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Redundant coding is a basic method of improving the reliability of detection and surviv-
ability after image processing. It embeds watermarks repeatedly in every frame or region
and can thus prevent errors due to the accumulation of frames or regions during watermark
detection. Redundant coding, however, is not always effective after image processing because
the watermark signal may be attenuated by the accumulation procedure when image process-
ing removes watermarks from specific frames or regions. We therefore propose a method of
detection to prevent the attenuation of the watermark signal by accumulating a subset of the
regions so that the accumulated region has a minimal bit-error rate, which is estimated from
the region. Experimental evaluations using actual motion pictures have revealed that the new
method can improve watermark survivability after MPEG encoding by an average of 15.7%
and can widely be used in correlation-based watermarking.

1. Introduction

Digital video is being made available through
various media such as the Internet, digital
broadcasting, and DVD because of its advan-
tages over analog content. It requires less space,
is easier to process, and is not degraded by age
or repeated use. A serious problem, however, is
that the copyrights for digital videos are easily
violated because they can easily be copied and
sent illegally over the Internet. Video water-
marking, which helps protect the copyrights for
digital video by embedding copyright informa-
tion, is therefore becoming important.

Video watermarking can be used to embed
copyright and copy-control information in video
frames and can therefore be used in DVD play-
ers and recorders as well as in digital broad-
casting equipment such as set-top boxes 1),2).
Video providers subject the watermarked pic-
tures to various kinds of image processes–such
as compression (using MPEG or other com-
pression technology), resizing, and filtering–and
these image processing procedures can also be
exploited by illegal users who want to remove
the embedded information. The watermarks
(WMs) should nonetheless be robust enough to
be reliably detected after any of these kinds of
processes. WM survivability is thus essential
and methods for improving it have been studied
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in both the pixel and frequency domains. Meth-
ods using redundant coding 3)∼5) and spread
spectrum coding 6),7) of embedded information
have been established, as have those for em-
bedding information in perceptually significant
parts of the pictures 8),9) and in elements that
will not be greatly affected by expected image
processes 10),11). Using human visual models to
embed more WMs without degrading picture
quality 12),13) have also been proposed.

Redundant coding is a basic method of im-
proving reliability of detection and survivabil-
ity after image processing. It embeds WMs re-
peatedly in every frame or region and can thus
prevent errors by accumulating frames or re-
gions coded repeatedly during WM detection.
Redundant coding, however, is not always ef-
fective after image processing procedures that
remove WMs from specific frames or regions be-
cause the WM signal may be attenuated by in-
creasing image noise during the accumulation
procedure. Detection methods should therefore
select frames or regions where WMs remain and
should accumulate these.

We thus propose a method of detection to
prevent the attenuation of WM signals by ac-
cumulating a subset of regions so that the ac-
cumulated region has a minimal bit-error rate
(BER). The BER is estimated from each water-
marked region using inferential statistics. Sec-
tion 2 of this paper describes one previous
method and the problems with it. Section 3
describes our method, Section 4 reports ex-
perimental evaluations confirming that it can
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withstand image processing, and Section 5 con-
cludes the paper.

2. Previous Method and Problems

2.1 Previous Method
Redundant coding methods can be classified

into two types:
(a) Redundant coding within a frame:

WM embedding is done by dividing the
frame into several regions and applying the
same WM to each region. In detection,
WMs are extracted by accumulating all the
divided regions in a frame 3),4).

(b) Redundant coding over frames: WM
embedding is done by applying the same
WM to each consecutive frame of a video.
In detection, WMs are extracted by accu-
mulating all the frames or a specific number
of sequential frames 4),5).

One basic WM scheme employing both (a)
and (b) is treated in Kalker et al. 4). When
M -bit information is embedded in a video, a
WM-pattern image representing this informa-
tion is added to each region of the video frames.
When the information is detected, M -bit values
are determined from M statistical values calcu-
lated by correlating the WM-pattern with the
accumulated region. To simplify an explana-
tion, we will first introduce a 1-bit-WM schema
and then introduce a multiple-bit-WM schema.

2.1.1 One-bit-WM Schema
( 1 ) WM embedding
The luminance set of the fth frame consisting of
N pixels is y(f) = {y(f)

i | 1 ≤ i ≤ N}. The pro-
cess flow for 1-bit-WM embedding is described
below (See Fig. 1):
Step E1: Do the following steps over f = 1,

2, . . ..
Step E2: Input the original frame, y(f), and

divide y(f) into R regions y(f,r)s (r =
1, . . . , R) consisting of the corresponding
pixels: y(f,r) = {y(f,r)

i | 1 ≤ i ≤
�N/R�}, which satisfy y(f) =

⋃
r y(f,r),

Fig. 1 Overview of WM embedding.

y(f,r)
⋂

r �=r′ y(f,r′) = ∅.
Step E3: Generate each watermarked region

y′(f,r) by adding the WM pattern, m =
{mi ∈ {−1, +1} | 1 ≤ i ≤ �N/R�}, com-
prising a pseudo random array, ±1 s, to the
original region, y′(f,r), according to the em-
bedding bit, b:

y′(f,r) =
{

y(f,r) + µ(f,r)m if b=1
y(f,r) − µ(f,r)m if b=0,

(1)

where µ(f,r) is the WM strength of the re-
gion y(f,r).

Step E4: Output the watermarked frame,
y′(f).

( 2 ) WM detection
Calculate the statistical value, v, of the accu-
mulated region by correlating the WM pattern,
m, with the accumulated region (See Fig. 2):
Step D1: Do the following steps over f0 =

1, F + 1, 2F + 1, . . ..
Step D2: Input F watermarked frames y′(f)s

(f = f0, . . . , f0 + F − 1) and divide FR

regions y′(f,r)s (f = f0, . . . , f0 + F − 1, r =
1, . . . , R).

Step D3: Accumulate the FR regions, y′(f,r)s,
in region ỹ = {ỹi | 1 ≤ i ≤ �N/R�}. The
ỹi for the accumulated region ỹ is given by

ỹi =
1

FR

f0+F−1∑
f=f0

R∑
r=1

y′(f,r)
i . (2)

Step D4: Calculate statistical value v, which
is obtained by correlating WM pattern m
with accumulated region ỹ. That is,

v =
1

�N/R�
�N/R�∑

i=1

miỹi

=
1

FR�N/R�
∑
f,r,i

miy
(f,r)
i ± µ, (3)

where µ is the WM signal given by µ =
1/FR

∑
f,r µ(f,r). Since miy

(f,r)
i is con-

sidered to be an independent stochastic
variable with a mean of 0 14), each v fol-

Fig. 2 Overview of WM detection.
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lows a normal distribution with mean ±µ
and variance σ2 if the number of miy

(f,r)
i s,

FR�N/R� is sufficiently large. That is,

v ∼
{

N(µ, σ2) if b = 1
N(−µ, σ2) if b = 0.

(4)

Step D5: Determine the embedded bit, b, by
comparing v with a threshold value, T (>
0):

b=




1 if v≥T
0 if v≤−T

“not detected” if −T <v<T .

(5)

2.1.2 Multiple-bit-WM Schema
For M -bit-WM embedding (M > 1), each

region, y(f,r), is divided into M subregions,
y(f,r)

k s (k = 1, . . . , M), and the 1-bit embed-
ding schema is applied to each subregion.
( 1 ) WM embedding
The luminance set of the fth frame consisting
of N pixels is y(f) = {y(f)

i | 1 ≤ i ≤ N}. The
process flow for M -bit-WM embedding is de-
scribed below:
Step E1: Do the following steps over f =

1, 2, . . ..
Step E2: Input the original frame, y(f), and

divide y(f) into RM subregions, y(f,r)
k s

(r = 1, . . . , R, k = 1, . . . , M), consist-
ing of the corresponding pixels: y(f,r)

k =
{y(f,r)

k,i | 1 ≤ i ≤ �N/(RM)�}, which satis-

fies y(f) =
⋃

r,k y(f,r)
k , y(f,r)

k

⋂
r �=r′ y

(f,r′)
k =

∅, and y(f,r)
k

⋂
k �=k′ y

(f,r)
k′ = ∅ (See example

in Fig. 3).
Step E3: Generate each watermarked subre-

gion, y′(f,r)
k , by adding the WM pattern,

mk = {mk,i ∈ {−1, +1} | 1 ≤ i ≤
�N/(RM)�}, comprising a pseudo random
array, ±1 s, into the original region, y′(f,r)

k ,
according to the embedding bit, bk:

y′(f,r)
k =

{
y(f,r)

k + µ(f,r)mk if bk = 1
y(f,r)

k − µ(f,r)mk if bk = 0,

(6)

Fig. 3 Example of video partitioning.

Step E4: Output the watermarked frame,
y′(f).

( 2 ) WM detection
Calculate the M statistical values, vks, of the
accumulated region by correlating the WM pat-
tern, mk, with the accumulated subregion:
Step D1: Do the following steps over f0 = 1,

F + 1, 2F + 1, . . ..
Step D2: Input F watermarked frames,

y′(f)s (f = f0, . . . , f0 + F − 1), and divide
FRM subregions, y′(f,r)

k s (f = f0, . . . , f0 +
F − 1, r = 1, . . . , R, k = 1, . . . , M).

Step D3:
Step D3: For each k (k = 1, . . . , M), ac-

cumulate the FR subregions, y′(f,r)
k s, in

the subregion, ỹk = {ỹk,i | 1 ≤ i ≤
�N/(RM)�}. The ỹk,i of the accumulated
subregion, ỹk, is given by

ỹk,i =
1

FR

f0+F−1∑
f=f0

R∑
r=1

y′(f,r)
k,i . (7)

Step D4: Calculate the set consisting of the
M statistical values, v = {vk | 1 ≤ k ≤
M}. Statistical value vk is obtained by cor-
relating WM pattern mk with accumulated
subregion ỹk. That is,

vk =
1

�N/(RM)�
�N/(RM)�∑

i=1

mk,iỹk,i

=
1

FR�N/(RM)�
∑
f,r,i

mk,iy
(f,r)
k,i ± µ,

(8)
As in the 1-bit-WM schema, each vk fol-
lows a normal distribution if the number
of mk,iy

(f,r)
k,i s, FR�N/(RM)� is sufficiently

large. That is,

vk ∼
{

N(µ, σ2) if bk = 1
N(−µ, σ2) if bk = 0.

(9)

Step D5: Determine M embedded bits, bks,
by comparing vk with threshold value T :

bk =




1 if vk ≥T
0 if vk ≤−T

“not detected” if −T < vk <T .

(10)

2.2 Problems with Previous Method
WMs on images must be able to survive var-

ious kinds of image processing procedures. The
accumulation in Step D3 in Section 2.1.2, how-
ever, may not always be effective because the
WM signal, µ, in formula (8) could be attenu-
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ated by accumulating regions from which WMs
had been removed during image processing. For
example, in accumulating (averaging) two re-
gions with the same noise and same WM sig-
nal, the noise of region σ is reduced to 1√

2
σ.

The WM signal, µ, however, is reduced to 1
2µ if

WMs from one region out of two are removed.
Consequently, the S/N ratio worsens due to ac-
cumulation. Accumulation with the previous
method could thus cause the signals of WMs,
µ, to decrease so much that the embedded bits
could not be reliably detected.

To solve this, methods of detection should se-
lect regions where WMs remain and should ac-
cumulate these. We therefore propose a method
that accumulates a subset of regions so that
the accumulated region has a minimal degree
of WM removal, which is estimated from the
region.

3. Using Statistically Adaptive Accu-
mulation to Improve the Detection
of Video WMs

3.1 PrinciplebehindProposedMethod
The method of detecting WMs we propose

controls the accumulation of the regions so that
the accumulated region has a minimal degree of
WM removal and detects WMs from the accu-
mulated region. We use a bit-error rate (BER)
as a measure of the degree of WM removal and
the BER is estimated from each watermarked
region. Our method can prevent a decrease in
the S/N ratio in the accumulated regions by
using the estimated BERs of the watermarked
regions to control the accumulation in a way
that minimizes the BERs of the accumulated
regions.

Figure 4 outlines the process for the method
we propose, which involves calculating the sta-
tistical values, estimating the BER, sorting,
controlling accumulation, and determining the
bit values:
Statistical-value calculation: Calculates

the statistical values from the region.
BER estimation: Estimates the BER from

the statistical values of the region.
Sorting: Sorts regions (actually correspond-

Fig. 4 Process of WM detection.

ing sets of statistical values) with corre-
sponding BERs.

Accumulation control: Accumulates, one
by one, regions (set of the statistical val-
ues) in ascending order of the correspond-
ing BER and re-estimates the BER of the
accumulated region in each accumulation
step. Selects the accumulated region hav-
ing the smallest BER.

Bit-value determination: Determines bit-
values by comparing the threshold value
with the set of statistical values of the ac-
cumulated region selected by accumulation
control.

Our method can be applied to the vari-
ous kinds of correlation-based WM schema de-
scribed in Section 2.

3.2 Process Flow
The process flow for our proposed method of

detecting WMs is outlined in Fig. 5. Step D3
represents the flows for statistical-value calcu-
lation and BER estimation. Step D4 represents
the flow for sorting, and Steps D5 and D6 repre-
sent the flow for accumulation control. Step D7
represents the flow for bit-value determination.
Step D1: Do the following steps over f0 =

1, F + 1, 2F + 1, . . ..
Step D2: Input F watermarked frames,

y′(f)s (f = f0, . . . , f0 + F − 1), and divide
FRM subregions, y′(f,r)

k s (f = f0, . . . , f0 +
F − 1, r = 1, . . . , R, k = 1, . . . , M).

Step D3: For each region, y′(f,r) =
⋃

k y′(f,r)
k

(f0 ≤ f ≤ f0 + F − 1, 1 ≤ r ≤ R), calcu-
late a set consisting of M statistical values,
v(f,r) = {v(f,r)

k | 1 ≤ k ≤ M}, and estimate
BER p(v(f,r)) from set v(f,r). The statisti-
cal value, v

(f,r)
k , of subregion y′(f,r)

k is given
by correlating WM pattern mk with region
y′(f,r)

k . That is,

v
(f,r)
k =

1
�N/(RM)�

�N/(RM)�∑
i=1

mk,iy
′(f,r)
k,i

=
1

�N/(RM)�
∑

i

mk,iy
(f,r)
k,i ±µ(f,r),

(11)
Doing the above process over FR regions
(f = f0, . . . , f0 + F − 1, r = 1, . . . , R), we
obtain FR sets, v(f0,1), . . . ,v(f0+F−1,R),
and the corresponding FR BERs
p(v(f0,1)), . . . , p(v(f0+F−1,R)).

Step D4: Sort the FR sets,
v(f0,1), . . . ,v(f0+F−1,R), by the correspond-
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Fig. 5 Overview of statistically adaptive accumulation.

ing BERs and rename the suffixes of the
sets and the BERs in ascending BER
order. Thus, we obtain the FR sets,
v(1), . . . ,v(FR), that satisfy p(v(1)) ≤ . . . ≤
p(v(FR)).

Step D5: Generate the accumulated sets,
v̄(s)s (s = 1, . . . , FR), from the FR sets
with v̄(s) = 1/s

∑s
i=1 v(i) and estimate the

BERs, p(v̄(s)) (s = 1, . . . , FR), from the
FR accumulated sets.

Step D6: Select the set of statistical values
with the smallest BER, v̄(sopt), where sopt

represents the optimal number of accumu-
lations:

sopt = arg min
1≤s≤FR

p(v̄(s)). (12)

Step D7: Determine M embedded bits, bks,
by comparing v̄

(sopt)
k with a threshold value,

T (> 0), as was the case with Step D4 in
Section 2:

bk =




1 if v̄
(sopt)
k ≥T

0 if v̄
(sopt)
k ≤−T

“not detected” if −T <v̄
(sopt)
k <T.

(13)
Note that set v̄(FR) in Step D5 is equal to

set v in Step D4 in Section 2.1.2 and thus that
p(v̄(FR)) represents the BER with the proposed
method.

3.3 Estimation of BER
We employed procedures in inferential statis-

tics to estimate the BERs of the region, because
its statistical values follow a normal distribu-
tion dependant on the WM signal and image
noise. The basic method of estimating BER de-
scribed in Section 3.1 was proposed by Echizen
et al. 15). This method can be used to estimate
the BER from a watermarked still picture after
image processing by using inferential statistics.
We expanded it to estimating the BER of re-
gions to implement our own method.

3.3.1 BER of Region
We estimated the BER of each watermarked

region from the M statistical values, v
(f,r)
k in

formula (11), of the proposed WM detection
method. As explained in Step D4 in Sec-
tion 2.1.2, each statistical value, v

(f,r)
k , follows

a normal distribution with mean ±µ(f,r) and
variance σ2(f,r) if the number of mk,iy

(f,r)
k,i s,

�N/(RM)� is sufficiently large:

v
(f,r)
k ∼

{
N(µ(f,r), σ2(f,r)) if bk = 1

N(−µ(f,r), σ2(f,r)) if bk = 0.

(14)

The calculation of BER when bk = 1 is em-
bedded is explained by Fig. 6, where the gray
area indicating the probability of erroneously
detecting bk = 0 is given by
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p(v(f,r))BE|bk=1

=
∫ −T

−∞
φ(v; µ(f,r), σ2(f,r)) dv, (15)

where φ(v; µ(f,r), σ2(f,r)) is the probability den-
sity function of N(µ(f,r), σ2(f,r)). The probabil-
ity of detecting bk = 1 erroneously (when the
embedded bit is 0) is correspondingly given by

p(v(f,r))BE|bk=0

=
∫ T

∞
φ(v;−µ(f,r), σ2(f,r)) dv. (16)

From formulas (15) and (16), p(v(f,r))BE|bk=1 =
p(v(f,r))BE|bk=0. Thus, the BER of the region,
y′(f,r), for an arbitrary embedded bit is

p(v(f,r)) =
∫ −T

−∞
φ(v; µ(f,r), σ2(f,r)) dv.

(17)
As shown by formula (17), the mean µ(f,r)

and variance σ2(f,r) of a normal distribution
should be used to obtain BER. There are, how-
ever, the following problems: (1) The informa-
tion we obtain from the watermarked region
y′(f,r) is not the µ(f,r) and σ2(f,r) but M statis-
tical values v

(f,r)
k . (2) The statistical values are

subject to change due to image processing, and
the two normal distributions the values follow
are getting closer to each other.

The µ(f,r) and σ2(f,r) should thus be esti-
mated from these statistical values that follow
the mixture normal distribution.

3.3.2 EM Algorithm
The expectation-maximization (EM) algo-

rithm is a representative maximum-likelihood
method of estimating the statistical parameters
of a probability distribution 16),17). In the case
of a mixture normal distribution comprised of
two normal distributions (i.e., N(µ(f,r), σ2(f,r))
and N(−µ(f,r), σ2(f,r))) that the statistical val-

ues v
(f,r)
k follow, the EM algorithm can be

used to estimate the probability w
(f,r)
k that

Fig. 6 Calculation of BER.

each v
(f,r)
k follows N(µ(f,r), σ2(f,r)), µ(f,r), and

σ2(f,r). The relation between w
(f,r)
k , µ(f,r), and

σ2(f,r) is given by

µ(f,r) =
1

Mα(f,r)

∑
k

w
(f,r)
k v

(f,r)
k , (18)

σ2(f,r) =
1

Mα(f,r)

∑
k

w
(f,r)
k v

(f,r)2
k − µ(f,r)2,

(19)

where α(f,r) = 1/M
∑

k w
(f,r)
k is the weight-

ing factor for N(µ(f,r), σ2(f,r)) to the mixture
normal distribution. These parameters are se-
quentially updated from initial values by itera-
tive calculation and µ(f,r) and σ2(f,r) are used
as estimates when they are converged. See the
appendix for the details on this calculation.

4. Experimental Evaluation

4.1 Survivability against MPEG-2 En-
coding

The ability of the method we propose to de-
tect WMs after MPEG-2 encoding with three
different bit rates (3 M, 4 M, and 5Mbps) was
compared experimentally with that of the pre-
vious method by using the following standard
motion pictures 18) (450 frames of 720×480 pix-
els) having different properties (see Fig. 7):
(a) Walk through the Square (“Walk”):

– People walking in a town square – not
much movement.

(b) Whale Show (“Whale”): – Spraying
whale with audience – a great deal of move-
ment.

The average (over 450 frames) peak signal to
noise ratios (PSNRs) at three different bit rates
are listed in Table 1.

Fig. 7 Evaluated pictures.

Table 1 PSNRs at three different bit rates with
MPEG-2 encoding.

3Mbps 4Mbps 5Mbps
Walk 29.01 29.27 29.42

Whale 23.53 24.08 24.44
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Fig. 8 Evaluation results.

4.1.1 Procedure
A WM pattern representing 256-bit infor-

mation (M = 256) was generated by using a
pseudo-random generator 19) and was embed-
ded in each of four 360 × 240-pixel regions
(R = 4) of every frame by using the proce-
dures described in Section 2.1.2. After MPEG-
2 encoding and decoding with three different
bit rates (3, 4, 5 Mbps), 256-bit information
was sequentially detected in 30-frame segments
of the 450 frames of the watermarked pictures
(F = 30, the number of detecting points was
450/30 = 15) and the BERs measured using the
proposed detection method described in Sec-
tion 3.2 were compared with those measured
using the previous detection method described
in Section 2.1.2. The above procedure was
done using 1000 different random WM patterns.
Other parameters used in the evaluation were
set as follows:
WM strength µ(f,r): WM strength could be

controlled for all pixels to minimize degra-
dation in picture quality. We did not use
such control, however, because the work re-
ported in this paper focused on improving
WM detection and also because such con-

trol might affect our evaluation of WM de-
tection. We instead set the WM strength,
µ(f,r), of the formula (6), to be uniform for
all pixels. The example strength we used
was 3 for Walk and 4 for Whale. The cor-
responding PSNR in Walk was 38.6 and the
PSNR in Whale was 36.1.

Threshold value T : To facilitate measuring
of the BERs, we set the thresholds of for-
mulas (10) and (13) to zeros (T = 0)
without determining the results of “not de-
tected.”

4.1.2 Results
The average values (over 1000 WM patterns)

of the measured BERs obtained using the pro-
posed (black line) and the previous (gray line)
methods are shown for each bit rate in Fig. 8,
where the horizontal axis represents the detect-
ing points from 1 to 15 and the vertical axis
represents the average BERs. From Fig. 8, we
can see that the BERs for the proposed method
are better than or equal to those of the previ-
ous method at each bit rate. At all bit rates
the average ratios of the proposed BER to the
previous BER are 0.903 for Walk and 0.784 for
Whale, and the effect of the proposed method
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Fig. 9 Transitions in BERs.

is weaker for Walk than for Whale. The reason
seems to be that sorting and accumulation con-
trol for the proposed method are less effective
for Walk than for Whale because most regions
of Walk were static and the BERs of their re-
gions were less variable than those for Whale.
The BERs estimated with the proposed method
may actually be worse than the correspond-
ing measured BERs. Therefore, for the pro-
posed method to be practical, error-correcting
codes 20) should be added to the embedded in-
formation so that it can be used determine
whether the detected information was corrected
or not. Moreover, since the new method con-
tains the previous, its performance will always
be better than that of the previous if error cor-
rection is applied to the series of information
detected by each and correctly detected infor-
mation is used. For both of the evaluated pic-
tures, the proposed method thus yielded an av-
erage improvement of 15.7%.

From the plots of Fig. 8, we sampled two
cases for each evaluated sample: effective and
non-effective cases with the proposed WM de-
tection. Example transitions in BERs esti-
mated with the new method (corresponding to

Fig. 5) are shown in Fig. 9, where the hori-
zontal axis represents the number of accumu-
lations (the order of accumulation is in ascend-
ing order of the estimated BERs) and the ver-
tical axis represents the estimated (black line)
and measured (gray line) BERs at the detecting
points. From Fig. 9, we can see that the esti-
mated BERs were roughly consistent with the
experimentally measured ones—there were only
small differences between them. These differ-
ences are probably because an insufficient num-
ber of pixels was allocated to each statistical
value, �N/(RM)�, for it to follow a normal dis-
tribution, and the proposed method estimates
the BER based on these values. There are three
ways to increase �N/(RM)�: increase the num-
ber of pixels in the video frames (N), reduce the
number of regions (R), and reduce the num-
ber of bit values (M). Because changing any
of these parameter values might degrade per-
formance, the change should be carefully made
based on the target application.

In Figs. 9 (a1) (Walk at 3 Mbps, detecting
point 9) and 9 (b1) (Whale at 4 Mbps, detect-
ing point 9), the BER tends to increase with the
number of accumulations and the rates of im-
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Fig. 10 Evaluation results with M = 64 and 128.

provement are about 2.5% for Walk and 6.5%
for Whale. Similar trends were also found at
all bit rates for the detecting points 7 through
13 for Walk, and 3 through 6, 9, 10, and 14
for Whale, where most parts of neighboring
frames were relatively messy or moving com-
pared to the other points. We can infer that
the strengths of WMs in regions with varying
picture properties were altered by MPEG-2 en-
coding and thus the BERs of the regions in-
creased with the number of accumulations as a
result of sorting with the proposed method.

In Figs. 9 (a2) (Walk at 3 Mbps, detecting
point 14) and 9 (b2) (Whale at 4 Mbps, detect-
ing point 11), on the other hand, the BER
plot against the number of accumulations is
flat or decreasing and the rate of improvement
is nearly 0 for both samples. Similar trends
were also found at all bit rates for the detect-
ing points 1 through 6, 14, and 15 for Walk,
and 1, 2, 7, 8, 11 through 13, and 15 for Whale,
where most parts of the neighboring frames
were static. We also can infer that MPEG-2
encoding did not vary the strengths of WMs in
the regions and thus the BERs of the regions
were not changed by sorting.

For all the MPEG-2 bit rates we evaluated,
the proposed method could give lower or equal
BERs dependant on the picture properties and
yielded an average improvement of 15.7%. The
proposed method can thus improve WM detec-
tion.

4.1.3 Effect of Number of Statistical
Values on Detection

Because the new method estimates BER from
M statistical values corresponding to M -bit
values by using inferential statistics, its perfor-
mance depends on M . We thus evaluated sur-
vivability against MPEG-2 encoding using two
more M values (64 and 128) in addition to the
256 used in Section 4.1.2. Figure 10 shows the
average measured BERs obtained using the pro-
posed and previous methods with M = 64 and
128 for both evaluated pictures (in the same
manner as for M = 256 in Fig. 8).

From the plots in Fig. 10, we can see that,
for M = 128 (Figs. 10 (a2) and (b2)), the BERs
with the proposed method were better than or
equal to those with the previous one, the same
as for M = 256. For M = 64 (Figs. 10 (a1) and
(b1)), on the other hand, the BERs with the
proposed method were worse at some detect-
ing points for both evaluated pictures. This
means that the EM algorithm that estimates
BERs from M statistical values was less reli-
able the smaller the M became.

Example transitions in estimated BERs at a
detecting point for M = 64 (Whale, 3Mbps, de-
tecting point 12) are shown in Fig. 11. As the
estimated BERs were not consistent with those
measured, the proposed method misjudged the
minimum BER. Figure 12 has example his-
tograms of M statistical values for M = 64 and
128 at the same detecting point. The horizon-
tal axes represent the statistical values, and the
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vertical axes represent their frequencies. For
M = 128 (Fig. 12 (b)), the histogram roughly
describes a mixture normal distribution, i.e.,
a distribution comprising two normal distribu-
tions. For M = 64 (Fig. 12 (a)), the histogram
tended to lose its shape because of the small
number of samples. These results indicate that
the proposed method is effective for M = 128

Fig. 11 Example transitions in estimated BERs at de-
tecting point 12 for M = 64 (Whale, 3Mbps).

Fig. 12 Histograms for M statistical values.

Fig. 13 Evaluation results for different WM strengths.

or more.
4.1.4 Effect of WM Strength on De-

tection
To clarify what effect WM strength had

on the ability of the proposed method to
detect WMs, we evaluated its survivability
against MPEG-2 encoding using two more WM
strengths for all evaluated pictures, µ(f,r) = 2
and 4 for Walk and µ(f,r) = 3 and 5 for Whale,
in addition to the µ(f,r) = 3 for Walk and 4 for
Whale evaluated in Section 4.1.2.

Figure 13 shows the average measured
BERs obtained using the proposed and previ-
ous methods for the above WM strengths (in
the same manner as in Fig. 8), and Table 2
shows the average ratios of the BERs obtained
using the proposed and previous methods. We
can see that the larger the µ(f,r), the more ef-
fective the proposed method. This is probably
because it is more effective when the WM signal
of the region is strong against the corresponding
noise and when the mixture normal distribution
of the statistical values, from which the EM al-
gorithm is estimated, has slight overlap between
the two constitutive normal distributions. This
is because the EM algorithm has trouble con-
verging to the correct parameter values when
the target mixed distribution has large overlaps
between the constitutive distributions 21).

Future work should therefore focus on im-
proving the precision of the inferential statistics
so that all the BERs can be correctly estimated
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even when µ(f,r) is small.
4.2 Survivability against Video Trans-

coding
Video content is often re-encoded or trans-

coded when the content is used by other sys-
tems or devices (e.g., converted from NTSC for-
mat to VGA format or re-encoded from MPEG-
2 format to MPEG-4 format). We thus evalu-
ated survivability against such re-encoding and
transcoding for a representative case—a water-
marked video for broadcasting use is converted
and re-encoded for distribution through the In-
ternet. The evaluation was done in four steps.
Step 1: Embed 256-bit information (M =

256) into standard motion pictures (450
frames of 720 × 480 pixels) using the pro-
cedure described in Section 2.1.2.

Step 2: Encode and decode the watermarked
pictures (Walk and Whale) using the
MPEG-2 codec at three different bit rates
(3, 4, 5 Mbps).

Step 3: Reduce the resolution of the water-
marked pictures to that of the VGA format

Table 2 Average ratios of BERs obtained using pro-
posed and previous methods for different
WM strengths.

µ = 2 µ = 3 µ = 4
Walk 0.988 0.903∗ 0.731

µ = 3 µ = 4 µ = 5
Whale 0.967 0.784∗ 0.583

∗ Evaluation results in Section 4.1.2.

Fig. 14 Evaluation results for video transcoding.

(640 × 480 pixels).
Step 4: Encode and decode the watermarked

pictures in the VGA format using the
MPEG-4 codec at a bit rate of 2 Mbps.

The 256-bit information was detected from
the watermarked pictures after Steps 3 and 4 by
using both the proposed and previous detection
methods. The above procedure was done using
1000 different random WM patterns. Note that
Steps 1 and 2 and the other parameters are the
same as described in Section 4.1.1.

Figure 14 shows the average measured
BERs obtained using the proposed and previ-
ous methods for the watermarked pictures af-
ter Step 3 (MPEG-2 encoding and VGA con-
version) and after Step 4 (MPEG-2 encod-
ing, VGA conversion, and MPEG-4 encod-
ing), and Table 3 lists the average ratios of
the BERs obtained using the proposed and
previous methods. The proposed method re-
mained roughly effective in terms of survivabil-
ity against MPEG-2 encoding and VGA con-
version compared to only MPEG-2 encoding.
However, its effectiveness was weakened by the
additional MPEG-4 encoding. This is proba-
bly because the additional MPEG-4 encoding
caused the WM signal to weaken against the
corresponding noise, so the EM algorithm had
trouble converging to the correct parameter val-
ues, resulting in a large overlap between the
constitutive distributions of the statistical val-
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Table 3 Average ratios of proposed BER to previous
BER for video transcoding.

MPEG-2 MPEG-2 MPEG-2 & VGA
& VGA & MPEG-4

Walk 0.903∗ 0.938 0.983
Whale 0.784∗ 0.776 0.970

∗ Evaluation results in Section 4.1.2.

ues. As in the case described in Section 4.1.4,
future work should focus on improving the pre-
cision of inferential statistics.

5. Conclusion

Improving WM survivability is an essential
requirement in research on video watermark-
ing. Redundant coding is a basic method that
can prevent errors by accumulating frames or
regions. Accumulation, however, could cause
the strength of WMs to decrease so much that
the embedded bits may not be detected reli-
ably. This paper proposed a method of detect-
ing WMs using statistically adaptive accumu-
lation that can prevent the strength of WMs
from decreasing due to accumulation. Our
method was used to estimate the BER of re-
gion using the expectation-maximization algo-
rithm utilized in inferential statistics and it ac-
cumulated the subset of regions based on the
estimated BERs so that the accumulated region
had a minimal BER. Experimental evaluations
using actual motion pictures revealed that our
new method can improve WM detection after
MPEG-2 encoding by an average of 15.7% and
can be widely used in correlation-based water-
marking. Future work should focus on improv-
ing the precision of inferential statistics so that
the BER can be correctly estimated under any
conditions.

References

1) Swanson, M., Kobayashi, M. and Tewfik, A.:
Multimedia data-embedding and watermark-
ing technologies, Proc. IEEE, Vol.86, No.6,
pp.1064–1087 (1998).

2) Bloom, J., Cox, I., Kalker, T., Linnartz, J.,
Miller, M. and Traw, C.: Copy protection for
DVD video, Proc.IEEE, Vol.87, No.7, pp.1267–
1276 (1999).

3) Lin, E. and Delp, E.: Spatial Synchronization
Using Watermark Key Structure, Security and
Watermarking of Multimedia Contents, Proc.
SPIE, Vol.5306, pp.536–547 (2004).

4) Kalker, T., Depovere, G., Haitsma, J. and
Maes, M.: Video watermarking system for
broadcast monitoring, Security and Water-
marking of Multimedia Contents, Proc. SPIE,

Vol.3657, pp.103–112 (1999).
5) Kusanagi, A. and Imai, H.: An Image Correc-

tion Scheme for Video Watermarking Extrac-
tion, IEICE Trans. Fundamentals, Vol.E84-A,
No.1, pp.273–280 (2001).

6) Cox, I., Kilian, J., Leighton, T. and Shamoon,
T.: Secure Spread Spectrum Watermarking for
Multimedia, IEEE Trans. Image Processing,
Vol.6, No.12, pp.1673–1687 (1997).

7) Hartung, F., Su, J. and Girod, B.: Spread
spectrum watermarking: Malicious attacks and
counterattacks, Security and Watermarking of
Multimedia Contents, Proc. SPIE, Vol.3657,
pp.147–158 (1999).

8) Hsu, C. and Wu, J.: Hidden Digital Water-
marks in Images, IEEE Trans. Image Process-
ing, Vol.8, No.1, pp.58–68 (1999).

9) Pereira, S. and Pun, T.: Robust template
matching for affine resistant image watermarks,
IEEE Trans. Image Processing, Vol.9, No.6,
pp.1123–1129 (2000).

10) Seo, Y., Choi, S., Park, S. and Kim, D.: A
Digital Watermarking Algorithm Using Corre-
lation of the Tree Structure of DWT Coeffi-
cients, IEICE Trans.Fundamentals, Vol.E87-A,
No.6, pp.1347–1354 (2004).

11) Liang, T. and Rodriguez, J.: Robust Water-
marking Using Robust Coefficients, Security
and Watermarking of Multimedia Contents II,
Proc. SPIE, Vol.3971, pp.356–335 (2000).

12) Delaigle, J., Vleeschouwer, C., Goffin, F.,
Macq, B. and Quisquater, J.: Low cost water-
marking based on a human visual model, Proc.
Eur. Conf. Multimedia Applications, Services
Techniques, pp.153–167 (1997).

13) Echizen, I., Yoshiura, H., Arai, T., Kimura,
H. and Takeuchi, T.: General Quality Mainte-
nance Module for Motion Picture Watermark-
ing, IEEE Trans.Consumer Electronics, Vol.45,
No.4, pp.1150–1158 (1999).

14) Bender, W., Gruhl, D. and Morimoto, N.:
Techniques for data hiding, Proc. SPIE,
Vol.2020, pp.2420–2440 (1995).

15) Echizen, I., Yoshiura, H., Anzai, K. and
Sasaki, R.: Estimating the Bit-error-rate in
Digital Watermarking Using Inferential Statis-
tics, J. IPS Japan, Vol.42, No.8, pp.2006–2016
(2001) (in Japanese).

16) Redner, R. and Walker, H.: Mixture densities,
maximum likelihood and the EM algorithm,
SIAM Review, Vol.26, pp.195–239 (1984).

17) Xu, L. and Jordan, M.: On Convergence prop-
erties of the EM algorithm for Gaussian mix-
tures, Neural Computation, Vol.8, pp.129–151
(1996).

18) The Institute of Image Information and Tele-
vision Engineers: Evaluation video sample



2452 IPSJ Journal Aug. 2006

(standard definition).
19) Matsumoto, M. and Nishimura, T.: Mersenne

Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator,
ACM Trans. Modeling and Computer Simula-
tion, Vol.8, No.1, pp.3–30 (1998).

20) Wicker, S.: Error control systems for digital
communication and storage, Englewood Cliffs:
Prentice Hall (1995).

21) Akaho, S.: The EM Algorithm for multiple ob-
ject recognition, Proc. IEEE Intl. Conf. Neural
Networks, pp.2426–2431 (1995).

Appendix

A.1 Process flow for EM algorithm
The µ(f,r) and σ2(f,r) are estimated from M

statistical values v
(f,r)
k s in the following steps:

Step 1: Set the initial values of parameters
α(f,r), µ(f,r), and σ2(f,r) to α(f,r,0), µ(f,r,0),
and σ2(f,r,0).

Step 2: Do Step 3 through Step 5 over t =
1, 2, . . ..

Step 3: For each k, calculate w
(f,r,t)
k from

v
(f,r)
k :

w
(f,r,t)
k =

α(f,r,t)φ(v(f,r)
k ; µ(f,r,t), σ2(f,r,t))

g(v(f,r)
k ; α(f,r,t), µ(f,r,t), σ2(f,r,t))

,

(20)
where g(v; α, µ, σ2) is the probability den-
sity function of the mixture normal distri-
bution, i.e.,

g(v; α, µ, σ2) = αφ(v; α, µ, σ2)
+ (1 − α)φ(v; α,−µ, σ2).

(21)
Step 4: Update α(f,r,t), µ(f,r,t), and σ2(f,r,t)

with the following formulas:

α(f,r,t+1) =
1
M

∑
k

w
(f,r,t)
k , (22)

µ(f,r,t+1) =
1

Mα(f,r,t+1)

∑
k

w
(f,r,t)
k v

(f,r)
k ,

(23)

σ2(f,r,t+1) =
∑

k w
(f,r,t)
k v

(f,r)2
k

Mα(f,r,t+1)
−µ(f,r,t+1)2.

(24)
Step 5: Stop the process and set

µ(f,r) = µ(f,r,t+1), (25)
σ2(f,r) = σ2(f,r,t+1), (26)

if the parameters satisfy the following con-
ditions:

|α(f,r,t+1) − α(f,r,t)| < δ, (27)
|µ(f,r,t+1) − µ(f,r,t)| < δ, (28)

|σ2(f,r,t+1) − σ2(f,r,t)| < δ. (29)
The bit error rate of the region, y′(f,r), p(f,r),

is calculated from µ(f,r) and σ2(f,r) using for-
mula (17).
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