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In this paper, we study the problem of mining frequent diamond episodes
efficiently from an input event sequence with sliding a window. Here, a diamond
episode is of the form a �→ E �→ b, which means that every event of E follows
an event a and is followed by an event b. Then, we design a polynomial-delay
and polynomial-space algorithm PolyFreqDmd that finds all of the frequent
diamond episodes without duplicates from an event sequence in O(|Σ|2�) time
per an episode and in O(|Σ| + �) space, where Σ and � are an alphabet and
the length of the event sequence, respectively. Finally, we give experimental
results on artificial and real-world event sequences with varying several mining
parameters to evaluate the efficiency of the algorithm.

1. Introduction

It is one of the important tasks in data mining to discover frequent patterns
from time-related data. For such a task, Mannila, et al. 7) have introduced the
episode mining to discover frequent episodes in an event sequence. Here, the
episode is formulated as an acyclic labeled digraph in which labels correspond to
events and edges represent temporal precedent-subsequent relations in an event
sequence. Then, an episode gives a richer representation of temporal relationship
than a subsequence, which represents just a linearly ordered relation in sequential
pattern mining (cf., Refs. 3), 9)). Furthermore, since the frequency of the episode
is formulated by a window that is a subsequence of an event sequence under
a fixed time span, the episode mining is more appropriate than the sequential
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Fig. 1 (Left) An input sequence S = (S1, . . . , S6) of length � = 6 over Σ = {A, B, C} and
their k-windows. (Right) Serial episode P = A �→ B �→ C and a diamond episode
Q = A �→{A, B} �→C. In the sequence S, we indicate an occurrence (embedding) of Q
in the second window W2 in circles and arrows. See Example 1 and 2 for details.

pattern mining when considering the time span.
Mannila, et al. 7) have designed an algorithm to construct episodes from a

parallel episode as a set of events and a serial episode as a sequence of events.
Unfortunately, their algorithm is general but inefficient. Then, several efficient al-
gorithms 5),6),8) have been developed by introducing the specific forms of episodes
for every target area.

As such specific forms of episodes, Katoh, et al. have introduced diamond
episodes 6) and elliptic episodes 5). In Fig. 1, we show examples of an input
event sequence, a serial episode, and a diamond episode over an alphabet. Both
episodes have the special event types, a source and a sink. Then, by setting the
source and the sink to the specified event types, we can find frequent episodes with
the source as a premise and the sink as a consequence. In particular, from bacte-
rial culture data 5),6), they have succeeded in finding frequent diamond episodes
and frequent elliptic ones concerned with the replacement of bacteria and the
changes for drug resistance, which are valuable from the medical viewpoint. Here,
the source and the sink are set to the bacteria and another bacteria for the former
episodes, and the sensitivity of antibiotic and the resistant of the same antibiotic
for the latter episodes.

Note that the algorithms designed by Katoh, et al. 5),6) are level-wise; The
algorithms first find the occurrence information of the serial episodes in an input
event sequence, by scanning it just once. After regarding the serial episodes
as itemsets, the algorithms then construct the frequent episodes by using the
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2 An Efficient Depth-first Search Algorithm for Frequent Diamond Episodes

frequent itemset mining algorithm AprioriTid
1) that uses breadth-first search

over the space of candidate patterns.
While the level-wise algorithms are sufficient to find frequent episodes efficiently

in practice (in particular, appropriately applied to the bacterial culture data),
it is difficult to give a theoretical guarantee of the efficiency to the level-wise
algorithms from the view of enumeration. In this paper, as a space-efficient
episode mining algorithm, we newly design the episode-growth algorithm, called
PolyFreqDmd, to enumerate frequent diamond episodes.

The algorithm PolyFreqDmd adopts the depth-first search instead of the
level-wise search. Then, the algorithm finds all of the frequent diamond episodes
in an input sequence S over an alphabet Σ of events without duplication in
O(|Σ|2�) time per episode and in O(|Σ| + �) space, where � is the length of
S. Hence, we can guarantee that the episode-growth algorithm PolyFreqDmd

enumerates frequent diamond episodes in polynomial delay and in polynomial
space. Further, we present some practical optimization techniques such as fast
serial episode discovery or memorization for reducing the running time and the
required space of the algorithm PolyFreqDmd.

From experiments, we can also evaluate that the implementation of the algo-
rithm PolyFreqDmd is efficient on artificial and real-world event sequences. In
particular, the implementation DF with MEM (memoization technique) is quite
efficient and stable on most data sets. For instance, DF-MEM is one hundred
times as fast as others for some parameters.

This paper is organized as follows. In Section 2, we introduce diamond episodes
and other notions necessary to the later discussion. In Section 3, we present
the algorithm PolyFreqDmd and show its correctness and the computational
complexity. In Section 4, we give a theoretical analysis to compare the algo-
rithm PolyFreqDmd and the level-wise algorithm in Ref. 6). In Section 5, we
give some experimental results from randomly generated and real-world event
sequences to evaluate the practical performance of the algorithms. In Section 6,
we conclude this paper and discuss the future works.

This paper is an extended version of the talk presented at the 13th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD2009), Bangkok,
Thailand, 2009 10).

2. Diamond Episode

In this section, we introduce diamond episodes and the related notions nec-
essary to later discussion. We denote the sets of all integers and all natural
numbers by Z and N, respectively. For a set S, we denote the cardinality of S

by |S|. Let Σ = {1, . . . , s} (s ≥ 1) be a finite alphabet with the total order ≤
over N. Each element e ∈ Σ is called an event �1. An input event sequence (input
sequence, for short) S on Σ is a finite sequence 〈S1, . . . , S�〉 ∈ (2Σ)∗ of sets of
events (� ≥ 0), where Si ⊆ Σ is called the i-th event set for every 1 ≤ i ≤ �.
Then, we call � the length of S and denote it by |S|, and define the total size of
S by ||S|| =

∑�
i=1 |Si|. Clearly, ||S|| = O(|Σ|�), but the converse |Σ|� = O(||S||)

is not always true.
For a fixed input sequence S = 〈S1, . . . , S�〉 ∈ (2Σ)∗, a position or an index on S

is any integer, where we define Si for any index such that i ≤ 0 or i > � by Si = ∅.
Let 1 ≤ k ≤ � be a fixed positive integer, called the window width. For any index
−k+1 ≤ i ≤ �, we define the k-window WS,k

i at position i in S by the contiguous
subsequence of length k of S as follows: WS,k

i = wS(i, k) = 〈Si, . . . , Si+k−1〉 ∈
(2Σ)k. We denote the set {WS,k

i | −k+1 ≤ i ≤ �} of all k-windows in S by WS,k.
We simply write Wi and W instead of WS,k

i and WS,k by omitting the scripts
S and k, respectively, when they are clear from the context. Moreover, we may
identify the set of all k-windows by the set {−k +1 ≤ i ≤ � |WS,k

i ∈ WS,k } ⊆ Z
of their indices.

A serial episode over Σ of length m ≥ 0 (or, m-serial episode) is a sequence
P = 〈a1, . . . , am〉 ∈ Σ∗ of events.

Definition 1 A diamond episode over Σ is either an event a ∈ Σ (a 1-serial
episode) or a triple Q = 〈a,E, b〉 ∈ Σ×2Σ×Σ (called a proper diamond episode),
where a, b ∈ Σ are events and E ⊂ Σ is a subset of Σ. Then, we call a, b, and
E the source, the sink , and the body of Q, respectively. We define the size of Q

by its body size ||Q|| = |E|. For the body E, we denote the maximum element
in E (with respect to Σ) by max(E), where max(∅) is assumed to be the special

�1 Mannila, et al. 7) originally referred to each element e ∈ Σ itself as an event type and an
occurrence of e as an event . However, we simply call both of them as events.
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smallest number ε such that ε < e for all e ∈ Σ.
To emphasize the chronological dependencies of events, we often write (e1 
→

· · · 
→ em) and (a 
→E 
→ b) for an m-serial episode 〈e1, . . . , em〉 and a diamond
episode 〈a,E, b〉, respectively. Also we denote the classes of m-serial episodes,
proper diamond episodes and diamond episodes (over Σ) by SEm, PDE and
DE , respectively. Since any (a 
→ b) ∈ SE2 and any (a 
→ e 
→ b) ∈ SE3 are
equivalent to (a 
→ ∅ 
→ b) and (a 
→ {e} 
→ b) ∈ PDE , respectively, we see that
SE1 ∪ SE2 ∪ SE3 ∪ PDE = DE .

Example 1 In Fig. 1, we show examples of an event sequence S =
({A,B,C}, {A,B}, {A}, {A,B}, {A,B,C}, {A,B}) of length � = 6 over an al-
phabet Σ = {A,B,C} of events, a serial episode P = A 
→B 
→C, and a diamond
episode Q = A 
→{A,B} 
→C.

Next, we introduce the concept of the occurrences of episodes in a window.
Then, we give the formal definition of the occurrences of episodes, which is con-
sistent with the original definition in the literature 7). Let P = e1 
→ · · · 
→ em

be a serial episode, Q = a 
→ {e1, . . . , em} 
→ b a diamond episode and W =
〈S1, · · · , Sk〉 ∈ WS,k a window, respectively. A serial episode P = e1 
→ · · · 
→em

occurs in a window W = 〈S1, · · · , Sk〉 ∈ WS,k, denoted by P 
 W , if
and only if there exists some mapping h : {1, . . . , m} → {1, . . . , k} satisfying
(i) 1 ≤ h(1) < · · · < h(m) ≤ k, and (ii) ei ∈ Sh(i) holds for every 1 ≤ i ≤ m.

Definition 2 (occurrence for a diamond episode) A diamond episode
Q = a 
→{e1, . . . , em} 
→b (m ≥ 0) occurs in a window W = 〈S1, · · · , Sk〉 ∈ WS,k,
denoted by Q 
 W , if and only if there exists some mapping h : {a, b, 1, . . . ,m} →
{1, . . . , k} satisfying (i) for every i ∈ {1, . . . , m}, 1 ≤ h(a) < h(i) < h(b) ≤ k

holds, and (ii) a ∈ Sh(a), b ∈ Sh(b) and ei ∈ Sh(i) holds for every i ∈
{a, b, 1, . . . ,m}.

For a window W and an event e ∈ Σ, we denote the first and the last position
in W at which e occurs by st(e,W ) and et(e,W ), respectively. The matching
algorithm for diamond episodes will be studied in Section 3.

For an episode P , we define the occurrence list for P in S by WS,k(P ) =
{ −k + 1 ≤ i ≤ � |P 
 Wi }, the set of the occurrences of P in an input S. We
may call the element i ∈ WS,k(P ) a label or a position. Note that we allow
negative integers for labels. If i ∈ WS,k(P ), then we say that an episode P

occurs in S at position i or at the i-th window.
Example 2 Consider an input event sequence S = ({A,B,C}, {A,B}, {A},

{A,B}, {A,B,C}, {A,B}) in Fig. 1 again. Then, if the window width k is 4, S
has nine 4-windows from W−2 to W6, i.e., WS,4 = { Wi | − 2 ≤ i ≤ 6 }. Among
them, the occurrence list W(Q) for a diamond episode Q = A 
→ {A,B} 
→C is
{W2,W3}.

Lemma 1 Let Q be a proper diamond episode (a 
→E 
→b) and W a window
in WS,k. Then, Q 
 W if and only if for every e ∈ E, there exists some position
p in W for e such that st(a,W ) < p < et(b,W ) hold.

(proof) (Only if-direction) If Q 
 W then there exists some embedding h from
Q to W . By restricting h to the serial episode (a 
→e 
→ b), we obtain the claim.
(If-direction) Suppose that for every e ∈ E, there exists a position pe for e with
st(a,W ) < pe < et(b,W ). Then, we can build a mapping h by h(a) = st(a,W ),
h(b) = et(b,W ), and satisfying the claimed property h(e) = pe for every e ∈ E.
Then, the claim holds. �

Lemma 1 implies the following two important lemmas.
Lemma 2 (serial construction for diamond episodes) Let E = {e1,

. . . , em} (m > 0) be a set of events, Q = (a 
→ E 
→ b) a partial diamond
episode, and W = 〈S1, . . . , Sk〉 a window in WS,k. Then, Q 
 W if and only if
(a 
→e 
→b) 
 W for every e ∈ E.

(proof) By Lemma 1, we have that Q 
 W if and only if there exists some
mapping h : {a, b, e1, . . . , em} → {1, . . . , k} satisfying (i) for every i ∈ {1, . . . ,m},
st(a,W ) = h(a) < h(i) < h(b) = et(b,W ) holds, and (ii) ei ∈ Sh(i) holds for every
i ∈ {a, b, 1, . . . ,m}. By the definition of the occurrence for a diamond episode,
the result immediately follows. �

Let S be an input sequence, k ≥ 1 a window width and Q a diamond episode
a 
→ E 
→ b. The frequency of Q in S is defined by the number of k-windows
at which Q occurs freqS,k(Q) = |WS,k(Q)|. A minimum frequency threshold
(minimum frequency , for short) is any integer 1 ≤ σ ≤ |WS,k|. A diamond
episode Q is σ-frequent in S if freqS,k(Q) ≥ σ. We denote by FS,k,σ be the set
of all σ-frequent diamond episodes occurring in S.

Lemma 3 (anti-monotonicity for diamond episodes) Let a, b ∈ Σ be
events and E,F ⊆ Σ the set of events. For every minimum frequency thresh-
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old σ and window width k ≥ 1, if E ⊇ F , then (a 
→ E 
→ b) ∈ FS,k,σ implies
(a 
→F 
→b) ∈ FS,k,σ.

(proof) From Lemma 2, we have WS,k(a 
→E 
→ b) =
⋂

e∈E WS,k(a 
→ e 
→ b).
Then, we have |WS,k(a 
→ E 
→ b)| ≤ |WS,k(a 
→ F 
→ b)|. Hence, the result
immediately holds. �

Definition 3 Frequent Diamond Episode Mining Problem: Given an
input sequence S, a window width k ≥ 1, and a minimum frequency threshold
σ ≥ 1, the task is to find all σ-frequent diamond episodes Q ∈ FS,k,σ occurring
in S with window width k without duplicates.

In the remainder of this paper, we design an algorithm for efficiently solving
the frequent diamond episode mining problem in the sense of enumeration algo-
rithms 2),4). Let N be the total input size and M the number of all solutions.
An enumeration algorithm A is of output-polynomial time if A finds all solutions
S ∈ S in total polynomial time both in N and M . Also A is of polynomial delay
if the delay , which is the maximum computation time between two consecutive
outputs, is bounded by a polynomial in N alone. It is obvious that if A is of
polynomial delay, then it is of output-polynomial.

3. A Polynomial-Delay and Polynomial-Space Algorithm

In this section, we present a polynomial-delay and polynomial-space algorithm
PolyFreqDmd for mining all frequent diamond episodes in a given input se-
quence. Let Σ be an alphabet of size s ≥ 1. Let S = (S1, . . . , S�) ∈ (2Σ)∗ be an
input sequence of length � and total input size N = ||S||, k ≥ 1 be the window
width, and σ ≥ 1 be the minimum frequency threshold.

In Fig. 2, we show an outline of our polynomial-delay and polynomial-space
algorithm PolyFreqDmd and its subprocedure FreqDmdRec for mining fre-
quent diamond episodes in DE appearing in an input sequence S.

The algorithm PolyFreqDmd is a backtracking algorithm that adopts the
depth-first search over the class FDE of frequent diamond episodes from general
to specific. For every pair of events (a, b) ∈ Σ2, PolyFreqDmd starts the depth-
first search by calling the recursive procedure FreqDmdRec with the smallest
(complete) diamond episode Qab = (a 
→ ∅ 
→ b) ∈ DE and its occurrence list
W(Qab).

algorithm PolyFreqDmd(S, k, Σ, σ)
input: input event sequence S ∈ (2Σ)∗ of length �, window width k > 0,
alphabet of events Σ, the minimum frequency 1 ≤ σ ≤ � + k;
output: frequent diamond episodes; {
1 Σ0 := the set of all events apparing no less than σ windows (Σ0 ⊆ Σ);
2 foreach ( a ∈ Σ0 ) do
3 output a;
4 foreach ( b ∈ Σ0 ) do
5 Q0 := (a �→∅ �→b); //2-serial episode
6 W0 := the occurrence list WS,k(Q0) for Q0;
7 FreqDmdRec(Q0, W0,S, k, Σ0, σ);
8 end for
}
procedure FreqDmdRec(Q = (a �→E �→b), W,S, k, Σ, σ)
output: all frequent diamond episodes of the form a �→F �→b; {
1 if ( |W | ≥ σ ) then
2 output Q; // (*) output Q if the depth is odd (alternating output);
3 foreach ( e ∈ Σ such that e > max(E) ) ) do
4 R := a �→(E ∪ {e}) �→b;
5 U := UpdateDmdOcc(Q, e, W, k,S); // Computing U = WS,k(R)
6 FreqDmdRec(R, U,S, k, Σ, σ);
7 end for
8 // (*) output Q if the depth is even (alternating output);
9 end if
}
Fig. 2 The main algorithm PolyFreqDmd and a recursive subprocedure FreqDmdRec for

mining frequent diamond episodes in a sequence.

By Lemma 3, in each iteration of FreqDmdRec, the algorithm checks whether
or not the current candidate Q = (a 
→E 
→b) is frequent. If so, then FreqDmd-

Rec outputs Q with a body E, and furthermore adds e to E for every e ∈ Σ
such that e > max(E). to its body E. Otherwise, it prunes the search below Q

and backtracks to the parent of Q. Here, we call this process the tail expansion
for diamond episodes. For episodes Q and R, if R is generated from Q by adding
a new event e as above, then we say that Q is a parent of R, or R is a child of Q.
In Fig. 3, we show the parent-child relationship on the alphabet Σ = {a, b, c}.

Lemma 4 For any window width k > 0 and any minimum frequency thresh-
old σ, the algorithm PolyFreqDmd enumerates all of the frequent diamond
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Fig. 3 The parent-child relationships on the alphabet Σ = {a, b, c}.

episodes from S without duplicates.
(proof) Suppose that R = (a 
→ E ∪ {e} 
→ b) ∈ DE is a child of some Q =

(a 
→E 
→ b) ∈ DE obtained by the tail expansion such that e > max(E). From
Lemma 3, we see that any frequent R can be obtained by expanding some frequent
parent Q. Furthermore, since e > max(E), the parent Q is unique for each R.
This means that the parent-child relationship forms a spanning tree T for all
frequent diamond episodes in DE . Since FreqDmdRec makes the depth-first
search on T by backtracking, the result immediately follows. �

In the recursive procedure FreqDmdRec in Fig. 2, the procedure newly creates
a child episode R = (a 
→ E ∪ {e} 
→ b) from the parent Q = (a 
→ E 
→ b) by
tail expansion with e ∈ Σ at Line 4. Then, at Line 5, it computes the new
occurrence list U = WS,k(R) for R in S. To compute the new list U , we can use
a straightforward procedure FindSerialOcc that scans all of the k-windows in
S one by one for checking the occurrences of a 3-serial episode P .

Lemma 5 There is an algorithm that computes an occurrence of a given 3-

algorithm UpdateDmdOcc(Q, e, W, k,S)
input: a parent diamond episode Q = (a �→E �→b), a new event e > max(E),
the old occurrence list W for Q, k ≤ 1, an input sequence S;
output: the new occurrence list U for the child R = (a �→E ∪ {e} �→b); {
1 V := FindSerialOcc(P = (a �→e �→b), k,S);
2 return U := W ∩ V ;
}
procedure FindSerialOcc(P = (a �→e �→b), k,S) {
1 return the occurrence list WS,k(P ) for P in S;
}

Fig. 4 The algorithm UpdateDmdOcc for incremental update of the occurrence list.

serial episode P = a 
→ e 
→ b in a given window Wi of width k in O(||Wi||) =
O(|Σ|k), where ||Wi|| =

∑i+k−1
j=i |Sj |.

(proof) Given a window Wi, we first find the leftmost position x of a with
x ≥ 0, a position y of e with y ≥ x, and finally a position z of b with z ≥ y.
Such a triple exists in Wi if and only if P occurs in Wi. The time complexity is
obviously O(||Wi||). �

From Lemma 2 and Lemma 5, there is an algorithm that computes the oc-
currence list of a given diamond episode R in O(|Σ|km�) time, where k is the
window width, m = ||R|| is the episode size, and � = |S| is the input length.

In Fig. 4, we show an improved algorithm UpdateDmdOcc that computes
the new occurrence list U = WS,k(R) from the old one in O(|Σ|k�) time, by
dropping the factor of m = ||R||, with incrementally updating the old list W

for the parent Q. To see the validity of the improved algorithm, we require the
downward closure property for DE shown in Lemma 6 below. In the proof of the
property, the serial construction for DE shown in Lemma 2 is used.

Lemma 6 (downward closure property) Let a, b ∈ Σ and E ⊆ Σ. Then,
for any input sequence S and any k ≥ 1, the following statement holds:

WS,k(a 
→(E1 ∪ E2) 
→b) = WS,k(a 
→E1 
→b) ∩ WS,k(a 
→E2 
→b).
(proof) By Lemma 2, we have that WS,k(a 
→E 
→b) =

⋂
e∈E(a 
→e 
→b). Thus,

WS,k(a 
→(E1∪E2) 
→b) = (
⋂

e1∈E1
WS,k(a 
→e1 
→b))∩ (

⋂
e2∈E2

WS,k(a 
→e2 
→
b)) holds. �

From Lemma 5 and Lemma 6, we see the correctness of the improved algorithm
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procedure FastFindSerialOcc(P = (a �→e �→b), k,S = 〈S1, . . . , S�〉)
input: serial episode P = (a �→e �→b), window width k > 0, an input sequence S;
output: the occurrence list W for P ; {
1 W := ∅; (x, y, z) := (0, 0, 0);
2 for (i := −k + 1, . . . , � ) do
3 last := i − 1; end := i + k
4 while x < end and (not (x > last and a ∈ Sx)) do x := x + 1;
5 while y < end and (not (y > x and e ∈ Sy)) do y := y + 1;
6 while z < end and (not (z > y and b ∈ Sz)) do z := z + 1;
7 if ( last < x < y < z < end ) then W := W ∪ {i};
8 // (x, y, z) is the lexicographically first occurrence of P in Wi;
9 end for
10 return W;
}
Fig. 5 An improved algorithm FastFindSerialOcc for computing the occurrence list of a

serial episode.

UpdateDmdOcc in Fig. 4, and have the next lemma. Note in the following
that the computation time of UpdateDmdOcc does not depend on the size
m = ||R|| of the child episode. If we implement the procedure FindSerialOcc

by an algorithm of Lemma 5, we have the next lemma.
Lemma 7 The algorithm UpdateDmdOcc in Fig. 4, given the old list W

for the parent diamond episode Q and a newly added event e, computes the new
occurrence list U = WS,k(R) for a new child R in O(kN) = O(|Σ|k�) time, where
� = |S| and N = ||S|| are the length and the total size of input S, respectively.

(proof) By Lemma 5, the matching for the i-th window takes ||Wi|| =∑i+k−1
j=i |Sj | time for every index i. Summing up this amount of time for all

of � + k indices i = −k + 1, . . . , n, we have total amount H =
∑�

i=−k+1 ||Wi|| =∑�
i=−k+1

∑i+k−1
j=i |Sj | ≤

∑�
i=−k+1 k|Si| = O(kN). Thus, the result follows. �

Next, we present a faster algorithm for implementing the procedure Find-

SerialOcc for serial episodes than that of Lemma 5. In Fig. 5, we show the
modified algorithm FastFindSerialOcc that computes W(P ) for a 3-serial
episode P = a 
→e 
→b by a single scan of an input sequence S from left to right.

Lemma 8 The algorithm FastFindSerialOcc in Fig. 5 computes the oc-
currence list of a 3-serial episode P = a 
→e 
→b in an input sequence S of length

global variable: a hash table TABLE : DE → 2{−k+1,...,n};
initialization: TABLE := ∅;
procedure LookupSerialOcc(P = (a �→e �→b), k,S) {
1 if (TABLE[P ] = UNDEF ) then
2 V := FindSerialOcc(P, k,S);
3 if |V | ≥ σ then TABLE := TABLE ∪ {〈 P, V 〉 };
4 end if;
5 return TABLE[P ];
}

Fig. 6 Practical speed-up of FindSerialOcc using memoization technique.

� in O(N) = O(|Σ|�) time regardless of window width k, where N = ||S||.
(proof) At each execution of for-loop (from Lines 2 to 9) with position i, we see

that after executing three while-loops parameters x, y, and z (in Lines 4 to 6)
are the lexicographically first triple of positions such that (i) x < y < z, and
(ii) a ∈ Sx, e ∈ Sy, and b ∈ Sz. If last < x < y < z < end, then this fact implies
that an input episode P = (a 
→e 
→b) occurs in the window Wi. On the contrary,
if P occurs in Wi, then we see that the algorithm finds such a triple. For the
time complexity, we observe that during the scan of input S from left to right,
each of positions x, y, and z visits each position in S at most once. This shows
that the running time of the algorithm is O(N). This completes the proof. �

Corollary 9 Equipped with FastFindSerialOcc in Fig. 5, the modified al-
gorithm UpdateDmdOcc computes U = WS,k(R) for a child R ∈ DE from the
list W = WS,k(Q) for the parent Q ∈ DE and e ∈ Σ in O(N) = O(|Σ|�) time,
where � = |S| and N = ||S||.

During the execution of the algorithm FreqDmdRec, the subprocedure Find-

SerialOcc (or FastFindSerialOcc) for updating occurrence lists are called
many times with the same arguments (P = (a 
→ e 
→ b), k,S) (e ∈ Σ). In the
worst case, the number of calls may be |Σ| in the search paths. Therefore, we can
achieve the reduction of the number of calls for FindSerialOcc by memorizing
the results of the computation in a hash table TABLE.

In Fig. 6, we show the code for practical speed-up method using memoization
technique. Then, we modify PolyFreqDmd in Fig. 2 and UpdateDmdOcc in
Fig. 4 as follows:
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• Before Line 5 of PolyFreqDmd, insert the initialization line in Fig. 6.
• Replace the call of FindSerialOcc(P, k,S) in FreqDmdRec by the call of

LookupSerialOcc(P, k,S) in Fig. 6.
This modification does not change the behavior of the procedures PolyFreq-

Dmd, FreqDmdRec, and UpdateDmdOcc. Moreover, this modification
makes the total number of calls of FindSerialOcc to be bounded by |Σ|3,
while it uses O(|Σ|�) space in main memory. In Section 5 below, we will see that
this modification will be useful in practice.

The running time of the algorithm FreqDmdRec in Fig. 2 mainly depends on
the time T (m,N) for the subprocedure UpdateDmdOcc at Line 5 to compute
the occurrence list U = WS,k(Q) of a candidate Q ∈ DE in S, where m = ||Q||
and N = ||S||.

Unfortunately, if the height of the search tree is d = Θ(m) = Θ(|Σ|), then the
straightforward execution of the algorithm FastFindSerialOcc in Fig. 5 yields
the delay of O(d · |Σ| ·T (m,N)), where factor d follows from the fact that at least
d recursive calls are necessary to come back to the root from the leaf of depth d.
We can remove this factor d = Θ(m) by using a technique called an alternating
output in backtracking 11), which can be realized by replacing Lines 2 and 8 in
the algorithm FreqDmdRec in Fig. 2 with the corresponding lines (*) in the
comments.

Theorem 10 Let S be any input sequence of length �. For any window width
k ≥ 1 and minimum frequency threshold σ ≥ 1, the algorithm PolyFreqDmd

in Fig. 2 finds all σ-frequent diamond episodes Q in DE occurring in S without
duplicates in O(|Σ|N) = O(|Σ|2�) delay (time per frequent episode) and O(m�+
N) = O(|Σ|�) space, where N = ||S|| and m = ||Q|| is the maximum size of
frequent episodes.

(proof) At each iteration of the algorithm FreqDmdRec, in the foreach-loop,
the algorithm computes the occurrence list in O(N) = O(|Σ|�) time by Corol-
lary 9, and executes instructions except invocation of FreqDmdRec within the
same cost. Since, each frequent diamond episode has at most O(|Σ|) infrequent
children, the running time per frequent diamond episode is O(|Σ|N) = O(|Σ|2�).
At each iteration of the algorithm FreqDmdRec, it uses O(�) space for occur-
rence list. Therefore, the algorithm FreqDmdRec takes at most O(m) recursive

1 R := a �→(E ∪ {e}) �→b;
2 Δ := FindSerialOcc(P, k,S);
3 W := W − Δ;
4 FreqDmdRec(R, U,S, k, Σ, σ);
5 W := W ∪ Δ;
6 R := a �→(E − {e}) �→b;

Fig. 7 The diffset technique in PolyFreqDmd.

calls to come back to the root from the leaf of depth O(m). Since, the algo-
rithm PolyFreqDmd uses O(N) space to store an input sequence, we see that
PolyFreqDmd runs in O(m� + N) space. �

Corollary 11 The frequent diamond episode mining problem is solvable in
linear delay with respect to the total input size using polynomial space.

Finally, we can reduce the space complexity of the algorithm PolyFreqDmd

by using the diffset technique introduced by Zaki 12) for itemset mining, which
can be realized by replacing Line 4, Line 5, and Line 6 of FreqDmdRec in
Fig. 2 with the code in Fig. 7. Hence, we can reduce the space complexity in
Theorem 10 to O(m + �) = O(|Σ| + �).

4. Theoretical Analysis

In the last of the previous section, we have shown that the space complexity
of the algorithm PolyFreqDmd is bounded by a polynomial in the total input
size. In this section, we show that the lower bound on the space complexity
of the previous breadth-first algorithm FreqDmd

6) is exponential in the total
input size in the worst case for unbounded alphabet Σ.

Let S be an input sequence, k the window width, and σ the minimum frequency
threshold. For every m ≥ 0, we denote by FS,k,σ(m) ⊆ FS,k,σ the set of all
frequent diamond episodes such that the size of every body is exactly m in S.

Theorem 12 Let k ≥ 3 and σ ≥ 0 be any integers that represent a window
width and a minimum frequency threshold, respectively. For every n ≥ 1, there
exists a pair of an alphabet Σn and an input sequence S such that

|FS,k,σ(m)| = 2Ω(n),

where m = �n/2�, |Σn| = n + 1, |Sn| = kσ = �, and ||Sn|| = O(n�/k).
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(proof) For any positive integer n ≥ 1, we build Σn and Sn as follows. Let
Σn = {$, 1, . . . , n} be an alphabet consisting of n + 1 events. Let k be any
window width such that k ≥ 3. We define a block B = 〈T1, . . . , Tk〉 of length k

by T1 = Tk = {$}, T2 = {1, . . . , n}, and Ti = ∅ for every i = 3, . . . , k − 1. Then,
we define an input sequence by the concatenation of θ copies of the block B, i.e.,
Sn = B(1) · · ·B(θ). Clearly, the input sequence Sn has the length � = kθ and
the total size (n + 2)�/k = O(n�/k). Let Cm,n be the set of all frequent diamond
episodes of the form Q = ($ 
→ E 
→ $) such that the size of E is exactly m

and let Cn =
⋃

m≥0 Cm,n be their union. Now, we fix the size of bodies to be
m = �n/2�. Let fm,n = |Cm,n|. In this case, we can easily see that there exist at
least

fm,n =
(

n

m

)
≥

(
2m

m

)
=

(
2m

m

) (
2m − 1
m − 1

)
· · ·

(m

1

)
≥ 2m = 2n/2 = 2Ω(n)

subsets of Σn. Therefore, there exist at least fm,n = 2Ω(n) mutually distinct
diamond episodes in the class Cm,n. Since any Q ∈ Cn appears in the block
B exactly once, we can easily see that Q also appears in the whole Sn exactly
σ times. This implies that if Q ∈ Cm,n then Q ∈ FS,k,σ(m). Since Cm,n ⊆
FS,k,σ(m), we can conlude that for m = n/2

|FS,k,σ(m)| ≥ |Cm,n| = fm,n = 2Ω(n)

holds. This completes the proof. �

Corollary 13 The space complexity of FreqDmd algorithm 6) is at least ex-
ponential in the total input size in the worst case.

(proof) Since the algorithm FreqDmd is a breadth-first algorithm, for any m ≥
0, it has to store all of the frequent diamond episodes in the m-th level FS,k,σ(m)
in the main memory. By Theorem 12, the size of FS,k,σ(m) is exponential in |Σ|,
and the total input size ||S||. This completes the proof. �

From Corollary 13 and Theorem 10, we see that the proposed algorithm
PolyFreqDmd is more exponentially efficient than the previous algorithm
FreqDmd for the space complexity.

5. Experimental Results

5.1 Data
In this section, we give experimental results for the combinations of the algo-

rithms in Section 3 on both the artificial data set and the real-world data set.
The artificial data set consists of the randomly generated event sequence S =

〈S1, . . . , S�〉 (� ≥ 1) over an alphabet Σ = {1, . . . , s} (s ≥ 1) as follows. Let 0 <

p ≤ 1 be any number called an event probability. Let i = 1, . . . , � be any index.
For every event e ∈ Σ, we add e into Si independently with probability p. By
repeating this process, we build the i-th set Si. On the other hand, the real-world
data set is made from bacterial culture data provided from Osaka Prefectural
General Medical Center from 2000 to 2005 by concatenating a detected bacterium
for the sample of sputum for every patients, where the length � and the alphabet
size s of the real-world event sequence are � = 70,606 and s = 174, respectively.

5.2 Method
We adopt the following implementations of the algorithms, where BF is the

breadth-first search algorithm in Ref. 6) and DF and the others are the depth-
first search algorithms presented in Section 3.

BF : FreqDmd
6) with breadth first itemset mining algorithm.

DF : PolyFreqDmd (Fig. 2) with FindSerialOcc (Fig. 4).
DF-ALT : DF with alternating output (ALT) (Fig. 2 with (*)).
DF-FFS : DF with fast update by FastFindSerialOcc (FFS) (Fig. 5).

DF-DIFF : DF with diffset technique (DIFF) (Fig. 7).
DF-MEM : DF with memoization technique (MEM) (Fig. 6).
DF-ALL : DF with all techniques (ALT, FFS, DIFF, and MEM).

All the experiments were run on a PC (AMD Mobile Athlon64 Processor 3000+,
1.81 GHz, 2.00 GB memory) with 32-bit x86 instruction set. If it is not explicitly
described, we assume that the length of the sequence is � = |S| = 2,000, the
alphabet size is s = |Σ| = 30, the probability of each event is p = 0.1, the
window width is k = 10, the minimum frequency threshold is σ = 0.4�.

5.3 Experiments
Figure 8 shows the running time and the number of solutions of the algorithms

DF, DF-FFS, DF-MEM and DF-ALL for the input length �, where s = 30, k = 10,
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Fig. 8 Running time for the input length �, where
s = 30, k = 10, and σ = 0.05n.

Fig. 9 Running time for algorithms,
where n = 1,000 s = 30, k = 10,
and σ = 0.01n.

Fig. 10 Memory size for algorithms,
where n = 1,000 s = 30, k = 10,
and σ = 0.01n.

and σ = 0.05�. Then, we see that DF-FFS is twice, DF-MEM is one hundred,
and DF-ALL is two hundred as fast as DF. Here, since we can find no difference
in the running time between DF-ALT, DF-DIFF and DF, we do not depict the
results of DF-ALT and DF-DIFF in Fig. 8. Note that, the techniques of DF-ALT

and DF-DIFF are useful in technical improvements for time complexity and space
complexity, respectively. Moreover, the running time of these algorithms DF, DF-

FFS, DF-MEM and DF-ALL is almost linear in the input size and thus expected
to scale well on large datasets.

Figure 9 shows the running time for BF, DF, DF-FFS and DF-ALL, where
� = 1,000, s = 30, k = 10, and σ = 0.01�. In this data set, we see that BF is
faster than DF and DF-FFS. We see that DF-ALL is faster than BF.

Fig. 11 Running time for the number of outputs, where
� = 1,000, s = 30, k = 10, and σ = 0.05�.

Figure 10 shows the size of memory usage for BF, DF, DF-FFS and DF-ALL,
where � = 1,000, s = 30, k = 10, and σ = 0.01�. We can find no difference in the
size of memory usage between DF, DF-FFS and DF-ALL on this data set. On the
other hand, the size of memory usage for BF is larger than one for DF.

Figure 11 shows the running time for the algorithm DF, DF-FFS and DF-

MEM, where � = 1,000, s = 30, k = 10, and σ = 0.05�. Then, we see that the
slopes of all algorithms are almost constant, and thus we can conclude that the
delay is just determined by the input size as indicated by Theorem 10.

Figure 12 shows the running time of DF-MEM, with varying the minimum
frequency threshold 0.5� ≤ σ ≤ 5.0� with the input size � = 2,000. We see
that the number of outputs, and thus, the running time is increasing when σ is
decreasing.

Figures 13, 14 and 15 show the running time of the algorithms DF, DF-FFS

and DF-MEM with varying the window width 13 ≤ k ≤ 25, the size of alphabet
10 ≤ s ≤ 50 and the event probability 0.02 ≤ p ≤ 0.12, respectively. Then, we
see that DF-MEM outperforms other algorithms in most cases. The performance
of DF-MEM is stable in most datasets and the parameter settings. We also see
that DF-FFS is from 20% to 60% faster than DF.

Figures 16 and 17 show the running time and the size of memory usage
of the algorithm DF-MEM with varying the window width 10 ≤ k ≤ 20 and
minimum frequency threshold σ = 0.1� for the real-world event sequence. Then,
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Fig. 12 Running time for the minimum
frequency threshold 0.5� ≤ σ ≤
5� with span 0.5�, where � =
2,000 and k = 10.

Fig. 13 Running time for the window
width 13 ≤ k ≤ 25, where � =
2,000 and σ = 0.4�.

Fig. 14 Running time for the alphabet
size 10 ≤ s ≤ 50 with span 10,
where � = 2,000, σ = 0.4�.

Fig. 15 Running time for the occurrence
probability of events 0.02 ≤ p ≤
0.12 with span 0.02, where � =
2,000 and σ = 0.4�.

we observe that the running time of the algorithm DF-MEM on the real-world
data set shows a similar behavior as on artificial data set. Also, we observe that
the size of memory usage of the algorithm DF-MEM is independent of the window
width on this data set.

In Fig. 18, we show an example of the diamond episode Q with frequency 136
extracted from the real-world event sequence by the algorithm DF-MEM with
the window width k = 20 and the minimum frequency threshold σ = 0.1�, where
the typewriter fonts describe the names of bacteria. This episode says that the
group of the bacteria of yeast and Enterobacter-cloacae occur in data, after
the bacteria of yeast occurs and before the bacteria of Staphylococcus-aureus
occurs within 20 days.

Fig. 16 Running time for the window
width 10 ≤ k ≤ 20, where data
set is real-world event sequence
of � = 70,606, s = 174, and
σ = 0.1�.

Fig. 17 Memory size for the window
width 10 ≤ k ≤ 20, where data
set is real-world event sequence
of � = 70,606, s = 174, and
σ = 0.1�.

Q = yeast


→{yeast, Enterobacter-cloacae}

→Staphylococcus-aureus

Fig. 18 An example of the diamond episodes extracted from a bacterial culture data.

Overall, we conclude that the proposed algorithm FindDmdMain with the
practical speed-up by memoization technique in Fig. 6 (DF-MEM) is quite efficient
on the artificial data set used in these experiments. The fast linear-time update
by FastFindSerialOcc (DF-FFS) achieves a speed-up of twice. Algorithm DF-

MEM on the real-world data set shows a similar behavior as on artificial data
set.

6. Conclusion

This paper studied the problem of frequent diamond episode mining, and pre-
sented an efficient algorithm PolyFreqDmd that finds all frequent diamond
episodes in an input sequence in polynomial delay and polynomial space in the
input size. We have further studied several techniques for reducing both time
complexity and space complexity of the algorithm. Possible future problems are
extension of PolyFreqDmd for general fragments of directed acyclic graphs 7),8),
and efficient mining of closed patterns 2),3),8),12) for diamond episodes and their
generalizations. Also, we plan to apply the proposed algorithm to bacterial cul-
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ture data 5),6).
Acknowledgments This work is partially supported by Grand-in-Aid for

JSPS Fellows (20·3406). The authors would like to thank Dr. Kimiko Matsuoka
of Ikagaku Co.,Ltd and Mr. Shigeki Yokoyama of Koden Industry Co., Ltd for
providing bacterial culture data sets at Osaka Prefectural General Medical Cen-
ter. The authors also would like thank to the anonymous referees for their careful
readings of the paper and comments that greatly improve the correctness and the
quality of this paper.

References

1) Agrawal, R. and Srikant, R.: Fast algorithms for mining association rules in large
databases, Proc. 20th International Conference on Very Large Data Bases, pp.487–
499 (1994).

2) Arimura, H.: Efficient algorithms for mining frequent and closed patterns from
semi-structured data, Proc. 12th Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD2008 ), Lecture Notes in Artificial Intelligence 5012,
pp.2–13 (2008).

3) Arimura, H. and Uno, T.: A polynomial space and polynomial delay algorithm
for enumeration of maximal motifs in a sequence, Proc. 16th Annual International
Symposium on Algorithms and Computation (ISAAC2005 ), Lecture Notes in Com-
puter Science 3827, pp.724–737 (2005).

4) Avis, D. and Fukuda, K.: Reverse search for enumeration, Discrete Applied Math-
ematics, Vol.65, pp.21–46 (1996).

5) Katoh, T. and Hirata, K.: Mining frequent elliptic episodes from event sequences,
Proc. 5th Workshop on Learning with Logic and Logics for Learning (LLLL2007 ),
pp.46–52 (2007).

6) Katoh, T., Hirata, K. and Harao, M.: Mining frequent diamond episodes from event
sequences, Proc. 4th International Conference on Modeling Decisions for Artificial
Intelligence (MDAI2007 ), Lecture Notes in Artificial Intelligence 4617, pp.477–488
(2007).

7) Mannila, H., Toivonen, H. and Verkamo, A.I.: Discovery of frequent episodes in
event sequences, Data Mining and Knowledge Discovery, Vol.1, No.3, pp.259–289
(1997).

8) Pei, J., Wang, H., Liu, J., Wang, K., Wang, J. and Yu, P.S.: Discovering frequent
closed partial orders from strings, IEEE Trans. Knowledge and Data Engineering,
Vol.18, No.11, pp.1467–1481 (2006).

9) Pei, J., Han, J., Mortazavi-Asi, B. and Wang, J.: Mining sequential patterns by
pattern-growth: The PrefixSpan approach, IEEE Trans. Knowledge and Data En-
gineering, Vol.16, No.11, pp.1–17 (2004).

10) Katoh, T., Arimura, H. and Hirata, K.: A Polynomial-Delay Polynomial-Space
Algorithm for Extracting Frequent Diamond Episodes from Event Sequences,
Proc. 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD2009 ), Lecture Notes in Artificial Intelligence 5476, pp.172–183 (2009).

11) Uno, T.: Two general methods to reduce delay and change of enumeration algo-
rithms, Technical report, National Institute of Informatics (NII) (2003).

12) Zaki, M.J. and Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset
mining, Proc. Second SIAM International Conference on Data Mining (SMD2002 ),
pp.457–478 (2002).

(Received June 18, 2009)
(Accepted October 9, 2009)

(Editor in Charge: Kunihiko Sadakane)

Takashi Katoh is a graduate student of the Graduate School
of Information Science and Technology of Hokkaido University,
Hokkaido, Japan. He received his B.S. and M.S. degrees in Infor-
mation Engineering from Kyushu Institute of Technology, Iizuka,
Japan, in 2006 and 2008, respectively. His research interests in-
clude data mining, knowledge discovery and bioinformatics.

Hiroki Arimura is a professor of the Graduate School of In-
formation Science and Technology of Hokkaido University. He
received his B.S. degree in Physics, M.S. and Dr.Sci. degrees in In-
formation Systems all from Kyushu University, Fukuoka, Japan, in
1988, 1990 and 1994, respectively. His research interests include
data mining, computational learning theory, and combinatorial
pattern matching with applications to the Web and texts. Since

2007, he has been the director of the Global COE (Centers of Excellence) Pro-
gram of “Center for Next-Generation Information Technology Based on Knowl-
edge Discovery and Knowledge Federation” at Hokkaido University by MEXT.

IPSJ Transactions on Databases Vol. 2 No. 4 1–12 (Dec. 2009) c© 2009 Information Processing Society of Japan



12 An Efficient Depth-first Search Algorithm for Frequent Diamond Episodes

Kouichi Hirata is an associate professor of Department of
Artificial Intelligence, Kyushu Institute of Technology, Iizuka,
Japan. He received his B.S. degree in Mathematics, M.S. and
Dr.Sci. degrees in Information Systems all from Kyushu Univer-
sity, Fukuoka, Japan, in 1990, 1992 and 1995, respectively. His
research interests include data mining, knowledge discovery and
bioinformatics.

IPSJ Transactions on Databases Vol. 2 No. 4 1–12 (Dec. 2009) c© 2009 Information Processing Society of Japan


