
Vol. 47 No. 8 IPSJ Journal Aug. 2006

Regular Paper

An Obfuscation Scheme Using Affine Transformation

and Its Implementation

Kazuhide Fukushima,† Shinsaku Kiyomoto†

and Toshiaki Tanaka†

Program analysis techniques have improved steadily over the past several decades, and
these techniques have made algorithms and secret data contained in programs susceptible to
discovery. Obfuscation is a technique to protect against this threat. Obfuscation schemes
that encode variables have the potential to hide both algorithms and secret data. We define
five types of attack — data-dependency attacks, dynamic attacks, instruction-guessing attacks,
numerical attacks, and brute force attacks — that can be launched against existing obfuscation
schemes. We then propose an obfuscation scheme which encodes variables in a code using
an affine transformation. Our scheme is more secure than that of Sato, et al. because it can
protect against dependency attacks, instruction-guessing attacks, and numerical attacks. We
describe the implementation of our scheme as an obfuscation tool for C/C++ code.

1. Introduction

1.1 Background
Program analysis techniques have been

steadily improved over several decades, as evi-
denced by the development of tools such as de-
buggers and decompilers. Algorithms and se-
cret data contained in programs may be suscep-
tible to discovery through the use of these tools.
For example, it was reported that Apple’s juke-
box program “iTunes” was analyzed and their
copyright management technology “FairPlay”
cracked 10). In this case, the attacker analyzed
the program and exposed the method used to
generate the secret key for encrypting music.
Even though program development may require
a great deal of labor, it is relatively easy for at-
tackers to steal the algorithms and secret data
contained in a program. Therefore, techniques
that make programs difficult to analyze are de-
sirable for copyright protection and to maintain
the secrecy of data.

The term obfuscation refers to such tech-
niques. Obfuscation schemes transform an orig-
inal program (code or a binary file) into an ob-
fuscated program that is more difficult to ana-
lyze while preserving its functionality. Here, we
define functionality as preserved if the obfus-
cated program gives the same output as that of
the original program when both programs have
common input. Obfuscation prevents substan-
tial analysis of a program if the cost of analyz-
ing the obfuscated program exceeds the value

† KDDI R&D Laboratories Inc.

of the original program.
1.2 Related Work
1.2.1 Existing Schemes
Many obfuscation schemes have been pro-

posed.
Monden, et al. proposed an automatic obfus-

cation scheme for C code that contains loops 8),
and Gannod proposed a scheme that obfuscates
while loops, do while loops, and for loops 7).
Collberg, et al. proposed a scheme that inserts
dummy instructions using conditional branch-
ing 3). Chan, et al. proposed a scheme that
modifies identifiers contained in Java byte code
in order to protect the code against decompila-
tion 2). Sosonkin, et al. proposed a scheme that
changes the structure of classes in a Java code
by merging and dividing them 13). Obfuscation
schemes with a theoretical basis have also been
proposed. Wang, et al. showed that the prob-
lem of determining to which address a program
branches statically is NP-hard, and proposed
an obfuscation scheme for C code by indirect
reference using arrays and pointers 14). Ogiso,
et al. showed that the problem of determining
to which address a function pointer points stat-
ically is NP-hard, and proposed an obfuscation
scheme using function pointers that obfuscate
function calls 9). Sakabe, et al. showed that the
problem of determining a points-to in a code
with method overloading and classes which im-
plement interfaces is NP-hard, and proposed an
obfuscation scheme for Java codes.

Collberg, et al. 4) and Sato, et al. 12) both
proposed obfuscation schemes that encode vari-
ables. One of the schemes proposed by Coll-

2556



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2557

berg, et al., change encoding, encodes the con-
trol variables of loops with a linear function.
However, they did not show a concrete proce-
dure for encoding variables and instructions.
Sato, et al. proposed a systematic obfusca-
tion scheme that encodes variables and instruc-
tions 12).

Most existing schemes aim at obfuscating the
algorithm in the target program. Obfuscation
schemes 3),7)∼9),11),13),14) change the structure
of a program. However, these schemes do not
explain how to protect secret data. On the
other hand, encoding schemes transform data
according to certain rules, and we can use these
schemes to protect secret data. Furthermore,
following transformation of the variables, the
operations between them are also transformed.
Therefore, an obfuscation scheme using encod-
ing potentially can hide both algorithms and
secret data.

1.2.2 Approach of Sato, et al.
The scheme proposed by Sato, et al. en-

codes a variable x using a linear transformation
C(a, b) : x �→ ax + b (a �= 0 and a, b ∈ Z). X
and Y denote the encoded variables obtained
from the variables x and y, respectively—that
is, X = ax + b and Y = ay + b. The trans-
formation is called the encoding rule C(a, b)
for variable x. They apply the transforma-
tion rules R1(a, b), R2(a, b), . . . , R10(a, b) (Ta-
ble 1) to arithmetic instructions in code ac-
cording to the priority of operators. As a re-
sult, they obtain code obfuscated by the coding
rule C(a, b). These rules R1(a, b), R2(a, b), . . . ,
R10(a, b) are called the operator-transformation
rules R(a, b) corresponding to the coding rules
C(a, b). All the operator-transformation rules
R(a, b) are shown in Table 1. Each coding
rule C(a, b) corresponds to exactly one oper-
ator transformation rule R(a, b). That is, when
a and b of the code rule C(a, b) are fixed, the
operation-transformation rule R(a, b) is deter-
mined. Finally, they apply the decode rule
D(a, b) : ax + b �→ x to the result. The plain
result is obtained through the decoding rule
D(a, b).

1.3 Our Contribution
First, we define five types of attack:

data-dependency attacks, dynamic attacks,
instruction-guessing attacks, numerical attacks,
and brute force attacks.

Each can be applied to a code obfuscated by
Sato, et al.’s scheme. This scheme is vulnera-
ble to these attacks because the original vari-

Table 1 All the operator-transformation rules
R(a, b).

R1(a, b) : X + Y → X + Y − b
R2(a, b) : X − Y → X − Y + b
R3(a, b) : X ∗ Y → (XY − b(X + Y − b − a))/a
R4(a, b) : X/Y → (aX + bY − b(b + a))/(Y − b)
R5(a, b) : X + y → X + ay
R6(a, b) : X − y → X − ay
R7(a, b) : y − X → ay − X + 2b
R8(a, b) : y ∗ X → yX − by + b
R9(a, b) : X/y → X/y − b/y + b
R10(a, b) : y/X → (a2y)/(X − b) + b

able and the encoded variable have a one-to-
one correspondence. We then propose an ob-
fuscation scheme that simultaneously encodes
multiple variables in a code through an affine
transformation. Our scheme is more secure
than that of Sato, et al. because it can protect
against data-dependency attacks, instruction-
guessing attacks, and numerical attacks.

We have quantitatively evaluated the effi-
ciency and the complexity of variable depen-
dences in obfuscated codes. In our toy exam-
ple, the number of instructions in our obfus-
cated assembly code was 3.67 times the original
number. However, we can improve the execu-
tion efficiency by applying our scheme only to
parts where the highest level of security is re-
quired. Moreover, the complexity of variable
dependences in code obfuscated by our scheme
is greatly increased, while that in code obfus-
cated by Sato’s scheme does not increase.

We have implemented our scheme as an ob-
fuscation tool for C/C++ code.

2. Attacks

Some code includes secret data needed for the
program itself; e.g., keys for a copyright man-
agement program. Attackers can obtain secret
data by investigating algorithms in cases where
the data is divided or transformed using certain
functions.

2.1 Attacks on Obfuscated Code
We classify attacks on obfuscated code into

three types.
• Attacks that obtain secret algorithms and
secret data directly from obfuscated code
• Attacks that guess the original instructions
and variables in the original code from the
obfuscated code
• Attacks that deobfuscate the obfuscated
code by finding some secret keys (Note that
the secret key differs from the “secret data”
defined above. The former is not contained



2558 IPSJ Journal Aug. 2006

in the code while the latter is.)
The first and second types of attack can succeed
if attackers obtain the obfuscated code. How-
ever, the third type of attack can succeed only
if an obfuscation scheme uses a secret key and
the attackers know that the scheme is being ap-
plied.

Furthermore, attackers must investigate all of
the code in the first and second types of attack,
and the cost of these attacks rises as the code
size increases. However, the cost of the third
type of attack does not increase with the code
size since the attackers do not directly investi-
gate the obfuscated code.

We classify data-dependency attacks and dy-
namic attacks into the first type; instruction-
guessing attacks into the second type; and nu-
merical attacks and brute force attacks into the
third type.

2.2 Detailed Description of Attacks
The following provides detailed descriptions

of the five kinds of attack.
(1) Data-Dependency Attack
A data-dependency attack succeeds if an at-

tacker can obtain the value of a variable from
an obfuscated code using the dependencies be-
tween variables.

Obfuscated codes include many variables,
and attackers want to know the values of these
variables. However, a value is rarely assigned as
an immediate value. In most cases, it depends
on the previous value of the variable itself or
values of other variables. Thus, attackers must
obtain the values of variables using the depen-
dence between variables; i.e., the relations of
references and assignments. These values can
be used as clues to analyze algorithms and se-
cret data.

For example, attackers may derive algorithms
used in obfuscated code by investigating the
value of variables which hold the output. Addi-
tionally, some secret data may be divided into
multiple variables or may be transformed by
some functions. In this case, attackers can ob-
tain the secret data through this sort of attack.

(2) Dynamic Attack
A dynamic attack succeeds if an attacker can

obtain some information concerning the obfus-
cated code.

This information can then be used as a clue
to analyze an algorithm and secret data.

For example, attackers add instructions to
output the values of variables to obfuscated
code and then execute the code. This allows

them to obtain the value of arbitrary variables
at any point. They can then obtain the algo-
rithm and secret data through the method used
in a data-dependency attack.

(3) Instruction-Guessing Attack
An instruction-guessing attack succeeds if an

attacker can guess the instructions in the orig-
inal code from those in obfuscated code.

The attacker can derive which variables ap-
pear and how the variables are used in the in-
structions of the original code. This informa-
tion can be used as a clue to analyze an algo-
rithm and secret data.

For example, the attacker may determine an
algorithm by using guessed instructions. Ad-
ditionally, the attacker may find which data is
used as an input to an encryption function; that
is, which data is secret data.

(4) Numerical Attack
A numerical attack succeeds if an attacker

can deobfuscate the obfuscated code by us-
ing numerical relations between the obfuscated
data and the original data.

This attack can directly deobfuscate the ob-
fuscated code, and attackers can obtain algo-
rithms and secret data from unprotected in-
structions and variables. It can be applied to
obfuscation schemes in which the original data
and obfuscated data are numerically related.

(5) Brute Force Attack
A brute force attack succeeds if an attacker

can obtain the secret key used for obfuscation
by trying all possible keys.

If attackers can find the secret key, they can
obtain the original code. They can then obtain
algorithms and secret data from unprotected in-
structions and variables.

2.3 Resistance of Existing Schemes
Here, we discuss how resistant existing

schemes are to the five kinds of attack.
Some obfuscation schemes 3),4),9),11)∼14) are

effective against data-dependency attacks. Some
of these schemes change the number of vari-
ables 3),9),11),13),14), and others change the in-
struction semantics 4),12). The obfuscation
schemes that obfuscate only the control struc-
tures in code 7),8) are the least effective against
this sort of attack.

Likewise, some obfuscation schemes3),4),9),11),

12),14) are effective against instruction-guessing
attacks. Some change the number of in-
structions by introducing dummy instruc-
tions 3),9),11),14) and others change the seman-
tics of instructions 4),12). However, certain



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2559

schemes 3),7)∼9),11),13),14) are not very effective
against this sort of attack. The schemes pro-
posed by Monden and Gannod 7),8) do not
change instructions while changing the control
structures, and that of Sosonkin 13) changes
only the data structures.

None of these schemes are effective against
dynamic attacks, since every attacker who has
an obfuscated code can succeed in such an at-
tack.

Numerical attacks and brute force attacks can
succeed against only the schemes of Collberg
and Sato 4),12). These two schemes use a nu-
merical function to encode variables. Addition-
ally, two coefficients in the function are used as
a key.

However, these two schemes are superior to
other schemes in two respects. First, they
change the instruction semantics, and auto-
matic attacks using pattern matching are diffi-
cult to apply. Second, transformation has many
variations since it uses a secret key.

3. Problems with the Scheme of Sato,
et al.

Sato, et al.’s scheme is somewhat ef-
fective against data-dependency attacks and
instruction-guessing attacks. However, this
scheme encodes single variables with a linear
function—that is, there exists exactly one en-
coded variable for each original variable. Thus,
the effectiveness is limited. Furthermore, their
scheme cannot protect against numerical at-
tacks, dynamic attacks, or brute force attacks.

(1) Data-Dependency Attack
Sato, et al.’s scheme cannot fully protect

against this form of attack. Their scheme en-
codes a variable into exactly one encoded vari-
able, so it does not obfuscate the dependence
between variables though some expressions be-
come more complicated.

Here, we provide two simple examples.
First, we discuss protection for algorithms.

We assume that attackers want to obtain the
value of Y after the while loop is executed once
in the obfuscated code (Fig. 1), and they use
the value as a clue to analyze algorithms in-
cluded in the code. In this case, the attack-
ers must obtain the previous values of vari-
ables TMP and Y since Y is last updated by
the instruction Y = -(TMP+2)+Y; in the 11th
line. Y = −1 is obtained from the fourth line,
and TMP is updated by the instruction TMP =
(X-2)/2; in the ninth line. The attackers must

1: int main(void){

2: int X, Y, TMP, C, l;

3: X = 2;

4: Y = -1;

5: TMP = -1;

6: C = 1;

7: scanf("%d", &l);

8: while((C-1)/2 < l){

9: TMP = ((X-2)/2)-2;

10: X = -2*Y+2;

11: Y = -(TMP+2)+Y;

12: C = C+2;

13: }

14: printf("Fibonacci(%d)=%d\n",l,(X-2)/2);

15: return 0;

16: }

Fig. 1 Code (1) obfuscated by Sato, et al.’s scheme.

1: int main(void){

2: int x, y, tmp, c, l;

3: x = 0;

4: y = 1;

5: tmp = 1;

6: c = 0;

7: scanf("%d",&l);

8: while(c < l){

9: tmp = x;

10: x = y;

11: y = tmp+y;

12: c = c+1;

13: }

14: printf("f Fibonacci(%d) = %d\n", l, x);

15: return 0;

16: }

Fig. 2 Original code (1).

obtain the previous value of X, and can find
that the value is 2 from the instruction X = 2;
in the third line. As a consequence, they must
obtain the values of variables TMP, Y, andX to
obtain the variable Y in the obfuscated code.
On the other hand, they must obtain the value
of variables tmp, y, andx to obtain the corre-
sponding variable y also in the original code
(Fig. 2).

Second, we discuss protection for secret data.
We assume that attackers want to obtain se-
cret data used in the if statement in the sev-
enth line in the obfuscated code (Fig. 3). In
the obfuscated code, the value of the variable
k is divided into the variables x and y. The
value of k is secret data since it affects whether
function LicenseOK() is executed. The attack-
ers can obtain the value of K by determining
the values of variables X and Y , also in the ob-
fuscated code. On the other hand, they must



2560 IPSJ Journal Aug. 2006

1: int LicenseCheck(void){

2: int x,y,k,i;

3: x = 3;

4: y = 4;

5: k = x+y;

6: scanf("%d",&i);

7: if (i == k){

8: LicenseOK();

9: return 0;

10: }

11: return -1;

12: }

Fig. 3 Original code (2).

1: int LicenseCheck(void){

2: int X,Y,K,i;

3: X = 7;

4: Y = -1;

5: K = -(3*X+6*Y+9)/2;

6: scanf("%d", &i);

7: if (i == (9-K)/3){

8: LicenseOK();

9: return 0;

10: }

11: return -1;

12: }

Fig. 4 Code (2) obfuscated by Sato, et al.’s scheme.

determine the values of the two variables to ob-
tain the value of k, also in the original code
(Fig. 4).

Thus, attackers can obtain the value of a vari-
able in obfuscated code if they can obtain as
many of the previous values of a variable as
exist in the original code, though some instruc-
tions become more complicated.

(2) Dynamic Attack
Sato’s scheme cannot protect against this

form of attack. For example, attackers can ob-
tain values of arbitrary variables at any point
by inserting printf at the point shown in Fig. 1
and Fig. 4. These values are used as clues to
analyze algorithms and secret data with the
method used in the data-dependency attack.

(3) Instruction-Guessing Attack
Sato’s scheme cannot fully protect against

this form of attack. There exists exactly one
original variable for each encoded variable, and
the two variables have a one-to-one correspon-
dence. An attacker can guess the original in-
struction using these correspondences.

We again provide two simple examples.
First, we discuss protection for algorithms.

We assume that attackers want to determine

the structure of the original instructions in the
obfuscated code (Fig. 1). The instruction Y =
-(TMP+2)+Y; in the 11th line assigns a value
to Y that is computed from the encoded vari-
ables TMP and Y . The attackers can guess
that the structure of the original instruction is
y=f(tmp,y);, where y and tmp are the orig-
inal variables corresponding to Y and TMP ,
respectively, and f is some numerical function.
In fact, the original instruction is y = tmp+y
(see the 11th line of Fig. 2).

Second, we discuss protection for secret data.
We assume that attackers want to determine
the condition where the function LicenseOK()
is executed in the obfuscated code (Fig. 4).
They will focus on the if statement in the sev-
enth line of the code. Only the variable K is
compared with the input. They can guess that
only one variable is likewise compared with the
input in the original code and this data is se-
cret. Finally, they can determine the condition
by finding the value of K.

Sato’s obfuscation scheme changes the in-
struction semantics, but does not change the
number of variables that appear in each instruc-
tion. Thus, attackers can guess the instructions
in the original code.

(4) Numerical Attack
Sato’s scheme cannot protect against this

form of attack. Attackers can decode a variable
if they can obtain exactly one encoding rule for
the variable, and they can obtain the algorithm
and secret data from unprotected instructions
and variables.

Here, we show the decoding process:
Step 1 Obtain the Decoding Rule

Attackers obtain decoding rule D(a, b) for
variable x. The decoding rule can be ob-
tained at the points where the result is de-
coded.

Step 2 Find the Encoding Rule
The attackers find encoding rule C(a, b) by
calculating the inverse function of decoding
rule D(a, b).

Step 3 Decode the Variable
The attackers decode encoded variable X by
executing their obfuscation scheme and inter-
changing the encoding rule and the decod-
ing rule. That is, decoding rule D(a, b) is
used as encoding rule C(1/a,−b/a), and en-
coding rule C(a, b) is used as decoding rule
D(1/a,−b/a).
The following is a simple example. We as-

sume attackers want to decode variable X in



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2561

1: int main(void){

2: int x, Y, TMP, C, l;

3: x = 0;

4: Y = -1;

5: TMP = -1;

6: C = 1;

7: scanf("%d", &l);

8: while((C-1)/2 < l){

9: TMP = x-2;

10: x = -Y;

11: Y = -(TMP+2)+Y;

12: C = C+2;

13: }

14: printf("Fibonacci(%d) = %d\n", l, x);

15: }

Fig. 5 Code (1) in which variable x is decoded.

the obfuscated code (Fig. 1). First, they fo-
cus on the 14th line. They can guess that
D(2, 2) = (X − 2)/2 is the decoding rule for
X since the (decoded) result is output in this
line. They can then decode variable x using the
encoding rule and the decoding rules. The re-
sultant code is shown in Fig. 5. Furthermore,
they may guess D(2, 1) = (C − 1)/2 is the de-
coding rule for C since the variable is compared
with the input data in the eighth line.

(5) Brute Force Attack
Their scheme cannot fully protect against this

form of attack. Attackers can decode a variable
with the method used in the numerical attack
if they can correctly guess the decoding rule for
the variables.

An attacker must specify two integers used in
the encoding transformation. Thus, the cost of
this attack is N2, where the number of possibil-
ities for each element is N . This attack is dif-
ficult when N is large. However, the calculable
range of a program may be greatly restricted in
this case. Thus, there is a trade-off between the
security and the functionality of an obfuscated
code.

4. Our Scheme

We propose an obfuscation scheme that si-
multaneously encodes multiple variables in a
code with an affine transformation. In our
scheme, there is no one-to-one correspondence
between each original variable and each en-
coded variable since the data a variable holds is
distributed among multiple encoded variables.
Therefore, our scheme can protect against the
data-dependency attacks, instruction-guessing
attacks, and numerical attacks defined in Sec-
tion 2.2.

4.1 Encoding of Variables
We encode n variables x1, x2, . . . , xn to m

variables X1, X2, . . . , Xm with an m×n matrix
A = (ai,j) and an m-dimensional vector b =
(b1b2 . . . bm)T .

Here, we assume that n and m are positive
integers such that m ≥ n, ai,j , bj ∈ Z, and
rank(A) = n. Thus, the affine transformation
C(A, b) : x �→ Ax + b is defined by

X = Ax + b, (1)
where x = (x1x2 . . . xn)T and X =
(X1X2 . . .Xm)T . We call the transformation
the encoding transformation C(A, b). We then
take out each line of equation (1) and obtain

Xi =
n∑

j=1

aijxj + bj (1 ≤ i ≤ m). (2)

We call each equation of (2) an encoding rule.
We can replace instructions assigning values to
the variables x1, x2, . . . , xn with instructions
assigning other values to the encoded variables
X1, X2, . . . , Xm using the encoding rule.

Note that encoding rules are simultaneous
equations, so we can find the original variables
x1, x2, . . . , xn from the encoded equations.
Here, the equation

rankA = rank(A|X − b) = n
must be satisfied to find unknown n variables
uniquely from the m equations. Thus, the en-
coded variables X1, X2, . . . , Xm must satisfy
the m− n non-trivial relational equations

rt(X1, X2, . . . , Xm) = 0 (1 ≤ t ≤ m− n).
The original variables x1, x2, . . . , xn are then

given by
xi = fi(X1, X2, . . . , Xm)

+
m−n∑
t=1

ci,trt(X1, X2 . . . , Xm) (1≤ i≤n)

(3)
using the encoded variables X1, X2, . . . , Xm,
where ci,t are arbitrary-constants and fi are
linear functions of X1, X2, . . . , Xm. We call
each equation of (3) a decoding rule. Each
equation defines the decoding transformation
D(A, b) : Ax + b �→ x. We can replace ref-
erences to the variables x1, x2, . . . , xn with ref-
erences to the variables X1, X2, . . . , Xm using
the decoding rules. The encoding rules contain
the arbitrary constants ci,t. However, we can
uniquely find x1, x2, . . . , xn using the decoding
rules because the product of ci,t and the non-
trivial relational equations rt(X1, X2, . . . , Xm)
is 0. We can arbitrarily change the coefficients
on the variables X1, X2, . . . , Xm in the decod-



2562 IPSJ Journal Aug. 2006

ing rules by changing the arbitrary constants
ci,t.

4.2 Applying the Scheme to Codes
Our scheme can be applied to codes written in

high-level languages, to assembly code, and to
machine languages for various processors. We
obfuscate a code in the following way:
Step 1 Select Target Variables

Select n integer variables x1, x2, . . . , xn arbi-
trarily from the code (with the exception of
the variables storing the input).

Step 2 Generate a Matrix and a Vector
Generate an m × n matrix A = (ai,j) and
an m-dimensional vector b = (b1b2 . . . bm)T ,
where m ≥ n, ai,j , bj ∈ Z, and rank(A) = n.

Step 3 Define the Encoding Rules
Define the encoding rules

Xi =
n∑

j=1

aijxj + bj (1 ≤ i ≤ m),

where variables X1, X2, . . . , Xm are the en-
coded variables to be used in the obfuscated
code, using matrix A and vector b.

Step 4 Derive the Decoding Rules
Consider the encoding rules defined in Step
3 to be simultaneous equations, and find x1,
x2, . . . , xn to obtain the decoding rules

xi = fi(X1, X2, . . . , Xm) (1 ≤ i ≤ n).
Step 5 Encode the Variables

Replace all the variables x1, x2, . . . , xn used
in the code with the encoded variables X1,
X2, . . . , Xm according to the following steps:
(a) Encode the Assignment Instructions

Replace assignment instructions to the
variables x1, x2, . . . , xn with assignment
instructions to the encoded variables X1,
X2, . . . , Xm. Generally, the assignment
instruction xi ← v is replaced with the in-
struction

X ← Ax|xi←v + b,
where x|xi←v =(x1x2 . . . xi−1vxi+1 . . . xn)T .
All the encoded variables X1, X2, . . . , Xm

are assigned when this assignment instruc-
tion is executed.

(b) Encode References to Variables
Replace references to variables x1, x2, . . . ,
xn in the code with the decoding rules
xi(X1, X2, . . . , Xm) derived in Step 4.
Choose arbitrary natural numbers for the
constants ci,t contained in the decoding
rules.

Step 6 Modifications
Give initial values to the encoded variables
and merge consecutive assignment instruc-

tions as post-processing.
(a) Add Initialize Instructions

Add assignment instructions which give ini-
tial values to the encoded variables X1, X2,
. . . , Xm. These initial values must satisfy
the non-trivial relational equations

rt(X1, X2, . . . , Xm) (1 ≤ t ≤ m− n).
(b) Merge instructions

Merge the consecutive assignment instruc-
tions produced in Step 5 (b). For example,
the following two consecutive assignment
instructions(

X1

X2

)
←

(
2X1 − 3X2 + 5
−X1 + 4X2 + 2

)
(

X1

X2

)
←

(
X1 + X2 − 3

2X1 + 3X2 + 1

)

can be merged into exactly one assignment
instruction(

X1

X2

)
←

(
X1 + X2 + 4

X1 + 6X2 + 17

)
.

This procedure reduces the number of in-
structions to increase execution efficiency.

(c) Decompose instructions
Decompose instructions into successive
multiple instructions for exactly one vari-
able. For example, the assigning instruc-
tion for the two encoded variables X1 and
X2 (

X1

X2

)
←

(
2X1 − 3X2 + 5
−X1 + 4X2 + 2

)

is decomposed into the following successive
instructions T1 ← X1, T2 ← X2, X1 ←
2T1 − 3T2 + 5, and X2 ← −T1 + 4T2 + 2.
Here, T1 and T2 are temporary variables for
saving the values of variables X1 and X2,
respectively. This procedure transforms as-
signing instructions for multiple variables
into those for a unitary variable which can
be realized in real code.

We can gradually make the analysis of a code
more difficult by repeatedly applying the pro-
cess from Step 1 to Step 6.

5. Analysis

First, we analyze the security of our scheme.
We show that our scheme can protect against
the five types of attack we have identified.
Then, we analyze the efficiency of code obfus-
cated by our scheme. The increase in the num-
ber of instructions is estimated quantitatively.
Finally, we investigate the change in the func-
tionality, the efficiency, and the complexity of
variable dependences in the analysis of an ac-



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2563

1: int main(void){

2: int Q003, Q007, Q004, Q008, Q002,

3: Q006, Q001, Q005, l;

4: Q005 = -1;

5: Q006 = 5;

6: Q007 = -9;

7: Q008 = 2;

8: Q001 = 0;

9: Q002 = 2;

10: Q003 = 0;

11: Q004 = -3;

12: scanf("%d", &l);

13: while((((-Q001)+Q002+Q003-2)/2) < l){

14: Q005 = Q001;

15: Q006 = Q002;

16: Q007 = Q003;

17: Q008 = Q004;

18: Q001 = (Q005-2*Q006-Q007-2*Q008-2)/2;

19: Q002 = Q005+Q006+Q007-2;

20: Q003 = (-3*Q005-2*Q006-Q007-2*Q008+6)/2;

21: Q004 = (-2*Q005-Q006-2*Q007+2*Q008+4)/2;

22: }

23: printf("Fibonacci(%d)=%d\n",l,

24: (Q001+Q002+Q003-2)/2);

25: return 0;

26: }

Fig. 6 Code (1) obfuscated by our scheme.

tual code.
5.1 Analysis of Security
We analyze the resistance of our obfuscation

scheme to the five types of attack defined in Sec-
tion 2.2. Our scheme provides higher security
against data-dependency attacks, instruction-
guessing attacks, and numerical attacks than
Sato, et al.’s scheme. However, our scheme
cannot fully protect against dynamic attacks or
brute force attacks.

(1) Data-Dependency Attack
Our scheme provides higher security against

this form of attack
In our scheme, multiple variables are encoded

simultaneously. The data that a variable holds
is distributed among multiple encoded vari-
ables, and the analysis of dependences between
variables in an obfuscated code is more difficult
than that of dependences in the original one.

We show two examples.
First, we discuss protection for algorithms.

We assume an attacker wants to find the value
of Q003 after a while loop is executed once in
the obfuscated code (Fig. 6) in order to ana-
lyze the algorithms. The value of Q003 is fi-
nally updated by the instruction in the 20th
line. This instruction refers to the value of
variables Q005, Q006, Q007, and Q008. Fur-

1: int LicenseCheck(void){

2: int V001,V002,V003,V004,V005,V006,i;

3: V004 = 11;

4: V005 = -3;

5: V006 = 9;

6: V001 = V004;

7: V002 = V005;

8: V003 = V006;

9: V004 = V001-V003+5;

10: V005 = -V002;

11: V006 = 5;

12: scanf("%d",&i);

13: if (i == (3*V004-V005-5*V006+15)/2){

14: LicenseOK();

15: return 0;

16: }

17: return -1;

18: }

Fig. 7 Code (2) obfuscated by our scheme.

thermore, these variables are updated with the
values of Q001, Q002, Q003, and Q004, respec-
tively, by instructions from the 14th line to the
17th line. Thus, the attacker must obtain the
previous values of eight variables to find the de-
sired value. On the other hand, in the original
code (Fig. 2), the attacker only has to obtain
the value of three variables, tmp, y, and x, to
find the value of the corresponding variable y.

Second, we discuss protection for secret data.
We assume an attacker wants to find the value
that is compared with input i in the 16th line
in the obfuscated code (Fig. 7). An attacker
who can find the secret data will be able to
execute the function LicenseOK(). However,
the attacker must obtain many variables to find
the data; in contrast, the attacker can find the
secret data k if they obtain two values, x and
y, in the original code.

(2) Dynamic Attack
Our scheme cannot fully protect against this

form of attack. For example, attackers can ob-
tain values of arbitrary variables at any point
by inserting printf at the point shown in Fig. 6
and Fig. 7. These values can be used as clues
to analyze algorithms and secret data with the
method used in the data-dependency attack.

However, the number of variables increases
when m > n. In this case, the number of
variables that an attacker must investigate in-
creases, so the attack cost increases.

(3) Instruction-Guessing Attack
Our scheme provides higher security against

this form of attack.
In our scheme, a one-to-one correspondence



2564 IPSJ Journal Aug. 2006

between each original variable and each en-
coded variable does not exist in the obfuscated
code. Furthermore, an assignment instruction
to one variable is replaced by multiple instruc-
tions that affect all the encoded variables.

First, we discuss protection for algorithms.
The instructions from the 14th line to the 21st
line in the obfuscated code (Fig. 6) correspond
to the instructions from the ninth line to the
12th line in the original code (Fig. 2). The num-
ber of instructions and variables that appear in
the instructions differ. Thus, attackers cannot
guess the original instructions from the instruc-
tions in the code.

Second, we discuss protection for secret data.
The if statement in the 13th line in the obfus-
cated code (Fig. 7) refers to the variable V 004,
V 005, and V 006 to determine whether to exe-
cute the function LicenseOK(). Attackers can-
not guess which variable holds secret data that
is used for the decision in the original code, and
they must investigate all the values of the vari-
ables.

(4) Numerical Attack
Our scheme also provides higher security

against this form of attack.
In our scheme, attackers cannot find any

encoding rules since it is impossible to find
the values of the multiple unknown variables
X1, X2, . . . , Xm from just one decoding rule.
Thus, this attack cannot be applied to the ob-
fuscated code.

The following provides an example. The
result is output through the expression
(Q001+Q002+Q003-2)/2 in the 24th line in the
obfuscated code (Fig. 6). Attackers guess that
the expression is the decoding rule for the orig-
inal variable x since the result is output in
this line. They might then try to derive the
encoding transformation. However, they must
find three unknown variables, Q001, Q002, and
Q003, from just one equation (Q001 + Q002 +
Q003 − 2)/2 = x, which is impossible. Thus,
attackers must obtain all the decoding rules.

(5) Brute Force Attack
Our scheme cannot fully protect against this

form of attack. An attacker can derive the de-
coding transformation if they can guess the en-
coding transformation. They can then obtain
the original code by executing our scheme and
interchanging the encoding transformation and
the decoding transformation. That is, by us-
ing the decoding transformation as the encod-
ing transformation and the encoding transfor-

mation as the decoding transformation.
The attacker must specify all the elements of

the matrix and the vector used in the encoding
transformation. Thus, the cost of this attack is
Nm(n+1), where the number of possibilities for
each element is N . This attack is difficult when
m, n, and N are large. However, the calculable
range of a program may be greatly restricted in
this case.

5.2 Analysis of Execution Efficiency
First, we consider the execution efficiency of

a program obfuscated by our scheme. A single
assignment instruction is replaced with assign-
ment instructions to all the m encoded variables
in Step 5 (a) of our scheme. The size of refer-
ences to variables also increases by a factor of
m because of Step 5 (b). The size of the obfus-
cated program is therefore about m2 times that
of the original one. However, the merging of as-
signment instructions in Step 6 (b) can reduce
the number of instructions. In the best case,
the number of instructions can be reduced by
a factor of n, since the number of original vari-
ables is n. Ultimately, the size of an obfuscated
program is at least m2/n times that of the orig-
inal one.

The number of assignment instructions and
references to variables is not increased by the
encoding procedure in Sato, et al.’s scheme.
However, instructions are replaced with more
complicated expressions. Thus, there is a loss
in execution efficiency.

5.3 Experiment
We investigated experimentally the change in

program size when the number of target vari-
ables n and the number of encoded variables m
are altered.

The target was the source code of a program
that outputs the l-th term of the Fibonacci se-
quence given the input l. The code was written
in C, and the number of lines was 16. Five
variables were contained in this code. However,
only four variables could be encoded, since one
variable was used for storing the input value.
We wrote ten versions by applying our scheme
to the code using the parameters n=1, 2, 3,
4 and m=1, 2, 3, 4, where m ≥ n. We also
wrote four versions by applying Sato’s scheme
with n=1, 2, 3, 4 for comparison. Finally, we
obtained an executable program by compiling
the original code and the obfuscated code, and
investigated their functionality, efficiency, and
the complexity of variable dependences.



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2565

Table 2 Number of instructions in the assembly
code.

[Our Scheme]

m\n 1 2 3 4
1 59 - - -
2 63 82 - -
3 71 107 122 -
4 78 134 169 209

[Sato, et al.’s scheme]

m\n 1 2 3 4
1 59 62 65 69

(1) Functionality
We checked whether the correct output was

returned for the inputs l = 1, 2, 5, 10, 20, 46 by
the obfuscated codes. The original program re-
turned the correct output for the inputs l ≤ 46.

In our scheme, the outputs of the ten obfus-
cated programs for the input n = 1, 2, 5, 10 were
identical to that of the original program. We
found that the functionality of the program was
not changed. However, the outputs of some ob-
fuscated programs (where (n, m) was (3, 4) or
(4, 4)) for the input l = 20 differed from that
of the original program, and the outputs of all
the obfuscated programs given the input l = 46
differed from that of the original one.

With Sato, et al.’s scheme, the outputs of
all the obfuscated programs for the inputs l =
1, 2, 5, 10, 20 were correct. However, the out-
puts of all the obfuscated programs for the in-
put l = 46 were incorrect.

Thus, our scheme and Sato, et al.’s scheme
restrict the calculable ranges.

(2) Efficiency
We compared the execution efficiency in

terms of the number of instructions in the as-
sembly code. We compiled the source code with
gcc 4.01 on Fedora Core release 4 with the op-
tion ‘-S -O0’. The number of instructions in
the original version was 57. Table 2 shows the
number of instructions in the assembly code ob-
tained from the obfuscated codes and the orig-
inal one.

With our scheme, the number of instructions
increased with the number of target variables n
and the number of encoded variables m. The
increase was smaller than the estimate m2/n
given in Section 5.2 since some parts of the code
were not affected by our obfuscation.

With Sato, et al.’s scheme, the increase was
about 28 percent for all inputs l.

Table 3 Complexity of variable dependences in
obfuscated codes.

[Our Scheme]

m\n 1 2 3 4
1 9 - - -
2 12 12 - -
3 15 21 16 -
4 18 29 24 23

[Sato, et al.’s scheme]

m\n 1 2 3 4
1 9 9 9 9

(3) Complexity of Variable Depen-
dences in Obfuscated Codes
We define the complexity of variable depen-

dences in the appendix. The complexity of vari-
ables dependences in the original code was 8.
Table 3 shows the changes in the complexity.

With our scheme, the complexity of variable
dependences increased as the number of en-
coded variables m increased. Moreover, it in-
creased as the number m − n increased. That
is, it became large when n was small and m
was fixed. We believe this was because when
m − n is large, the number of non-trivial re-
lational equations becomes large. Thus, it is
difficult to specify which variable is decoded by
a decoding rule.

With Sato, et al.’s scheme, the complexity of
variable dependence did not increase, even if
the number of target variables increased, since
a variable is encoded into exactly one variable
in this scheme. Thus, their scheme obfuscates
only operations between variables, and does not
obfuscate dependences between variables.

6. Implementation

We implemented our scheme as an obfusca-
tion tool for C/C++ code. The tool accepts
the original code of a function, and outputs the
obfuscated code. The tool is written in C++,
and the total size of the source code is 512 KB.

Figure 8 shows the module structure of
our tool. Our tool works roughly as follows.
First, the wizard GUI module is launched. The
user inputs a target code. Next, the parsing
engine analyzes the code and finds the vari-
ables that can be encoded. After that, the
user inputs target variables and parameters (a
matrix and a vector) for encoding the vari-
ables. The obfuscation module transforms
the code using the parameters. Finally, the
output module displays the original program
and the obfuscated program (Fig. 9). The log



2566 IPSJ Journal Aug. 2006

Fig. 8 Module structure of our obfuscation tool.

Fig. 9 GUI of our obfuscation tool.

output module outputs the log file, which con-
tains the names of the target variables and the
encoded variables, the matrix A, and the vec-
tor b. Our tool can transform a 200-line code
within five seconds.

7. Discussion

Here, we compare our scheme to other ob-
fuscation schemes that transform data struc-
tures, and then we discuss the limitations of our
scheme and ways in which it can be improved.

7.1 Comparison
7.1.1 Comparison with Other Pro-

posed Schemes
Collberg, et al. describe many obfuscation

schemes that can transform data structures in
Section 7 of their paper 4): change encoding,
promote variables, split variables, convert static
to procedural data, merge scalar variables, re-
structure arrays, modify inheritance relations,
and ordering transformation. Sato, et al.’s
scheme is an improved version of change en-
coding. We discuss whether the other schemes

can protect against the three types of attack we
defined in Section 2.2.

(1) Data-Dependency Attack
Promote variables, split variables, restructure

arrays, modify inheritance relations, and or-
dering transformations can protect against this
type of attack because these schemes make it
more difficult to analyze the dependences be-
tween variables in a code. For example, f(i) is
used instead of i to determine the ith element of
a list in ordering transformation. The attacker
must additionally investigate the function f to
understand the code.

(2) Dynamic Attack
None of these schemes can fully protect

against this type of attack. For example, at-
tackers can obtain the values of arbitrary vari-
ables at any point by inserting printf at that
point.

However, obfuscation schemes that change
the number of variables are somewhat effective
against such attacks. In our future work, we
will compare the effectiveness of these schemes
to that of our scheme.

(3) Instruction-Guessing Attack
Split variables and merge scalar variables can

protect against this type of attack because
the number of variables is changed by these
schemes. However, the other schemes cannot
protect against this sort of attack since the
number of variables is not changed. That is,
with these schemes there is exactly one corre-
sponding variable in the obfuscated code for ev-
ery original variable.

(4) Numerical Attack
Split variables, merge scalar variables, and

promote variables may not protect against this
sort of attack because the original data and the
obfuscated data are not numerically related in
these schemes. However, the other schemes pro-
tect against this type of attack.

(5) Brute Force Attack
This type of attack cannot succeed against

these schemes because they do not use secret
keys.

7.1.2 Comparison with Sato, et al.’s
scheme

Our scheme is an expansion of Sato, et al.’s
scheme, since their scheme is a special case of
our scheme where the matrix A is a diagonal
matrix.

In Sato, et al.’s scheme, all non-diagonal el-
ements of matrix A are 0. The value of an
original variable affects exactly one encoded



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2567

Table 4 Instructions that must be replaced with standard instructions.

Generic name Instructions Replacement Instructions
Multiple-variable assignment a = b = 100; a = 100; b = 100;
Compound assignment a += 3; a = a + 3;
Pre-increment/decrement b = ++a; a = a + 1; b = a;
Post-increment/decrement b = a++; b = a; a = a + 1;
Declaration and initialization int a = 10; int a; a = 10;

variable. Thus, there exists exactly one en-
coded variable for every original variable; that
is, there is a one-to-one correspondence be-
tween each original variable and each encoded
variable. An attacker can use these relations
through a data-dependency attack, instruction-
guessing attack, or numerical attack as defined
in Section 2.2.

In our scheme, each non-diagonal element is
not necessarily 0. The data that a variable
holds can be distributed among multiple en-
coded variables. Thus, no one-to-one corre-
spondence between each original variable and
each encoded variable exists. The advantages
of our scheme arise from the following facts:
• The dependences between variables in an
obfuscated code are complex.
• A single encoded variable corresponding to
an original variable does not exist.
• The encoding rules for an original variable
cannot be derived from only the decoding rule
for the variable.

These three points respectively account for
the resistance against data-dependency attacks,
instruction-guessing attacks, and numerical at-
tacks.

7.2 Limitations and Improvements to
Our Scheme

Here, we outline some of the limitations of
our scheme and our ideas for improvement.

(1) Applicability
Our scheme does not affect the control flow in

a target code. Thus, we can apply our scheme
to code that includes conditional branches or
loops. We show specific ways to do this below.
if statements, switch statements while

loops, and do-while loops have a conditional
statement to determine which instruction is ex-
ecuted next. Target variables may be referred
to in the statement. These variables and the in-
structions in the statement block are encoded
using our scheme as described in Section 4.2.
for loops have three statements; the first and

third ones are assignment instructions, and the
second one is a conditional statement. The vari-
ables referred to in the second statement and
the instructions in the loop block and the first

and third statements are encoded.
Some code contains nested statements or

loops. In this case, we must encode all the con-
ditional states and instructions contained in the
nested loops.

Finally, some loops contain goto statements,
break statements, and continue statements.
We do not have to deal with these statements
since they do not refer to variables and do not
assign values to variables.

On the other hand, our scheme cannot be ap-
plied to particular instructions. The instruc-
tions shown in Table 4 must be replaced with
standard instructions in which a variable to be
updated appears on the left side and the vari-
ables that are referred to appear on the right
side.

(2) Availability
Our scheme is suitable for code with many

variables, but not for code with few variables.
We can apply our scheme to code with few

variables, though, by introducing a variable to
control the flow of the code. That is, we can
encode the control variable using our scheme.
Furthermore, we can introduce dummy vari-
ables into the target code and encode these vari-
ables as well.

(3) Functionality
Both Sato, et al.’s scheme and our scheme

may restrict the calculable range of a program.
We can use an exclusive-or operation for en-
coding to avoid this restriction. That is, we
use exclusive-or and a Boolean matrix instead
of addition and an integer matrix, respectively.
The calculable range is not restricted in the im-
proved scheme, since the exclusive-or does not
cause overflows.

Each element of a Boolean matrix is re-
stricted to a value of 0 or 1, though, so their
rank tends to be small. The number of Boolean
matrices which can be used for encoding is less
than the number of integer matrices. Thus, the
improved scheme may introduce the following
problems:
• The generating algorithm for a Boolean

matrix is complicated.
• The improved scheme is weaker against a



2568 IPSJ Journal Aug. 2006

brute force attack than our original scheme,
since the number of available matrices is
restricted.

(4) Efficiency
The execution efficiency of our scheme is

lower than that of Sato, et al.’s scheme. Thus,
there is a trade-off between the execution ef-
ficiency and the complexity of variable depen-
dences in an obfuscated code.

In the toy example, the number of instruc-
tions in the assembly code increased by a factor
of about 3.67. However, we can improve the ex-
ecution efficiency by applying our scheme only
to the parts where the highest level of security
is required. If we apply our scheme to ten per-
cent of the program, the increase in the number
of instructions will stay at about 37 percent.

(5) Implementation Issues
We have two implementation issues.
(5)-1 Parsing Engine
Our tool uses “expression evaluation” 5) as a

parsing engine. This tool was originally used
for analyzing mathematical expressions. Thus,
our tool cannot deal with some C/C++ specific
expressions (Table 4). We must improve the
parsing engine in our future work.

(5)-2 Efficiency of Our Tool
Our tool transforms 200 lines of code within

five seconds, so it can efficiently transform this
amount of code. Fujiwara has stated that
a function should be written in at most 100
lines 6), so according to this standard our tool
is practical. In our tool, the costliest process
is the derivation of the encoding variables. We
will refine the algorithm in our future work.

8. Conclusion

We have proposed an obfuscation scheme
that encodes variables to make the derivation of
algorithms and secret data harder. Our scheme
simultaneously transforms multiple variables
using a matrix and a vector, and the data a vari-
able holds is distributed among multiple vari-
ables. Thus, our scheme resists attacks better
than that of Sato, et al. We have implemented
our scheme as an obfuscation tool for C/C++
code. In our future work, we will remove the
limitations of our scheme described in section
7.2.

References

1) Barak, B., Goldreich, O., Impagliazzo, R.,
Rudich, S., Sahai, A., Vadhan, S. and Yang,
K.: On the (Im) possibility of Obfuscat-

ing Programs, Proc. Advances in Cryptology,
CRYPTO 2001, Lecture Notes in Computer
Science, Vol.2139, pp.1–18 (2001).

2) Chan, J.T. and Yang, W.: Advanced obfusca-
tion techniques for Java bytecode, Journal of
Systems and Software, Vol.71, No.1–2, pp.1–10
(2004).

3) Collberg, C. and Thomborson, C.: Water-
marking, tamperproofing, and obfuscation —
Tools for software protection, IEEE Transac-
tions on Software Maintenance, Vol.28, No.6
(2002).

4) Collberg, C., Thomborson, C. and Low, D.:
A taxonomy of obfuscation transformations,
Technical Report of Dept. of Computer Science
148, University of Auckland (1997).

5) Farkas, Z.: Expression Evaluation (1999).
Available at http://www.codeguru.com/Cpp/
Cpp/cpp mfc/parsing/article.php/c843

6) Fujiwara, H.: Diagnostic room for C program-
ming. Available at http://www.pro.or.jp/ fuji/
mybooks/cdiag/cdiag.10.3.html (in Japanese).

7) Gannod, G.C. and Cheng, B.H.C.: Using in-
formal and formal techniques for reverse en-
gineering programs with pointers, Proc. 12th
Automated Software Engineering Conference
(1997).

8) Monden, A., Takada, Y. and Torii, K.:
Methods for Scrambling Programs Contain-
ing Loops, IEICE Trans. Inf. Syst., Part 1
(Japanese Edition), Vol.J80-D-I, No.7, pp.644–
652 (1997).

9) Ogiso, T., Sakabe, Y. and Soshi, M.: Software
obfuscation on a theoretical basis and its im-
plementation, IEICE Transactions on Funda-
mentals, No.1, pp.176–186 (2003).

10) Orlowski, A.: iTunes DRM cracked wide
open for GNU/Linux Seriously, The Register
NewsLetter (2004).Available at http://www.
theregister.co.uk/2004/01/05/itunes drm
cracked wide open/

11) Sakabe, Y., Soshi, M. and Miyaji, A.: Java
obfuscation with a theoretical basis for building
secure mobile agents, Proc. Seventh IFIP TC-
6 TC-11 Conference on Communications and
Multimedia Security, CMS’03, Lecture Notes in
Computer Science, Vol.2828, pp.89–103 (2003).

12) Sato, H., Monden, A. and Matsumoto, K.:
Program Obfuscation by Coding Data and
Its Operation, Technical Report of IEICE ,
Vol.102, No.743, pp.13–18 (2003).

13) Sosonkin, M., Naumovich, G. and Memon,
N.D.: Obfuscation of design intent in object-
oriented applications, Digital Rights Manage-
ment Workshop, pp.142–153 (2003).

14) Wang, C., Hill, J., Knight, J. and
Davidson, J.: Software tamper resistance: Ob-



Vol. 47 No. 8 An Obfuscation Scheme Using Affine Transformation 2569

fuscating static analysis of programs, Techni-
cal report sc-2000-12, Department of Computer
Science, University of Virginia (2000).

Appendix

A.1 Complexity of Variable Depen-
dences

We present quantitatively our evaluation
method which is the complexity of variable de-
pendences in a code. The complexity of variable
dependences is based on the difficulty of vari-
able analysis (DVA) for each variable, which
depends on the following two recursive condi-
tions.
• The DVA of a variable is high if the variable
refers to many variables.
• The DVA of a variable is high if the variable
refers to variables with high DVA.

First, we show how to calculate the DVA of
a variable. Then, we define the complexity of
variable dependences in a code. The DVA of
each variable is calculated as follows:
Step 1 Construct a Dependence Graph

First, nodes x1, x2, . . . , xn are arranged.
These nodes correspond to all the variables
used in a code. Edges are then added accord-
ing to the dependences between variables.
For example, if y is assigned a value that de-
pends on x, we add an edge from node x to
node y.

Step 2 Set Initial Values
We set initial values to the nodes. We set an
initial value of 1 to nodes corresponding to
variables that are initially assigned constants
in the original code. We set the initial value
of the other nodes to 0.

Step 3 Calculate the Node Values
The following three processes are executed
until the flags are set for all nodes.
Process 1 List Nodes

First we list nodes to which a positive value
(not 0) is set. Processes 2 and 3 are exe-
cuted for the listed nodes.

Process 2 Add Evaluation Values
We add the value of a listed node x to the
evaluation value of the adjacent nodes xj1 ,
xj2 , . . . , xjk

. The value of node x itself
may also be updated by adding the values
of other nodes. In this process, the value
before updating is added to the value of
adjacent nodes. Similarly, if a listed node
has a self-looping edge, its own value before
updating is added.

Process 3 Set Flags

We set a flag for node xi. The flag shows
the node has already been evaluated. Even
if the dependence graph has a loop, check-
ing for a flag ensures each node is evaluated
only once.

Step 4 Find the DVA for each variable
The value assigned to a node is the DVA of
the corresponding variable.
Finally, the complexity of variable depen-

dences in the code is defined by summing the
DVA values of all variables in the code.

A.2 Toy Example
We show a toy example of applying our

scheme and Sato, et al.’s scheme to an algo-
rithm; Fig. 2 shows an original code that com-
putes the l-th term of the Fibonacci sequence,
and Fig. 3 shows an original code that checks
the input and determines whether to execute
the function LicenseOK().

A.2.1 Sato, et al.’s Scheme
We use the encoding rules X = 2x + 2, Y =
−y, TMP = tmp−2, and C = 2c+1 to encode
four variables in the original code (Fig. 2). The
obfuscated code is shown in Fig. 1.

Furthermore, we use the encoding rules X =
2x + 1, Y = y + 5, and K = 2k + 1 to encode
three variables in the original code (Fig. 3). The
obfuscated code is shown in Fig. 4.

A.2.2 Our Scheme
We use the matrix

A =




0 1 −1 0
2 0 1 1
0 −1 1 1
−2 1 1 −1




and the vector b = (−2 2 1 0)T to encode the
variables x, y, tmp, and c in the original code
(Fig. 2). The obfuscated code is shown in Fig. 6.

Furthermore, we use the matrix

A =


 1 2 −1
−2 1 0
1 1 −1




and the vector b = (3 − 1 5)T to encode
the variables x, y, and k in the original code
(Fig. 3). The obfuscated code is shown in Fig. 7.

(Received November 29, 2005)
(Accepted June 1, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.498–512.)



2570 IPSJ Journal Aug. 2006

Kazuhide Fukushima re-
ceived his M.E. in Information
Engineering from Kyushu Uni-
versity, Japan, in 2004. He
joined KDDI and has been
engaged in research on digi-
tal rights management technolo-

gies, including software obfuscation and key-
management schemes. He is currently a re-
searcher of the Information Security Lab. in
KDDI R & D Laboratories Inc. He is a member
of IEICE and ACM.

Shinsaku Kiyomoto received
his B.E. in Engineering Sciences
and his M.E. in Materials Sci-
ence from Tsukuba University,
Japan, in 1998 and 2000, re-
spectively. He joined KDD (now
KDDI) and has been engaged in

research on stream ciphers, cryptographic pro-
tocols, and mobile security. He is currently
a research engineer of the Information Secu-
rity Lab. in KDDI R & D Laboratories Inc.
He received his doctorate of engineering from
Kyushu University in 2006. He received the
Young Engineer Award from IEICE in 2004. He
is a member of JPS and IEICE.

Toshiaki Tanaka received
B.E. and M.E. degrees in com-
munication engineering from Os-
aka University, Japan, in 1984
and 1986, respectively. He
joined KDD (now KDDI) and
has been engaged in research on

cryptographic protocols, mobile security, digi-
tal rights management, and intrusion detection.
He is currently a senior manager of the Informa-
tion Security Lab. in KDDI R & D Laboratories
Inc. He is a member of IEICE.


