
IPSJ SIG Technical Report

Online Knapsack Problems with Limited Cuts

Xin Han Kazuhisa Makino

Department of Mathematical Informatics, Graduate School

of Information and Technology,

University of Tokyo, Tokyo, 113-8656, Japan

hanxin.mail@gmail.com, makino@mist.i.u-tokyo.ac.jp

1. Introduction

The knapsack problem is one of the most classical and studied problems in

combinatorial optimization and has a lot of applications in the real world10). The

(classical) knapsack problem is given a set of items with weights and sizes, and

the capacity value of a knapsack, to maximize the total weight of selected items

in the knapsack satisfying the capacity constraint. This problem is also called

the maximization knapsack problem (Max-Knapsack). Many kinds of variants

and generalizations of the knapsack problem have been investigated so far10).

Among them, the minimization knapsack problem (Min-Knapsack) is one of the

most natural ones (see1)–4) and10) [pp. 412-413]), that is given a set of items

associated with weights and sizes, and the size of a knapsack, to minimize the

total weight of selected items that cover the knapsack. In this paper, we study

online maximization and minimization knapsack problems with limited cuts, in

which i) items are given one by one over time, i.e., after a decision is made on

the current item, the next one is given, ii) items are allowed to be cut at most

k (≥ 1) times, and iii) items are allowed to be removed from the knapsack (but

once they are removed, they cannot be used partially again).

Related work: It is well-known that offline Max-Knapsack and Min-Knapsack

are both NP-hard, and admit fully polynomial time approximation schemes (FP-

TASs)1),4),7),10). As for the online maximization knapsack problem, it was first

studied on average case analysis by Marchetti-Spaccamela and Vercellis12). They

proposed a linear time approximation algorithm such that the expected difference

between the optimal and the approximation solution value is O(log3/2 n) under

the condition that the capacity of the knapsack grows proportionally to n, the

number of items. Lueker11) further improved the expected difference to O(log n)

under a fairly general condition on the distribution. Iwama and Taketomi8)

studied the problem on worst case analysis. They obtained a 1.618-competitive

algorithm for the online Max-Knapsack under the removable condition, if each

item has its size equal to its profit. Here the removable condition means that it

is allowed to remove some items in the knapsack in order to accept a new item.

They also showed that this is the best possible by providing a lower bound 1.618

for this case. For the general case, Iwama and Zhang9) showed that no algorithm

for online Max-Knapsack has a bounded competitive ratio, even if the removal

condition is allowed. Recently, Han and Makino6) obtained an upper bound 8

and a lower bound 2 for minimization knapsack problem. Iwama and Zhang9)

presented the competitive ratio for the online Max-Knapsack problem with re-

source augmentation. Noga and Sarbua13) studied an online partially fractional

knapsack problem with resource augmentation, in which items are allowed to be

cut at most once (i.e., k = 1), only before they are packed into the knapsack,

whereas in our model items are allowed to be cut any time (but at most k (≥ 1)

times). They gave an upper bound 2/m and proved the bound is the best possi-

ble, where m ≥ 1 is the capacity of the knapsack used by online algorithms while

the optimal offline algorithm uses a unit capacity knapsack. The online knapsack

problem of using extra a bin and allowing to exchange items between two bins

was studied by Horiyama, Iwama and Kawahara5).

Our contributions: For the online maximization knapsack, we propose a

simple greedy online algorithm, in which whenever a cut is necessary on an

item, we almost cut off the fraction of size 1
k+1 from the item. We show that

our greedy algorithm is k+1
k -competitive, and it is the best possible by giving a

lower bound of the cometitive ratio. We extend this result to to the model with

1 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.7
2010/1/26

IPSJ SIG Technical Report

resource augmentation. In the resource augmentation model, we show that the

online maximization knapsack problem is max{1, k+1
m(k+1)−1}-competitive (i.e., we

present a max{1, k+1
m(k+1)−1}-competitive algorithm and show that it is the best

possible). When k = 1 and 1 ≤ m < 2, the competitive ratio 2
2m−1 in our model

is smaller than the ratio 2
m in the partial cut model discussed in13). This implies

that our model for k = 1 is more powerful than the model given in13).

For the minimization knapsack problem, we show that no online algorithm can

have a constant competitive ratio, i.e., our cut condition does not help solving

the problem. This result will appear in a full version.

Table 1 summarizes the current results on online Max-Knapsack with resource

augmentation, where the bold letters represent the results obtained in this paper,

m (≥ 1) denotes the capacity used by online algorithms and k denotes the number

of limited cuts to be allowed.

Table 1 The current results on online Max-Knapsack with resource augmentation

Max-Knapsack k = 0 k = 1 in the partial cut model k ≥ 1 in our model

Lower Bound 1/(m − 1)9) 2/m13) (k +1)/(m (k +1)–1)

Upper Bound 1/(m − 1)9) 2/m13) (k +1)/(m (k +1)–1)

2. Preliminaries

In this section, we formally define our problems and review the basic concepts

for the online algorithms.
Problem Max-Knapsack (resp., Min-Knapsack)

Input: A set of items L = {a1, . . . , an} associated with weight w : L → R+

and size s : L → R+.

Output: A set of items F ⊆ L that maximizes w(F) subject to s(F) ≤ 1

(resp., that minimizes w(F) subject to s(F) ≥ 1).
Here, for a set U ⊆ L, let w(U) =

∑
u∈U w(u) and s(U) =

∑
u∈U s(u), and we

assume w.l.o.g. that the size of the knapsack is 1. The fractional version of the

Max-Knapsack (resp., Min-Knapsack) is given as follows: max
∑

u∈L w(u)x(u)

s.t.
∑

u∈L s(u)x(u) ≤ 1 and 0 ≤ x(u) ≤ 1 (u ∈ L) (resp., min
∑

u∈L w(u)x(u)

s.t.
∑

u∈L s(u)x(u) ≥ 1 and 0 ≤ x(u) ≤ 1 (u ∈ L)).

In our online model, the objective is the same with the offline version. But the

input is given over time. Namely, the knapsack of size 1 is known beforehand,

and after a decision is made on the current item at, the next one at+1 is given.

Besides this, our model satisfies the removal and cut conditions.

Removal condition: The items in the knapsack are allowed to be removed,

where the items removed cannot be used again.

Cut condition: The current item and the items in the knapsack are allowed to

be cut, where the part of the item cut off cannot be used again, and during

the whole process, each item can be cut at most k (≥ 1) times. Here k is a

given positive integer.

By the cut condition, the knapsack keeps a set of fractional items, and hence our

problems can be regared as the online fractional knapsack problems, rather than

online 0-1 knapsack problems.

We analyze online algorithms by using one of the standards: the competitive

ratio. Given an input sequence L and an online algorithm A, for the maximization

problem, the competitive ratio of algorithm A is defined as follows:

RA = sup
L

OPT (L)

A(L)
,

and for the minimization problem, the competitive ratio of algorithm A is defined

as follows:

RA = sup
L

A(L)

OPT (L)
,

where OPT (L) and A(L) denotes the weights obtained by an optimal algorithm

and the algorithm A, respectively.

3. Online Maximization Knapsack with Limited Cuts

3.1 A simple greedy algorithm A

The main ideas of our algorithm are as follows: when a new item is arrived,

we apply a greedy algorithm to select items from the knapsack together with the

new item. If the total size of the resulting items is greater than the capacity of

the knapsack, then we cut the less efficient item, say b in the knapsack. Let s(b)

be the size of item b. The rule of cutting is below: if s(b) > 1 (the capacity of

2 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.7
2010/1/26

IPSJ SIG Technical Report

the knapsack) then we cut a fraction from b such that the remaining size s(b)

is exactly k
k+1 , else cut a fraction of size min{ 1

k+1 , s(b)} from item b. Then we

repeatedly cut off item b, until the total size becomes at most the capacity of the

knapsack.

Let L = {a1, a2, ..., an} be the online input. Assume that items a1, ..., ai−1

have been dealt by our algorithm. Let Bi−1 be the set of items in the knapsack.

The execution of our algorithm on item ai is the following.

Algorithm: A

(1) If s(Bi−1) ≥
k

k+1 and the density (weight/size) of item ai is not larger than

the smallest density of items in Bi−1 then reject item ai immediately, else

B
′

i := Bi−1 ∪ {ai},

(a) Rename all the items in B′

i as b1, b2, ... such that w(b1)/s(b1) ≥

w(b2)/s(b2) ≥ · · · , where w(bj) and s(bj) respectively denote the

weight and size of fractional item bj .

(b) Find a smallest index x such that
∑x

h=1 s(bh) > 1, remove all the

items with index larger than x in B
′

i.

(c) If
∑x−1

h=1 s(bh) ≥ k
k+1 , then remove item bx. Else repeatedly chop off

bx by the following way until the total size in B′

i becomes at most 1:

if s(bx) ≤ 1 chop off by a fraction of size 1
k+1 from item bx else chop

off by a fraction such that the remaining size of item bx is exactly
k

k+1 .

(2) Update set Bi.

Theorem 1 The competitive ratio of algorithm A is k+1
k .

Proof. It is not difficult to see that if an item originally has size at most 1 we

never cut the item more than k item before it is totally removed, if an item

originally has size larger than 1, this is also true since after the first cutting on

the item the remaining size of the item is eactly k
k+1 .

So next we need to prove that for all 1 ≤ i ≤ n,
OPT (Li)

A(Li)
≤

k + 1

k
,

where Li = {a1, a2, ..., ai} is the input just after time i, OPT (Li) and A(Li) are

the total weights by an offline optimal and our online algorithms, respectively.

Just after time i, let Bi be the set of pieces in the knapsack. And let Ri be the

set of pieces which have been discarded by algorithm A. Observe that algorithm

A always uses a greedy policy to select items. If both Ri and Bi are not empty,

for any two pieces q ∈ Ri and p ∈ Bi, we have
w(p)

s(p)
≥

w(q)

s(q)
, (1)

where w(p) (resp., w(q)) is the weight of fractional item p (resp., q) and s(p)

(resp., s(q)) is the size of fractional item p (resp., q). Moreover if Ri is not

empty, we have

s(Bi) ≥
k

k + 1
, (2)

where s(Bi) is the total size in set Bi.

If Ri is empty, then we have

A(Li) = w(Bi) = OPT (Li),

otherwise by (1) and (2), we immediately have

A(Li) = w(Bi) ≥ (1 −
1

k + 1
)OPT (Li).

Hence this theorem holds. 2

3.2 A tight lower bound for the competitive ratio of the maximum

knapsack

Surprisingly, the upper bound 1+k
k by online algorithm A is the best we can

do, i.e., there exists no online algorithm with a competitive ratio less than 1+k
k .

We prove this in this subsection.

Assume there is an online algorithm with a competitive ratio c, which is less

than 1+k
k . Then the main ideas are as below:

(1) We force the online algorithm to accept a large item with a low density and

a unit size.

(2) Sequentially, small items follow and their densities gradually increase, after

some steps the online algorithm has to cut the large item to save space for

small items otherwise its competitive ratio reaches to 1+k
k ; and more if the

large item is cut then the size of the fraction cut off has to be less than
1

k+1 , otherwise the competitive ratio is as least 1+k
k ;

(3) We keep doing the above operation k times, i.e., the online algorithm cuts

3 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.7
2010/1/26

IPSJ SIG Technical Report

the large item k times and every time a portion of size less than 1
k+1 is cut

off.

(4) We finally continue to give new small items and increase their densities,

then the online algorithm rejects the large item or does not, in both cases,

we can prove that the online algorithm has a competitive ratio larger than

c.

Theorem 2 No online algorithm has a competitive ratio smaller than 1+k
k .

Proof. Assume there is an online algorithm A with a competitive ratio c = 1+k
k+r <

1+k
k , where r > 0. We prove that there is an input L such that OPT (L)/A(L) > c.

The ideas to construct the list L are similar with the ones in9).

In the input L, there are two kinds of sizes 1 and ǫ, i.e., large and small, where

ǫ > 0 is a sufficiently small and such that ǫ < r
3(k+1) and 1

kǫ is an integer. The

input L is formed by phases. In phase 0, there is only a large item (1, 1). For

any i > 0, each phase i has 1/ǫ items and each item has size ǫ and weight ǫ+ iǫ2.

Namely, the input L is below:

(1, 1)

(ǫ + ǫ2, ǫ), (ǫ + ǫ2, ǫ), ..., (ǫ + ǫ2, ǫ)

(ǫ + 2ǫ2, ǫ), (ǫ + 2ǫ2, ǫ), ..., (ǫ + 2ǫ2, ǫ)

...

(ǫ + iǫ2, ǫ), (ǫ + iǫ2, ǫ), ..., (ǫ + iǫ2, ǫ)

...

Note that the information of the input L is gradually known to the online al-

gorithm A and the input can stop at any step if the online algorithm performs

poorly. Moreover online algorithm A does not know the future information of L

and it can only use the information known so far.

We are going to prove that if there is a cut by the online algorithm A, then the

size of the portion cut off is less than 1/(k + 1). Let OPT (i, j) be the optimal

value just after the j-th item of phase i is given, where 1 ≤ j ≤ 1
ǫ and i ≥ 1. It

is not difficult to see

OPT (i, j) = (
1

ǫ
− j)(ǫ + (i − 1)ǫ2) + j(ǫ + iǫ2) = 1 + ǫ(i − 1) + jǫ2. (3)

Lemma 1 In order to achieve c-competitive, from phase 0 to phase 1
ǫk , al-

gorithm A has to cut the large item or discard it from the knapsack. If the

algorithm A cuts the large item, then at the first cutting, the portion cut off has

size smaller than 1
k+1 .

Lemma 2 Assume the large item has been cut j < k times before phase

i0 ≥ 0 and its remaining size in the knapsack is x ≥ 1
k+1 . If there exists an

integer i > i0 such that
OPT (i − 1, 1

ǫ)

x + (1 − x) ǫ+iǫ2

ǫ

≥
k + 1

k
,

then algorithm A has to cut the large item or discard it from the knapsack before

phase i. If the algorithm A makes its (j + 1)-th cutting on the large item, then

the size of the portion cut off is smaller than 1
k+1 .

(The above lemmas will be given in a full version. Here we omit the details of

the proofs.)

Again, let x be the remaining size of the large item in the knapsack after the

previous cutting. If x > 1
k+1 , there always exists an i such that the condition in

Lemma 2 holds, i.e.,

OPT (i − 1, 1
ǫ)

x + (1 − x) ǫ+iǫ2

ǫ

≥
1 + (i − 1)ǫ

x + (1 − x)(1 + iǫ)
by (3)

=
1 + (i − 1)ǫ

1 + iǫ − xǫ
≥

k + 1

k
,

where the last inequality holds directly from i ≥ 1
ǫ · 1+kǫ

(k+1)x−1 .

Then by induction, we can see that the condition in Lemma 2 always holds

before the large item has been cut k times.

By Lemmas 1 and 2, every time when the algorithm A cuts the large item, it

cuts a portion of size less than 1/(k+1). Assume that the large item is discarded

at size x. Therefore x > 1− k × 1
k+1 = 1

k+1 . Once the large item is discarded at

phase i > 0, we stop the input L. At this step, A(L) ≤ (1 − x + ǫ)(1 + iǫ) and

OPT (L) ≥ 1 + (i − 1)ǫ. Then the competitive ratio of algorithm A is at least

1 + ǫ(i − 1)

(1 − x + ǫ)(1 + iǫ)
≥

1

(1 − x + ǫ)(1 + ǫ)
≥

1

(1 + 3ǫ) − x(1 + ǫ)

>
k + 1

k + 3ǫ(k + 1)
>

k + 1

k + r
= c,

4 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.7
2010/1/26

IPSJ SIG Technical Report

where the second inequality holds from (1 + ǫ)2 ≤ 1 + 3ǫ and the third one holds

from x > 1
k+1 and ǫ > 0.

After k times cutting, if the large item keeps staying in the knapsack after phase

i > 1
ǫ (1

r − 1), we stop the input L just after phase i. Then by (3) OPT (L) > 1
r

and A(L) is at most (1 − x)OPT (L) + x. Therefore, the competitive ratio after

phase i is at least

OPT (L)

(1 − x)OPT (L) + x
≥

1

(1 − x) + x/OPT (L)
≥

1

1 − x(1 − 1/OPT (L))

>
1

1 − 1−1/OPT (L)
k+1

=
1 + k

k + 1 − (1 − 1/OPT (L))
>

k + 1

k + r
= c,

where the third inequality follows from x > 1
k+1 and OPT (L) > 1.

Hence, there exists an input L such that OPT (L)/A(L) > c, i.e., there is not

an online algorithm with the competitive ratio strictly smaller than k+1
k . 2

Remarks: In the model13), the “cutting” is only allowed before packing, namely,

when an item has been packed, it is not allow to cut it. In our model, there is

not this restriction and we are allowed to cut items any time. So, our model is a

generalization of the model in13). When k = 1, our upper and lower bounds are

the same as the results in13).

4. Resource Augmentation for the Online Maximization Knapsack

with Limited Cuts

In this section, we study resource augmentation for the online maximization

knapsack with limited cuts, in which the online algorithm uses a knapsack with

capacity m ≥ 1, while the offline algorithm uses a knapsack with capacity 1. We

provide the competitive ratio in this model.

4.1 A simple greedy algorithm

Let L = {a1, a2, ..., an} be the online input. Assume that items a1, ..., ai−1

have been dealt by our algorithm. Let Bi−1 be the set of items in the knapsack.

The execution of our algorithm on item ai is the following.

Algorithm: B for Resource Augmentation

(1) If s(Bi−1) ≥ m− 1
k+1 and the density (weight/size) of item ai is not larger

than the smallest density of items in Bi−1 then reject item ai immediately,

else B
′

i := Bi−1 ∪ {ai},

(a) Rename all the items in B′

i as b1, b2, ... such that w(b1)/s(b1) ≥

w(b2)/s(b2) ≥ · · · , where w(bj)(s(bj)) is the weight(size) of item bj .

(b) Find a smallest index x such that
∑x

h=1 s(bh) > m, remove all the

items with index larger than x in B
′

i .

(c) If
∑x−1

h=1 s(bh) ≥ m − 1
k+1 , then remove item bx. Else repeatedly

chop off bx by the following way until the total size in B′

i becomes at

most m: if s(bx) ≤ 1 chop off by a fraction of size 1
k+1 from item bx

else chop off by a fraction such that the remaining size of item bx is

exactly k
k+1 .

(2) Update set Bi.

Observe that if there are some pieces of items discarded, then the total size in

the knapsack is at least m − 1
k+1 . Due to the greedy police used in the above

algorithm, we have the density of any item in the knapsack is not lower than the

density of any item discarded. Then by the similar approach with Theorem 1,

we have the following theorem.

Theorem 3 The competitive ratio of algorithm B is max{1, k+1
m(k+1)−1}.

Remarks: for k = 1, our upper bound 2
2m−1 is better than the bound 2

m in13).

Note that the bound 2
m is tight for the model of only allowing cutting items

before they have been packed into the knapsack13). Our result also implies that

our model of allowing cutting items any time is more powerful than the model

in13).

4.2 A tight lower bound

In this subsection, we prove that the ratio max{1, k+1
m(k+1)−1} is the best possible

ratio we can do, i.e., there is not an online algorithm with a competitive ratio

strictly less than this ratio. The main ideas are the same with the model without

resource augmentation. Here we only consider the non-trivial case 1 ≤ m < k+2
k+1

here. The details of the proof are in Appendix.

Theorem 4 No online algorithm has a competitive ratio smaller than

5 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.7
2010/1/26

IPSJ SIG Technical Report

k+1
m(k+1)−1 .

References

1) L. G. Babat, Linear functions on the N-dimensional unit cube, Dokl. AKad. Nauk

SSSR 222, pp.761-762, 1975. (Russian)
2) J. Csirik, J.B.G. Frenk, M. Labbé and S. Zhang, Heuristics for the 0-1 Min-

Knapsack problem, Acta Cybernetica, 10(1-2):15-20, 1991.
3) M. M. Güntzer and D. Jungnickel, Approximate minimization algorithms for the

0/1 knapsack and subset-sum problem, Operations Research Letters, 26:55-66, 2000.
4) G. Gene and E. Levner, Complexity of approximation algorithms for combinatorial

problems: a survey, ACM SIGACT News Volume 12, Issue 3:52-65, 1980.
5) T. Horiyama, K. Iwama and J. Kawahara, Finite-State Online Algorithms and

Their Automated Competitive Analysis, ISAAC, LNCS 4288, pp. 71-80, 2006.
6) X. Han and K. Makino, Online minimization knapsack problem, Mathematical

Engineering Technical Reports, Tokyo Univeristy, METR 2009-04, to appear in
WAOA 2009.

7) O. H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and
sum of subset problems, Journal of the ACM, 22:463-468,1975.

8) K. Iwama and S. Taketomi, Removable online knapsack problems, Proc. ICALP

2002, LNCS 2380, pp.293-305.
9) K. Iwama and G. Zhang, Optimal resource augmentations for online knapsack,

APPROX-RANDOM 2007, pp.180-188.
10) H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, 2004.
11) G. S. Lueker, Average-case analysis of off-line and on-line knapsack problems,

Proc. Sixth Annual ACM-SIAM SODA, pp.179-188, 1995.
12) A. Marchetti-Spaccamela and C. Vercellis, Stochastic on-line knapsack problems,

Math. Programming, Vol. 68 (1, Ser. A), pp.73-104, 1995.
13) J. Noga and V. Sarbua, An online partially fractional knapsack problem, ISPAN

2005, pp. 108-112.

6 ⓒ2010 Information Processing Society of Japan

Vol.2010-AL-128 No.7
2010/1/26

