
情報処理学会研究報告
IPSJ SIG Technical Report

設計空間探索における
ハードウェア共有用通信の自動合成

安 藤 友 樹†1 柴 田 誠 也†1,†2 本 田 晋 也†1

冨 山 宏 之†1 高 田 広 章†1

マルチプロセッサ組込みシステムの設計空間探索における，ハードウェアの共有を
実現する通信実装の自動合成について述べる．我々は過去の研究において，高い抽
象度で記述されたシステムから実装記述を合成するシステムレベル設計環境である
SystemBuilderを開発した．本研究では，SystemBuilderを拡張し，システム内の複
数のアプリケーション間でハードウェアの共有を実現する合成を可能とした．これに
より，設計者が自らハードウェアの共有を行うための通信を設計することなく，ハー
ドウェアの共有を含めた，より広い設計空間を容易に探索可能となる．設計事例によ
り，ハードウェア共有を使用した設計空間探索の効果を示す．

Automatic Synthesis of Hardware Sharing Communication
for Design Space Exploration

Yuki Ando,†1 Seiya Shibata,†1,†2 Shinya Honda,†1

Hiroyuki Tomiyama †1 and Hiroaki Takada†1

We present a hardware sharing method for design space exploration of mul-
tiprocessor embedded systems. We had developed a system-level design tool
named SystemBuilder which automatically synthesizes target implementations
of a system from a functional description. We extended SystemBuilder so that
it can automatically synthesize a target implementation which shares a hard-
ware module among different applications. Designers, therefore, only need to
design applications of the system, and can easily explore design space including
hardware sharing by automatic synthesis of SystemBuilder. A case study shows
the effectiveness of the hardware sharing on design space exploration.

†1 名古屋大学　大学院情報科学研究科
Graduate School of Information Science, Nagoya University

†2 日本学術振興会特別研究員 DC

Research Fellow of the Japan Society for the Promotion of Science

1. Introduction

System-level design has been proposed in order to design complex embedded
systems. In the system-level design, designers design a system at high level of
abstraction. They start from describing functionalities of the system as pro-
cesses and channels, which indicate computations and communications among
processes, respectively. Then, they decide mapping of processes to various Pro-
cessing Elements (PEs) including CPUs and dedicated hardware modules. In
order to support such system-level design, a number of tools have been proposed
in the past1)2)3)4). The tools have ability to convert processes and channels into
compilable software program and synthesizable RTL circuits depending on the
mapping decision.

These days, embedded systems consist of multiple applications (such as mu-
sic and movie players, email, and web browsing), and in many cases the appli-
cations include common functionalities (such as DCT, IDCT, encryption, and
decryption). In order to optimize the cost/performance efficiency, the common
functionalities are often implemented in dedicated hardware modules which are
shared by the applications. However, such coarse-grained hardware sharing is not
supported by most of the existing system-level design tools. Many tools assume
single-application systems. Some tools assume multiple applications, but they
do not allow to map processes in different applications onto a single hardware
module. Even if allowed, they do not automatically synthesize interface circuitry
which realizes mutually exclusive accesses to the shared hardware modules.

In this work, our system-level design tool named SystemBuilder has been ex-
tended so that it supports process-level hardware sharing. With SystemBuilder,
designers can map processes in different applications onto a single hardware mod-
ule. Then, SystemBuilder can automatically synthesize communications for the
hardware module which are shared by the multiple applications. Since the appli-
cations may run concurrently, the interface circuit generated by SystemBuilder
realizes mutually exclusive accesses to the shared hardware.

This paper is organized as follows. Section 2 explains a brief overview of Sys-

1 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-187 No.15
Vol.2010-EMB-15 No.15

2010/1/29

情報処理学会研究報告
IPSJ SIG Technical Report

BUS2
BUS1

CPU3

BUS
 I/F 1

BUS
 I/F 2

CPU2
CPU1 CPU_

MEM1

CPU_
 2

CPU_
 3 SD

RAM1

SD
 2

SD
 3

BUS2
 BUS1

BUS I/F 1

Device Register

BUS I/F 2

Device Register

Fig.1 Overview of SystemBuilder.

temBuilder. Section 3 presents the detail of communication synthesis for hard-
ware sharing. Section 4 shows the effectiveness of hardware sharing through
a case study on Advanced Encryption Standard (AES) system, and Section 5
concludes this paper.

2. SystemBuilder

In this section, we show a brief overview of SystemBuilder to make this paper
self contained. Please refer 5) for the detail of SystemBuilder.

Fig.1 shows the mapping and synthesis overview of SystemBuilder. System-
Builder takes functional description, an architecture template and mapping in-
formation as input, and generates target implementations of the system. The
functional description and the architecture template represent system function-
alities and target platforms, respectively. The functional description consists of a
set of processes running concurrently and channels representing communications
among processes. Processes are written in the C language with communication
APIs as interfaces to channels. A process is implemented as either a software task
on a Real-time OS (RTOS) or a hardware module with a single FSM depending

on SW/HW partitioning described in mapping information.
SystemBuilder provides abstract communications as channels and synthesizes

implementation of them. One of the features of SystemBuilder is automatic
synthesis of communications among the processes. Channels are classified into
two general groups, asynchronous and synchronous. Asynchronous channels are
used to transfer data among the processes. Synchronous channels are mainly
used between two processes to notify start/end events of execution to synchro-
nize them. Depending on the types of channels and mapping information on
software/hardware partitioning, communication APIs used in each process de-
scription are converted to interface programs and logics to communicate with
each other through channels.

3. Automatic Communication Synthesis with Hardware Sharing

3.1 The Design Flow for Hardware Sharing

It is assumed that a system consists of more than one application. In Fig.2,
there are two applications. Designers first design applications in the system inde-
pendently as shown in Fig.2(a). Without synthesis option on hardware sharing,
SystemBuilder generates the system implementation as shown in Fig.2(b). With
hardware sharing option, SystemBuilder converts an input description (Fig.2(a))
to an internal description (Fig.2(c)). In order to turn on hardware sharing
option, processes that designers want to share among several applications must
satisfy following requirements;
• All channels of the processes have same characteristics such as a synchronous

channel.
• The processes have same functionality and are mapped to hardware.
In Fig.2, since both processes P B and P Y have same functionality and same

channels, and they are mapped to hardware, they can be shared. P S whose
functionality is the same as both P B and P Y is shared by two applications.

In our hardware sharing method, channels in both application1 and applica-
tion2 remain if P S is shared by two applications as shown in Fig.2(c). Then
SystemBuilder automatically generates the system as shown in Fig.2(d) from

2 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-187 No.15
Vol.2010-EMB-15 No.15

2010/1/29

情報処理学会研究報告
IPSJ SIG Technical Report

Application1 Application2

Channel

CPU_
MEM

Channel

HW

Channel

P_B P_Y
P_X

CPU2

P_ZP_A

CPU1

P_C

Channel

CPU_
MEM

Channel

HW

Channel
P_X

CPU2

P_ZP_A

CPU1

P_C
P_S

Application1 Application2

Channel

Channel

Channel

Channel

Channel

Channel Channel

Channel

Fig.2 Design Flow for Hardware Sharing.

internal description (Fig.2(c)).
The hardware cost of the system (Fig.2(d)) will be less than that of the sys-

tem (Fig.2(b)) since two applications share a hardware module in the system
(Fig.2(d)). On the other hand, the performance of the system (Fig.2(d)) may
be worse than that of the system (Fig.2(b)) since one application is blocked to
use a shared hardware module while the shared hardware module is used by
the other application. Therefore, there is a trade-off between hardware cost and
performance of the system.

SystemBuilder automatically completes the synthesis flow of hardware sharing
in Fig.2 with a sharing option in the mapping information. Since designers only
need to turn on the option in the mapping information to share the hardware,
designers will be able to explorer wider design space than that without hardware
sharing in short time. Note that designers can share hardware among more than
two applications although Fig.2 only shows two applications.

3.2 Implementation of Communication for Hardware Sharing

A shared process starts its execution by a start event of synchronous communi-
cation sent by the preceding process in the application. While the shared process

P_A P_X

P_S

Channel P_X
signals indicating whether

buffer is empty or not

1: poll signals
&

select an application

2: get data by an
application ID

sending data sending data

Channel P_A

 empty data

 valid data

start event with data

empty not empty

Fig.3 Detail of the Wrapper Generated by SystemBuilder.

is used by an application, other applications which access the shared process are
forced to wait. In this way, the shared process is used by multiple applications
exclusively. In our method, each application writes data to its own channels.
Since applications which use the shared process have their own channels and
applications use the shared process exclusively, there is no data conflict in the
shared process. Instead, the shared process needs to select an application from
(to) which the shared process should read (write) data.

SystemBuilder automatically adds a wrapper to a shared process, which real-
izes mutual exclusion and identifies the channel to be accessed as shown in Fig.3.
Also, SystemBuilder adds a signal to channels connected to the shared process,
which indicates if the buffer in the channel is empty or not. Then, the wrapper
works as follows.

First, the wrapper polls the signals from the channels in order to select an ap-
plication which can use the shared process. SystemBuilder supports two types of
a polling, a priority-based polling and a round-robin one. With a priority-based
polling, every time the shared process completes its execution, the channel of the
highest priority application is checked at first. If the channel’s signal indicates
empty, the lower priority application will be checked. With a round-robin polling,

3 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-187 No.15
Vol.2010-EMB-15 No.15

2010/1/29

情報処理学会研究報告
IPSJ SIG Technical Report

SWSW

HW_Shared

SW Process HW Process

HW Shared Process

HWSW

HW_Shared

HWHW

HW_Shared HW_Shared

HW_Shared

Channel

Channel Channel Channel Channel Channel Channel Channel Channel

Channel Channel Channel Channel Channel Channel Channel

(a) SW Only

SWSW

HW_Shared

SW Process HW Process

HW Shared Process

HWSW

HW_Shared

HWHW

HW_Shared HW_Shared

HW_Shared

Channel

Channel Channel Channel Channel Channel Channel Channel Channel

Channel Channel Channel Channel Channel Channel Channel

(b) SW and HW

SWSW

HW_Shared

SW Process HW Process

HW Shared Process

HWSW

HW_Shared

HWHW

HW_Shared HW_Shared

HW_Shared

Channel

Channel Channel Channel Channel Channel Channel Channel Channel

Channel Channel Channel Channel Channel Channel Channel

(c) HW Only

SWSW

HW_Shared

SW Process HW Process

HW Shared Process

HWSW

HW_Shared

HWHW

HW_Shared HW_Shared

HW_Shared

Channel

Channel Channel Channel Channel Channel Channel Channel Channel

Channel Channel Channel Channel Channel Channel Channel

(d) Shared HW

Fig.4 Mapping of Processes with Hardware Sharing.

the channels are checked in a round-robin manner. This polling continues until
non-empty signal is found. Designers define the polling type and priorities of
applications in mapping information.

Next, data are read from the channel of the selected application, the wrapper
sends a start event as well as the data to the shared process. Then, the shared
process starts its execution.

The shared process may communicate with other processes not only at start-
ing and finishing times of the process but also during its execution. Every time
the shared process communicates with another process, the wrapper accesses the
channel of the selected application.

3.3 Mapping of Processes with Hardware Sharing

In our method, there is no limitation on mapping of processes which are con-
nected to the shared processes. Fig.4 shows four patterns of process mapping
with hardware sharing supported by SystemBuilder. Our method can be applied
to other system-level design tools if they provide a synchronous communication.

4. A Case Study

In this section, a case study on three AES systems is presented to show effec-
tiveness of design space exploration with hardware sharing. Each system consists
of two, three, or four AES applications. Each AES application in the system is
numberd from 1 through 4. AES1 is the highest priority, and the priorities of
AES2, AES3, and AES4 are lowered in order of AES2, AES3, and AES4. The
AES application is selected from CHStone Benchmark Suite6). Each AES appli-
cation consists of 4 processes, aes mainX, encryptX, decryptX, and check resultX

(X is 1, 2, 3, or 4). In this case study, software processes are compiled and linked
with TOPPERS/FDMP kernel7) which is a Real-Time OS for multi-processors.
Hardware processes are converted to RTL descriptions by a commercial HLS
tool, YXI eXCite3.2c8). Hardware processes in RTL are synthesized by Quartus
II 8.1 logic synthesizer and implemented on Altera Stratix II FPGA board with
four Nios II soft-core processors9). Since each application is allocated to its own
processor, they can run in parallel. The performance of the AES system was
measured by the time where each application in the systems completes encryp-
tion and decryption of 16 integer data for 1000 times. Table 1 shows 14 designs
with their process mapping and a polling type.

Fig.5 shows the execution time of each application on three AES systems.
With a priority-based polling, a higher priority application mostly completes its
execution earlier than lower priority applications. The execution time of AES1
and AES2 of design]6, however, are same in both Fig.5(b) and Fig.5(c), though
the design uses a priority-based polling. Since the shared hardware module ended
its execution during running of encrypt1 that was mapped to software, AES2 was
able to use the shared hardware module even its priority was lower than AES1.
Therefore, encrypt1 and encrypt2 were able to run in parallel and their execu-
tion times resulted in almost same. By contrast with a priority-based polling, the
execution times of each application in design using a round-robin polling were
averaged. Since a round-robin polling enables systems to use a shared hardware
module effectively, total execution time of the systems with a round-robin polling
was earlier or equal to that of the systems with a priority-based polling. There-
fore, designers can select a priority-based polling in order to end the highest
priority process at first, and they can select a round-robin polling in order to
shorten the entire execution time.

Fig.6 shows the trade-offs between performance and]ALUTs on three AES
systems.]ALUTs shows only hardware area of processes mapped to hardware
and it does not include processors and peripherals. In Fig.6(a), design]1,]6,
]7, and]8 were better balanced between the performance and]ALUTs, and
two of them turned on the hardware sharing option. In Fig.6(b), design]7

4 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-187 No.15
Vol.2010-EMB-15 No.15

2010/1/29

情報処理学会研究報告
IPSJ SIG Technical Report

Table 1 Mapping and the Polling Type of AES Systems.

]design encrypt1 encrypt2 encrypt3 encrypt4 decrypt1 decrypt2 decrytp3 decrypt4 polling

1 SW SW SW SW SW SW SW SW —

2 HW HW HW HW SW SW SW SW —

3 HW Share SW SW SW SW priority

4 HW Share SW SW SW SW round-robin

5 SW SW SW SW HW HW HW HW —

6 SW SW SW SW HW Share priority

7 SW SW SW SW HW Share round-robin

8 HW HW HW HW HW HW HW HW —

9 HW HW HW HW HW Share priority

10 HW HW HW HW HW Share round-robin

11 HW Share HW HW HW HW priority

12 HW Share HW HW HW HW round-robin

13 HW Share HW Share priority

14 HW Share HW Share round-robin

was better balanced as well as that in Fig.6(a). Unlike design]7 in Fig.6(a) and
Fig.6(b), design]7 in Fig.6(c) was not balanced since the shared process became
the bottle neck of the system. The performance of the system will be lowered if
several applications share a hardware module, however, hardware sharing can ex-
pand the design space. We conclude hardware sharing enabled to explore better
cost/performance trade-offs.

Table 2 shows sizes of hardware area and ratio of them in design]8 which
turned off the hardware sharing option and design]13 which turned on the hard-
ware sharing option. The size of hardware area of two AESs, three AESs, and
four AESs were reduced by 43%, 59%, and 65% at maximum, respectively, with
hardware sharing option. Therefore, hardware sharing is effective to reduce the
size of hardware area in this case study.

5. Conclusion

This paper proposed the hardware sharing method with our system-level design

Table 2 Comparation of]ALUTs.

System]design]ALUTs Ratio

Two AESs 8 28985 1

13 16432 0.57

Three AESs 8 43015 1

13 17732 0.41

Four AESs 8 56864 1

13 19747 0.35

tool named SystemBuilder. With SystemBuilder, designers only need to change
mapping of processes onto either software or hardware in order to explore design
space. Since SystemBuilder can automatically add the wrapper to the shared
process, designers only need to turn on the sharing option in mapping informa-
tion in order to share the hardware. Hardware sharing will bring designers wider
design spaces and chance to reduce the hardware size.

We conducted a case study of hardware sharing on three AES systems which

5 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-187 No.15
Vol.2010-EMB-15 No.15

2010/1/29

情報処理学会研究報告
IPSJ SIG Technical Report

0
500

1,000
1,500
2,000
2,500
3,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

tim
e

[m
se

c]

design

AES1
AES2

(a) Two AESs

0
500

1,000
1,500
2,000
2,500
3,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

tim
e

[m
se

c]

design

AES1
AES2
AES3

(b) Three AESs

0
500

1,000
1,500
2,000
2,500
3,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

tim
e

[m
se

c]

design

AES1
AES2
AES3
AES4

(c) Four AESs

Fig.5 Execution Time of AES Encryption and Decryption Systems.

have two, three, or four AES applications. In our case study, hardware sharing
expanded the design space and reduced hardware size by 43%, 59% and 65% at
maximum with two, three, and four AES applications, respectively.

Acknowledgments This work was in part supported by STARC (Semicon-
ductor Technology Academic Research Center).

References

1) Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S. and Gajski,

D. D.: System-on-Chip Environment: A SpecC-Based Framework for Heteroge-

neous MPSoC Design, EURASIP Journal on Embedded Systems, Vol. 2008, pp.

1–13 (2008).

2) Pimentel, A. D.: The Artemis workbench for system-level performance evaluation

of embedded systems, International Journal of Embedded Systems, Vol.3, No.3, pp.

181–196 (2008).

3) Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S. and Joo, Y. P.: PeaCE: A Hardware-

0
10000
20000
30000
40000
50000
60000

0 500 1000 1500 2000 2500 3000

A

L
U

Ts
	

time [msec]

1	

2	
6,7	

8	

13,14	

11	
12	

5	
9,10	

3,4	

Circle indicates
not shared design	

(a) Two AESs

0
10000
20000
30000
40000
50000
60000

0 500 1000 1500 2000 2500 3000

A

L
U

Ts

time [msec]

1	

2	

7	

8	

13,14	

11	12	

5	 9,10	

3	4	
6	

(b) Three AESs

0
10000
20000
30000
40000
50000
60000

0 500 1000 1500 2000 2500 3000

A

L
U

Ts

time [msec]

1	

2	

4,7,6	

8	

13,14	

11	12	

5	 9,10	

3	

(c) Four AESs

Fig.6 Trade-offs for Performance and Hardware Size.

Software Codesign Environment for Multimedia Embedded Systems, ACM Trans.

Design Automation of Electronic Systems, Vol.12, No.3, pp.1–25 (2007).

4) Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C. and Sangiovan-

niVincentelli, A.: Metoropolis: An Integrated Electronic System Design Environ-

ment, Computer, Vol.36, No.4, pp.45–52 (2003).

5) Honda. S., Tomiyama, H. and Takada, H.: RTOS and Codesign Toolkit for Mul-

tiprocessor Systems-on-Chip, ASP-DAC, pp.336–341 (2007).

6) Hara, Y., Tomiyama, H., Honda, S., Takada, H. and Ishii, K.: CHStone: Proposal

and Quantitative Analysis of the CHStone Benchmark Program Suite for Practi-

cal C-based High-level Synthesis, Journal of Information Processing, Vol.17, pp.

242–254 (2009).

7) TOPPERS Project, http://www.toppers.jp/en/index.html.

8) Y Explorations Inc., http://www.yxi.com/.

9) Altera Corporation, http://www.altera.com/.

6 c© 2010 Information Processing Society of Japan

Vol.2010-ARC-187 No.15
Vol.2010-EMB-15 No.15

2010/1/29

