
their indices j2, . . . , jm which minimize the right-hand side of the equation (6) for
Cmin(m, m), i.e., the arg min of the equation, through a back-trace of Jmin(n, k)
as follows.

jm = Jmin(m,m) jn = Jmin(n, jn+1) (2 ≤ n < m) (8)
It is clear that the code above takes O(m3) time providing that we can cal-

culate C(j, k) in the most-inner loop in O(1) time for each. From equations (4)
and (5), an O(1) calculation is easily implemented by keeping track

∑k−1
i=j s(i)

and
∑k−1

i=j CC(s(i)). As for the spatial complexity, it is also obvious we need
O(m2) space to keep Jmin(n, k)⋆1.

4. Experiments

4.1 Implementation and Evaluation Environment
We implemented the algorithm discussed in Section 3 together with the vector

transfer for multiplying it to a sparse matrix represented in CRS format, using

⋆1 It is unnecessary to have Cmin(n, k) for all n ∈ [1, m] because only Cmin(n−1, k) is required
to calculate Cmin(n, k), and thus the space for it is O(m). The O(m2) for Jmin(n, k), on
the other hand, is essential.
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Fig. 2 Cost Functions CT (n) and CC(n).

C99 and MPI-2.0. The program consists of the following two procedures.
• A scheduler in which each process p analyzes the given submatrix Ap to

find the optimum assortments for all vq which the process requires for the
multiplication with Ap. Then all processes perform an all-to-all type commu-
nication to exchange the assortments so that each process p has assortments
of vp to send its components to other processes. In addition, the submatrix
Ap is transformed into A′

p so that its entry a′(i, j′) has the entry a(i, j) where
the vector component v(j) is j′-th one in the concatenation of all assortments
for p. Thus the concatenation, namely v′

p, satisfies wp = Apv = A′
pv

′
p. This

procedure is executed just once at the beginning of, for example, a iterative
method.

• A transporter in which each process p sends assortments of the given subvector
vp in non-blocking manner for combined chunks while packed chunks are
sent in blocking manner to minimize the size of buffer for packing by sharing
one buffer for all packed transfer. At the same time, the process p receives
assortments in non-blocking manner to form v′

p together with the components
of vp itself which are copied locally. This procedure is executed repeatedly
in iterative matrix-vector multiplications.

The scheduler is designed so that it accepts user-defined and environment-
dependent cost functions CT (n) and CC(n). In our experiment we gave the
scheduler simple table-driven functions based on the measurements of the trans-
fer and copy performance of our evaluation environment, T2K Open Supercom-
puter2) of Fujitsu’s HX600 nodes comprising four quad-core Opteron 8356 for

each. That is, we ran simple measurement programs using Fujitsu’s C compiler
version 3.0 and MPI library version 3.0, which are also used for the main program
and its evaluation, to obtain the performance data shown in Fig. 2 for n = 2i

vector components where i ∈ [0, 19]. Then each cost function with n components
looks the table of performance data by l = ⌊log2 n⌋ and l +1 to have the linearly
interpolated value for n by;

Cx(n) ≈


(2l+1 − n)Cx(2l) + (n− 2l)Cx(2l+1)

2l
n ≤ 219

n

219
Cx(219) n > 219

for Cx(n) ∈ {CT (n), CC(n)}.
4.2 Cost Optimality
The first experiment is to evaluate how small cost the optimum assortment gives

compared to other simple methods. That is, we evaluated the costs of transferring
ten fragments of various sizes and gaps between them with the following four
methods; individual, packing and combining methods which sends all fragments
individually, packing them into one message, and combining them and gaps to
form one message, while optimum is our proposed one. We evaluated the amount
of the cost using the cost functions rather than measuring the time for vector
transfers. Therefore, the evaluation gives how our optimum method works well
theoretically.

Fig. 3 shows normalized costs r relative to the optimum ones for randomly
generated fragments having 2s vector components on average, and 2g com-
ponents in each gap on average. Graphs in the figure are for the cases of
g ∈ {s−5, s−2, s, s+1}, while s is varied from 5 to 19 in each case. Each value
shown in the graphs is the average of ten experiments with specific settings of s

and g.
It is observed from the graphs that the individual method incurs high costs

when the size of fragments and gaps is small but becomes optimum when the
size increases as easily expected. As for other two simple methods to send all
fragments by one message, one of them is almost optimum for small size fragments
but it depends on the gap size which method is better and (nearly) optimum.
On the other hand, the optimum method gives not only the best of three simple
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Fig. 3 Costs of Simple Methods Relative to Optimum Method.

methods but also successfully finds optimum assortment of these three methods
even with merely ten fragments. For example, in a case of s = g = 13, the
optimum method finds three chunks of 4, 3 and 3 fragments to achieve about
10% cost reduction from the best of three simple methods.

4.3 Vector Transfer Performance
The next experiment is to evaluate the real performance of vector transfers for

large scale matrix-vector multiplications. We used 64 CPU cores equipped in four
nodes of HX600 to allocate 64 MPI processes of a multi-processed matrix-vector
multiplication.

Matrices are artificially generated using a base matrix derived from a difference
equations using 7-point stencil for a 3-dimensional 2563 grid space with periodic
boundary. Since the base matrix A is constructed by a lexicographical ordering
on grid coordinates, the i − th row of the matrix has non-zero entries in its

columns of ji,1 = i, ji,2 = i ⊕ 1, ji,3 = i ⊖ 1, ji,4 = i ⊕ 256, ji,5 ⊖ 256, ji,6 =
i ⊕ 2562 and ji,7 = i ⊖ 2562 where x ⊕ y = ((x + y − 1) mod 2563) + 1 and
x⊖ y = ((x− y − 1) mod 2563) + 1.

To have matrices having some random sparseness, we transformed the base
matrix A by shifting its non-diagonal elements using normal random numbers
with mean 0 and a certain variance σ2. That is, we have a matrix A(τ) whose i-th
row has seven non-zero entries at ji,1 and ji,k ⊕ x6(i−1)+(k−1) for k > 1 where xl

is the l-th element in a random number sequence x1, . . . , x6·2563 with σ = 2τ ⋆1.
A generated matrix of 2563×2563 or 224×224 is then split into 64 submatrices

of equal size, 218 rows for each, to assign each of them to each process. Therefore,
the vector v is 224-dimensional while each subvector vp is 218-dimensional. Fi-
nally, in order to compensate excessive randomness and sparseness of the matrix
resulting in a unrealistically large number of fragments in V q

p for a process pair p

and q due to our straightforward generation with random shifting, we reduce the
number of fragments to 210 by filling small size gaps with virtual components.

We measured the time of vector transfer varying σ from 0 for A to 224 for
A(24) which are almost uniformly random sparse. For each matrix, the times
with the individual and packed method are also measured together with the
optimum method. In addition, we measured the time of MPI_Allgatherv(),
which is independent from σ, to give the whole of vector v to all processes.

Fig. 4 shows measured transfer times in (a) and the ratio of those of the packing
method over the optimum method in (b). Note that τ = 0 in Fig. 4(a) does not
mean σ = 20 = 1 but means σ = 0. The graphs exhibit that the packing
and optimum methods work well taking about 10 ms or less and almost tie for
τ ≤ 16, which means vector components in a subvector vp are required only by
two adjacent processes p± 1 almost always. In this range, they are much faster
than the individual method, which is also faster than all-gather.

Then the transfer times of the optimum and packing methods start growing
but still tie until τ = 19 at which about 10 processes needs the components in
a subvector, while that of the individual method steeply grows due to a flood of
small size messages. After that the optimum method clearly shows its advantage

⋆1 Therefore, the matrix is meaningless in the sense of mathematics nor physics.
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Fig. 4 Vector Transfer Time (a) and Comparison of Optimum and Packing Methods (b).

over the packing with 20–50 % performance superiority. However, their advantage
over all-gather disappears when τ is large to make it necessary for a process to
gather fragments from all other processes, due to our simple communication
scheduling with a batch of non-blocking receives followed by a series of non-
blocking (for optimum) or blocking (for packing) sends.

5. Conclusion

In this paper, we discussed an efficient algorithm to exchange fragments of
a block-decomposed vector among processes for iterative sparse matrix-vector
multiplication with a matrix also block-decomposed. For a process pair p and
q and the transfer of the fragments in the subvector residing in q and required
by p for its local multiplication, our algorithm analyze p’s submatrix to find
the optimum assortment of the fragments for individual, packing or combining
transfer of them using dynamic programming technique.

We implemented the algorithm on our T2K Open Supercomputer and measured
its performance using 64 CPU cores to which 64 MPI processes are allocated.
The evaluation with artificially generated matrices of 224 × 224 confirms our
optimum method is much faster than all-gather type method when the fragments
are not widely distributed among processes, and outperforms the packing method
especially when the size of gaps between fragments varies widely.

Our urgent future work is to evaluate our method with realistic matrices. We
also plan to improve the performance of our method by the followings; introduce

some heuristics to reduce O(m3) time complexity in a practical sense; use more
accurate cost functions to incorporate the effect of process mapping, memory
layout of fragments, and so on; improve the communication scheduling especially
when communication pattern is (almost) all-to-all.
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