
情報処理学会研究報告
IPSJ SIG Technical Report

単純でより高速な最大クリーク抽出アルゴリズム

富 田 悦 次†1,†2 須 谷 洋 一†1 東 貴 紀†1

高 橋 真 也†1 若 月 光 夫†1

最大クリーク抽出アルゴリズムMCR (Tomita et al., J. Global Optim., 37, 95–

111, 2007) は，数多くの問題グラフに対して他よりも非常に高速であることを実験的
に確認していた. 本稿では，その改良アルゴリズムMCSがMCRや他のアルゴリズ
ムよりも全面的に顕著に高速であることを示す．MCS は特定のグラフに対象を限定
したアルゴリズムではないが，枝密度の高い難しいグラフに対しては特により高速で
ある．MCRでは 100日以上かかっても解けない幾つかの超高密度ランダムグラフに
対し，MCS は数 10 秒で解を得ることに成功している．

A Simple and Faster Algorithm
for Finding a Maximum Clique

Etsuji Tomita ,†1,†2 Yoichi Sutani,†1

Takanori Higashi,†1 Shinya Takahashi †1

and Mitsuo Wakatsuki†1

A maximum-clique-finding algorithm MCR (Tomita et al., J. Global Optim.,
37, 95–111, 2007) was the fastest among all the existing algorithms in computa-
tional experiments for a large number of tested graphs. In this note, it is shown
by extensive computational experiments that MCS is remarkably faster than
MCR and other algorithms. In particular, it is very much faster than MCR
for difficult graphs of very high density, even though MCS is not designed for
any particular type of graphs. MCS can find a maximum clique in less than
100 seconds for some extremely dense random graphs while MCR requires more
than 100 days for the same graphs.

†1 電気通信大学, The University of Electro-Communications

†2 中央大学研究開発機構, Research and Development Initiative, Chuo University

1. Introduction

A clique is a subgraph in which all pairs of vertices are adjacent to each other.

Many practical problems can be formulated as maximum clique problems (e.g., see

Refs.2),3),4),1),6), and others). Therefore, it is required to develop exact maximum-

clique-finding algorithms that run very fast in practice.

We developed a simple branch-and-bound algorithm that is referred to as MCR 12);

that was successful in reducing the search space with low overhead. It was shown in

computational experiments that MCR clearly outperformed other existing algorithms

in finding a maximum clique.

In this note, we propose a new approximate coloring that can play a crucial role in the

branch-and-bound algorithm. Subsequently, we introduce a new adjunct ordered set of

vertices for approximate coloring. Following this ordered set of vertices, we present a

new technique for reconstructing the adjacency matrix of a graph. The algorithm that

is obtained by introducing these new techniques in MCR is named MCS 13).

While MCS inherits the simplicity of MCR to a large extent, MCS is much more

successful in reducing the search space quite efficiently. Consequently, extensive com-

putational experiments have shown that MCS is remarkably faster than MCR and other

algorithms. MCS is faster than other algorithms by an order of magnitude for several

graphs. In particular, it is faster than MCR for difficult graphs with very high density,

even though MCS is not designed for any particular type of graphs. MCR is only briefly

described in Sect. 2 due to the page limitation, and the reader is advised to refer to

Ref.12) for further details.

2. Maximum clique algorithm MCR
2.1 Branch-and-bound algorithm

The basic branch-and-bound algorithm MCR 12) begins with a small clique and con-

tinues finding larger and larger cliques in a depth-first way until one is found that can

be verified to have the maximum size.

2.2 Greedy approximate coloring

In order to prune unnecessary searching, we used greedy approximate coloring of

the vertices in MCR. That is, each p ∈ R is sequentially assigned a minimum possible

1 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.10
2010/1/26

情報処理学会研究報告
IPSJ SIG Technical Report

positive integer value No[p], called the Number or Color of p, such that No[p] 6= No[r]

if (p, r) ∈ E. Consequently, we have that ω(R) ≤ Max{No[p]|p ∈ R}.
Hence, if |Q|+ Max{No[p]|p ∈ R} ≤ |Qmax| holds, we need not continue the search for

R.

After Numbers (Colors) are assigned to all vertices in R, we sort the vertices in

ascending order with respect to their Numbers. We refer to the numbering and sorting

procedure as NUMBER-SORT 12). In each step, select a vertex p in R, beginning from

the last (right) vertex and ending at the first (left) vertex.

2.3 Initial sorting and initial numbering

In the first stage of algorithm MCQ 10), which is a predecessor of MCR, vertices are

sorted in descending order with respect to their degrees and are assigned simple initial

Numbers. At the beginning of MCR, vertices are sorted and assigned initial Numbers

in a similar but more sophisticated manner.

3. New algorithm
3.1 New approximate coloring

Approximate coloring is generally quite effectively used in branch-and-bound algo-

rithms for finding a maximum clique. In this note, we propose a new approximate

coloring following greedy approximate coloring in Sect. 2.2.

Because of the bounding condition mentioned in Sect. 2.2, if No[r] ≤ |Qmax| − |Q|,
then it is not necessary to search from vertex r. The number of vertices to be searched

can be reduced if the Number No[p] of vertex p for which No[p] > |Qmax| − |Q| can

be made less than or equal to |Qmax| − |Q|. When we encounter such vertex p with

No[p] > |Qmax| − |Q|, we attempt to change it’s Number in the following manner. Let

Nop denote the original value of No[p].

[Re-NUMBER p]

0) Let Noth := |Qmax| − |Q|. (Noth stands for Nothreshold.)

1) Attempt to find a vertex q in Γ (p) such that No[q] = k1 ≤ Noth, with |Ck1 | = 1.

2) If such q is found, then attempt to find Number k2 such that no vertex in Γ (q) has

Number k2.

3) If such number k2 is found, then Re-Number q and p so that No[q] = k2 and

No[p] = k1.

(If no vertex q with Number k2 is found, nothing is done.)

When the vertex q with Number k2 is found, No[p] is changed from Nop to k1

(≤ Noth); thus, it is no longer necessary to search from p.

The conventional greedy approximate coloring in Sect. 2.2 followed by the above

Re-NUMBER constitutes our new approximate coloring. The new approximate color-

ing followed by sorting of vertices in ascending order with respect to their Numbers

is named Re-NUMBER-SORT. We employ the new procedure Re-NUMBER-SORT in-

stead of the procedure NUMBER-SORT used in MCR in order to make more effective

use of the bounding condition.

3.2 Adjunct ordered set of vertices for approximate coloring

The application of Re-NUMBER, which is described in Sect. 3.1, changes the

Numbers of the vertices, thereby making the vertices disordered with respect to their

degrees. We can reduce the search space by sorting vertices in R in descending order

with respect to their degrees. However, the sorting of vertices is a computational burden

and reduces the overall running time only for dense graphs 9). So, in addition to the

ordered set R of vertices, we simply introduce a particular adjunct ordered set Va of

vertices that preserves the order of the vertices sorted in descending order with respect

to their degrees in the first stage. We apply the procedure Re-NUMBER-SORT to the

vertices in Va, begining from the first (left) vertex and ending at the last (right) vertex.

Thus, we can avoid the undesirable effect of Re-NUMBER.

3.3 Reconstruction of the adjacency matrix

Each graph is stored as an adjacency matrix in the computer memory. Sequential

numbering in Re-NUMBER-SORT is carried out according to the initial order of ver-

tices in the adjunct ordered set Va, as described in Sect. 3.2. Taking this into account,

we rename the vertices of the graph and reconstruct the adjacency matrix so that the

vertices are consecutively ordered in a manner identical to the initial order of vertices

obtained at the beginning of MCR. The above-mentioned reconstruction of the adja-

cency matrix results in a more effective use of the cache memory since it facilitates the

use of localized memory.

2 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.10
2010/1/26

情報処理学会研究報告
IPSJ SIG Technical Report

3.4 Algorithm MCS

The new algorithm obtained by introducing the techniques described in Sects. 3.1–3.3

in MCR is named MCS.

4. Computational experiments

We carried out computational experiments in order to demonstrate the overall supe-

riority of MCS over MCR. Both MCR and MCS were implemented in exactly the same

manner in the programming language C. The computer used, which had a Linux op-

erating system, is described in Appendix. We also executed the DIMACS benchmark

program dfmax 5), as a standard. The computation times for other algorithms are

calibrated using the ratios as shown in Appendix.

It is confirmed that we are successful in further reducing the search space quite effi-

ciently with low overhead and hence we have the following results 13) .

4.1 Results for random graphs

Random graphs are generated for each pair of n (number of vertices) and p (edge

probability) listed in Table 1. The average CPU times [sec] required to solve these

graphs when using dfmax, MCR, and MCS are listed in Table 1.

The calibrated CPU time for New 7) is also listed for reference. The boldface entries

indicate the fastest time in the row. In Table 1, it is observed that MCS is faster than

MCR for all graphs. MCS is particularly faster than MCR for dense graphs. MCS is

the fastest for all the random graphs listed in Table 1. For the graphs with p > 0.99 in

Table 1, MCS is faster than MCR by a factor of greater than 100,000 (105 seconds '
1.16 days, and 107 seconds ' 116 days).

4.2 Results for DIMACS benchmark graphs

Table 2 lists the CPU times required by MCS and other algorithms to solve the DI-

MACS benchmark graphs 5). The boldface entries indicate the fastest time among the

times obtained within the time limits in the row. From this table, it is confirmed that

MCS is almost always faster than MCR and the other algorithm in Table 2.

MCS is almost always considerably faster than COCR, MIPO, SQUEEZE, Target,

and ILOG 8) (see Table 4 in Ref.12)).

Table 1. CPU time [sec] for random graphs

Graph dfmax MCR MCS New

n p ω Ref.5) Ref.12) Ref.13) Ref.7)

0.9 29-32 3.67 0.038 ◦ 0.013 0.663

100 0.95 39-48 23.736 0.011 ◦ 0.003 0.196

0.98 56-68 26.5401 0.0012 0.0009

0.8 23 6.88 0.55 ◦ 0.23

150 0.9 36-39 1058.96 5.26 ◦ 1.00

0.95 50-59 37,436.79 3.94 ? 0.35

0.98 73-85 > 105 0.243 ?◦ 0.006

0.8 24-27 192.7 12.3 ◦ 4.5 147.3

200 0.9 40-44 > 105 647 ◦ 74

0.95 58-66 > 105 1,272 ?◦ 59

0.98 90-103 > 105 30.9 ?? 0.2

0.7 19-21 26,236 23 · 12 121

0.8 28-29 > 105 1,264 ◦ 394

300 0.9 49 1,475,387 ?◦ 62,607

0.98 120 284,534 ?? 2,623

0.99 154 732.49 ??? 0.23

400 0.99 188 > 1.8 × 106 ??? 1,030

0.6 17 242 63 · 40 183

500 0.7 22-23 24,998 3,268 ◦ 1,539

0.994 263 > 1.5 × 107 > 107 ????? 39

0.4 12 33.3 16.1 13.2 23.2

0.5 15 1,107 395 290

1,000 0.6 19-20 106,776 24,986 · 15,317

0.66 23 555,089 ◦ 275,964

0.998 618 > 107 ????? 46

1,500 0.999 997 > 1.8 × 106 ????? 13

2,000 0.9995 1,453 > 107 ????? 61

10,000 0.1 7-8 137 100 · 60

0.2 10 9,417 8,055 · 4,389

Entries marked ?????, ???,??,?◦, ?, ◦, and · are respectively at least

100,000, 1,000, 100, 20, 10, 2, and 1.5 times faster than any of the others in the

same row.

5. Concluding remarks

Our new algorithm, MCS, retains the simplicity of our earlier algorithms and it

runs remarkably faster than MCR and the other existing algorithms. Some theoretical

analysis of maximum-clique-finding algorithms is on the way based upon Ref.11).

3 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.10
2010/1/26

情報処理学会研究報告
IPSJ SIG Technical Report

Table 2. CPU time [sec] for DIMACS benchmark graphs

Graphs dfmax MCR MCS New

Name n density ω Ref.5) Ref.12) Ref.13) Ref.7)

brock400 1 400 0.75 27 22,051 1,771 ◦ 693

brock400 2 400 0.75 29 13,519 726 ◦ 297

brock400 3 400 0.75 31 14,795 1,200 ◦ 468

brock400 4 400 0.75 33 10,633 639 ◦ 248

MANN a27 378 0.990 126 > 105 2.5 ◦ 0.8 > 2, 232

MANN a45 1,035 0.996 345 > 105 3,090 ? 281

p hat300-3 300 0.744 36 779.7 10.8 ◦ 2.5

p hat500-2 500 0.505 36 132.9 3.1 ◦ 0.7 95.7

p hat500-3 500 0.752 50 > 105 1,788 ? 150

p hat700-2 700 0.498 44 5,299.9 44.4 • 5.6

p hat700-3 700 0.748 62 > 105 68,187 ?◦ 2,392

p hat1000-2 1,000 0.489 46 > 105 2,434 ? 221

p hat1500-2 1,500 0.506 65 > 105 722,733 ?◦ 16,512

san200 0.9 1 200 0.900 70 > 105 1.20 0.22 ◦ 0.06

san200 0.9 2 200 0.900 60 > 105 4.2 ◦ 0.4 1.0

san400 0.7 1 400 0.700 40 > 105 1.76 ◦ 0.54 > 2, 232

san400 0.7 2 400 0.700 30 > 105 0.33 ◦ 0.13 112.97

san400 0.7 3 400 0.700 22 > 105 3.6 ◦ 1.4

san400 0.9 1 400 0.900 100 > 105 3.4 ?◦ 0.1

san1000 1,000 0.502 15 > 105 4.8 2.1 ?◦ 0.1

sanr200 0.9 200 0.898 42 86,954 289 • 41

sanr400 0.7 400 0.700 21 2,426 379 ◦ 181

gen200 p0.9 44 200 0.900 44 48,262 5.39 ? 0.47

gen200 p0.9 55 200 0.900 55 9,281.0 15.0 ? 1.2

gen400 p0.9 55 400 0.900 55 5,846,951 ?? 58,431

gen400 p0.9 65 400 0.900 65 > 107 ?• 151,597

gen400 p0.9 75 400 0.900 75 > 107 ?◦ 294,175

C250.9 250 0.899 44 > 105 44,214 ? 3,257

Entries marked ??,?•, ?◦, ?, •, ◦, and · are respectively at least

100, 50, 20, 10, 5, 2, 1.5 times faster than any of the others within

the time limits in the same row.

Acknowledgements We thank E. Harley for his useful detailed comments. This

research was supported in part by Grants-in-Aid for Scientific Research from MEXT,

Japan, and a Special Grant for SCOPE Project from MIC, Japan.

References
1) Bahadur, D. K.C., Tomita, E., Suzuki, J., Horimoto, K., Akutsu, T.: Protein

threading with profiles and distance constraints using clique based algorithms, J.

Bioinformatics and Computational Biology, 4, 19–42 (2006)

2) Bomze, I. M., Budinich, M., Pardalos, P. M., Pelillo M.: The Maximum Clique

Problem, In: Du, D.-Z., Pardalos, P.M. (Eds.), Handbook of Combinatorial Opti-

mization, Supplement vol. A, Kluwer Academic Publishers, 1–74 (1999)

3) Butenko, S. , Wilhelm, W.E.: Clique-detection models in computational biochem-

istry and genomics - Invited Review - , European J. Operational Research, 173,

1–17 (2006)

4) Hotta, K., Tomita, E., Takahashi, H.: A view-invariant human face detection

method based on maximum cliques. Trans. IPSJ, 44, SIG14(TOM9), 57–70 (2003)

5) Johnson, D. S., Trick, M. A. (Eds.): Cliques, Coloring, and Satisfiability, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, vol.26, Ameri-

can Math. Soc. (1996)

6) Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data

mining for related genes in a biomedical database, BMC Bioinformatics, 10 (2009)

7) Österg̊ard, P. R. J.: A fast algorithm for the maximum clique problem, Discrete

Applied Math., 120, 197–207 (2002)

8) Régin, J.-C.: Using constraint programming to solve the maximum clique problem,

Principles and Practice of Constraint Programming, LNCS 2833, 634-648 (2003)

9) Shindo, M., Tomita, E., Maruyama, Y.: An efficient algorithm for finding a maxi-

mum clique, Technical Report of IEC, CAS86-5, 33–40 (1986)

10) Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a max-

imum clique, DMTCS 2003, LNCS 2731, 278–289 (2003)

11) Tomita, E., Tanaka, A. Takahashi, H.: The worst-case time complexity for gener-

ating all maximal cliques and computational experiments (An invited paper in the

Special Issue on COCOON 2004), Theoret. Comput. Sci., 363, 28–42 (2006)

12) Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a

maximum clique with computational experiments, J. Global Optim., 37, 95–111

(2007), J. Global Optim., 44, 311 (2009)

13) Tomita, E., Sutani, Y., Higashi, T., Takahashi, Wakatsuki, M.: A simple and faster

banch-and-bound algorithm for finding a maximum clique, WALCOM 2010, LNCS

5942, 191–203 (2010)

Appendix: Clique Benchmark Results

Type of Machine: Pentium 4 3.6 GHz, Compiler and flags used: gcc -O2.

Our user time (T1) for DIMACS benchmark instances: r100.5, r200.5, r300.5, r400.5,

and r500.5 are 2.13×10−3, 6.35×10−2, 0.562, 3.48, and 13.3 seconds, respectively. From

Österg̊ard’s 7) user time (T2) for the same instances, we obtained the average value of

T2/T1 as 4.48 12).

4 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.10
2010/1/26

