
IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009)

Regular Paper

Inter-kernel Communication between Multiple Kernels

on Multicore Machines

Taku Shimosawa†1 and Yutaka Ishikawa†1,†2

We propose a new inter-kernel communication mechanism for multicore ar-
chitectures in order to communicate with multiple kernels within a single ma-
chine. Using this mechanism, multiple kernels share I/O devices, such as
network and disk devices. The mechanism has been integrated into another
mechanism called SHIMOS that partitions the CPUs, the memory, and I/O
devices. Multiple Linux kernels on multicore architectures have been realized
using the integrated SHIMOS mechanism. Several sets of benchmark results
demonstrate that SHIMOS is faster than modern virtual machines. For system
calls, SHIMOS achieves about seven times faster than the Xen virtual machine.
When two Linux compilation jobs run on two Linux kernels, SHIMOS is 1.35
and 1.005 times faster than Xen and the native single Linux, respectively.

1. Introduction

Multicore processors have been adopted in various computer systems, from
commodity machines 1),2) to embedded systems 3)–5). Although such environments
have attracted a lot of attention, not every application is able to exploit the
entirety of the increasing parallel computation capacity.

To utilize these multicore machines more efficiently, a promising way is to run
multiple applications on one machine or share resources among different users in
computer centers. Though each application may not be able to utilize the entirety
of the computation resources, those resources can be used by multiple applications
or by several users. In such a situation, instead of using a single operating system
environment, multiple operating systems may run on one machine. There are
two reasons for this: One is that some applications require different operating
system environments or that the users require isolation of the operating system.

†1 Graduate School of Information Science and Technology, The University of Tokyo
†2 Information Technology Center, The University of Tokyo

Another reason is that running multiple operating systems can provide better
performance isolation by avoiding contention within a kernel caused by system
calls from multiple applications that are running in parallel.

There are two main approaches to running multiple kernels: logical partition-
ing (LPAR) 6) and virtual machines (VMs) 7). In the existing logical partitioning
approach, the CPUs, memory and devices of a machine are partitioned by a
hardware or firmware mechanism. There is nearly no overhead caused by the
partitioning in LPAR methods unless a processor is time-shared. This has been
equipped with IBM mainframes 8) and HP-UX servers 9), but they require ded-
icated hardware/firmware support, and thus it has not been available for com-
modity machines.

The virtual machine approach basically requires no special hardware support,
and has been widely used in commodity machines. Popek and Goldberg pro-
vided a definition of virtual machines 10). According to their definition, a virtual
machine monitor (or VMM for short) must execute most instructions directly
and also must provide resource control. Following the definition, VMMs should
simulate privileged CPU instructions and I/O, as well as system calls and exter-
nal interrupts. Although many techniques are proposed to accomplish efficient
simulation, the inherent overheads cannot be eliminated in the VM approach.

In some systems that emphasize performance, this overhead of virtual machines
is not acceptable. For example, users of computing clusters are not willing to have
their programs slowed down by virtualization. In the emerging multicore embed-
ded systems, there can be almost no room of computing and memory capacity
to spare for virtualization. Nevertheless, they are running multiple kernels and
providing multiple environments in these systems: a process-per-processor sys-
tem like Virtual Node mode in IBM’s BlueGene/P supercomputer 11), or running
a normal kernel and real-time kernel. For these situations, a higher performance
at the risk of a weak isolation of the kernels may be realistic.

In order to provide a multiple kernel execution environment for multicore ma-
chines without sacrificing performance, a new partitioning mechanism, called
SHIMOS (Single Hardware with Independent Multiple Operating Systems) has
been designed and implemented by the authors 12). SHIMOS is implemented in
the Linux kernel by adding several pieces of kernel code and a kernel module

64 c© 2009 Information Processing Society of Japan

65 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 1 Resource partitioning in the former SHIMOS.

called KLoader to boot another kernel from a kernel. Figure 1 shows the par-
titioning of resources in a machine by SHIMOS. As the figure shows, all Linux
kernels run without anything such as a hypervisor under them, and so the ker-
nels run under the privileged CPU mode and manipulate I/O devices directly.
Thus, SHIMOS does not introduce any additional overheads as do VMMs. It is
implemented by relatively little program code compared to the existing virtual
machine monitors. Moreover, it requires no special hardware for support, and
thus it runs on commodity x86 multicore machines unlike traditional partitioning.
In the paper 12), the basic functionality and feasibility of partitioning hardware,
such as partitioning CPUs, memory, and I/O devices, were presented.

SHIMOS is not a VMM as described in Popek and Goldberg’s definition because
it violates the one definition of VMMs: provide “resource control.” SHIMOS re-
stricts the resource usage of each kernel, but the limit is established by the kernel
itself. There is no mechanism to prevent a kernel from accessing resources dedi-
cated to another kernel. If a malfunctioning kernel accesses a resource belonging
to other kernels, the system will be in chaos. In the SHIMOS design philosophy,
providing a highly efficient multiple kernel execution environment takes priority
over providing a protection mechanism against such a malfunction. As a result
of this design philosophy, SHIMOS is faster by 134% than the Xen paravirtual-

ization, as shown in the paper 12).
Though the SHIMOS partitioning approach supports an efficient multiple ker-

nel execution environment on multicore machines, it has one major limitation
that there is no capability of sharing I/O devices. This means that as the num-
ber of kernels increases, the number of devices should increase as well. This
limitation is not acceptable in computer centers that require sharing of networks
and storage.

In this paper, an inter-kernel communication mechanism is proposed and in-
tegrated into the SHIMOS mechanism in order to provide a general framework
to share I/O devices. The integrated SHIMOS achieves the best performance in
most cases when compared to Xen paravirtualization and KVM. Moreover, this
paper shows that partitioning is better in some cases than running on the native
single kernel.

This paper is structured as follows: In the next section, we present an overview
of the inter-kernel communication and virtual devices in the SHIMOS mechanism.
The implementation for Linux on x86 architecture is described in Section 3. Re-
lated work is presented in Section 4. In Section 5, SHIMOS is evaluated using
both micro benchmarks and application-level benchmarks, and compared with
Xen and KVM. Microbenchmarks measure the getpid, fork and wait system
calls, and the network and disk performance. Application-level benchmarks use
the SPECint 2006 benchmark, the Linux kernel compilation, the Apache bench-
mark, and the mix of these applications. The paper is concluded with pointing
out future work in Section 6.

2. Design of Inter-kernel Communication in SHIMOS

In this section, we describe the basic design of the inter-kernel communication
used in SHIMOS to implement the virtual devices. Via virtual devices, a kernel
can share the physical devices in another kernel. We take into consideration that
each operating system kernel running in a machine can differ.

The inter-kernel communication mechanism is composed of three functions:
sharing, transfer and notification. In the following subsections, we describe how
the shared memory area is constructed in the independent kernels, how the data
of one kernel is transferred to other kernels, and how the kernels notify each other

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

66 Inter-kernel Communication between Multiple Kernels on Multicore Machines

of things like packet arrivals. We also describe the management of the virtual
devices.

2.1 Shared Memory
In order to provide data available to all the kernels with the same virtual

addresses, we introduce a memory area shared by all kernels to SHIMOS. Queues
of inter-kernel communication packets (IKC packets in short) are located in this
shared memory area. The number of queues can be more than one for each
kernel, to implement virtual devices efficiently. The virtual devices send requests
to the kernel where the physical device resides via inter-kernel communication,
by passing IKC packets.

This design of the virtual devices is derived from the design principle that
performance is prioritized over protection, and the SHIMOS design that a CPU
core is dedicated to a kernel to avoid overhead. Therefore, this IKC design is for
a multicore CPU because sharing a CPU core among multiple kernels requires
context switching among the kernels, and thus it results in overhead for IKC
packet transmission.

Another design choice is to create a device kernel that manages all devices.
However, it requires at least one CPU to be dedicated for device processing,
which results in the smaller number of available CPUs for users. Therefore, we
have selected a design whereby each device is assigned to one of the kernels, and
the other kernels request the kernel which has that device.

2.2 Transfer Methods
There are two issues concerning the transfer. One is that kernels with data

representations that may differ must communicate with one another. Another
issue is that the overhead for accessing transferred data should be minimized.
Copying of data should be avoided.

The first issue exists because kernels use various structures and data buffers,
so the virtual devices must transfer some of those to another kernel. In general,
structures differ among operating systems, and even among versions of the same
operating system. Therefore, the virtual device converts some of the data struc-
tures to the IKC packet and then reconstructs to its own kernel structure. While
the data structures cannot be shared, data associated with the data structures
may be shared. For example, consider the sk buff structure used in the network

layer in the Linux kernel. An sk buff structure represents a network packet in
the kernel, and it contains a lot of information about the packet in its member
variables, such as pointers to the headers of different network layers, time stamps
and the actual sizes of data. However, the members of the structure can vary
from version to version of Linux, thus the structure cannot be simply passed to
another kernel. In contrast, the contents of the packet, pointed to by a pointer
in the sk buff structure, are independent of the kernel implementations.

The basic design of the IKC packets and virtual devices is conducted as fol-
lows: An IKC packet contains a pointer to the data, and contains the abstracted
information for the data. Upon a request, the virtual device converts the request
into an IKC packet and sends the packet to the destination kernel. The virtual
device in the destination kernel reconstructs a kernel request structure from the
IKC packet.

There are two possible locations for the data to be transferred. One is in the
shared memory area, and the other is in the dedicated area. We provide two
methods for data transfer to support both cases. The first is the shared memory
transfer method, and the other is the page transfer method. We describe the
details of both methods in the following subsections, and show how they alleviate
the second issue, that is, minimizing the cost of accessing transferred data.

2.2.1 Shared Memory Transfer
In the shared memory method, data allocated from the shared memory is trans-

ferred. Since the portion of the shared memory is accessible to all the kernels in
the machine by use of the same address, there is no need to perform any addi-
tional procedure. Obviously, no copy of the data is required during the transfer.
The IKC packets can only contain the pointer to the data as their payload, and so
the overhead of the IKC packet construction is small. To realize this mechanism,
there needs to be a common memory allocator for the shared memory. Memory
portions are allocated without sleeping by this memory allocator. Sleeping is not
allowed within the allocator because it is shared by multiple kernels. If it were
allowed, a further facility for waking up would have been necessary and it would
have been difficult to implement in the situation that different operating systems
are running.

The receiver kernel is able to free the data using the memory allocator because

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

67 Inter-kernel Communication between Multiple Kernels on Multicore Machines

the sender kernel has allocated data using the same allocator. If no response is
expected, the receiver is responsible for freeing the data. Therefore, the data for
inter-kernel communication is managed by the shared memory allocator.

2.2.2 Page Transfer
The page transfer method is used to transfer the memory area outside the

shared memory area. It achieves another zero-copy transfer, but memory map-
ping costs exist compared to the shared memory method.

In the page transfer method, the physical address of the data is transferred.
The receiver kernel maps the given physical address to its virtual memory map to
access the data. The overhead is the time needed to alter the page map table and
the TLB misses which occur every time. Therefore, this method should be used
for communication where large-sized data are sent with relatively low frequency,
such as block device requests.

2.3 Notification
Other than just queuing IKC packets, it is necessary to notify the target kernel

of packet arrivals. In SHIMOS, the notification is accomplished with IPIs (Inter-
Processor Interrupts). Upon an IPI from another kernel, a kernel examines its
queues and handles packets in the queues properly, possibly by waking up the
virtual device codes.

Since modern device drivers use the polling method to reduce the interrupt cost
when they are highly loaded, the queues are associated with flags which indicate
whether a notification is necessary or not. The flag can be used to enable or
disable interrupts adaptively by virtual device drivers.

2.4 Device Management
For a simple efficient IKC mechanism, SHIMOS itself does not provide access

control of the virtual device requests. The control of the requests are responsible
for the kernel which holds the physical device because modern operating systems
have capabilities for controls such as packet filtering and disk resource limit.
Also, because virtual devices access physical devices via the abstracted request
described in Section 2.2 the configuration mismatches among the virtual devices
in different kernels cannot occur.

3. Implementation in Linux

We have implemented the SHIMOS mechanism in Linux 2.6.26 for the x86
architecture. As a basic implementation principle, patches to the kernel should
be as small as possible. The numbers of lines of modifications to the Linux kernel,
and the additional kernel modules, are shown in Table 1.

In the following, we show the implementation of inter-kernel communication
and virtual devices in SHIMOS, following the design shown in the previous sec-
tion. The subsections below describe the support of the shared memory area, the
implementation of the shared memory allocator, the inter-kernel communication
interface, and the implementation details of the virtual network and block de-
vices. Finally, we describe the improvement to the SHIMOS partitioning method
by adding the shared memory.

3.1 Shared Memory Support
To support inter-kernel communication, the shared memory area must be added

to the SHIMOS memory map. Since the area must be addressable by the same
address from all the kernels, and the address calculation should be as simple as
possible, we put the shared area at the lowest physical address, and the dedicated
area at the next higher address.

The physical and kernel virtual memory map after the initialization phase is
illustrated in Fig. 2. To construct this memory map, some initialization codes
in Linux have been modified.

The introduction of the shared memory area is not only for the inter-kernel
communication but also for alleviating some remaining issues on partitioning.
This is described in the later section.

3.2 Memory Allocator
The shared memory allocator must use the same implementation or, at least,

the same algorithm and protocol for meta information, such as the allocation
map, the pointer to the last free area, and the lock variable to protect the infor-

Table 1 Patched lines.

Patch to Existing Source 522 lines
Additional Kernel Source 798 lines
Kernel Loadable Modules 1,798 lines

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

68 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 2 Kernel memory maps in SHIMOS.

mation. However, the same implementation is not generally appropriate because
the implementation of the spinlock primitive may differ in each kernel. This differ-
ence is caused by the required procedures before and after the lock, for example,
preemption counters in Linux. Therefore, the memory allocator is implemented
in each kernel.

The information for the allocator is located at a fixed address in the shared
area, along with the lock variable for the information. Because sleeping is not
allowed at the allocator, we use the spinlock method for a lock to the information.

The allocator itself is implemented using a very simple allocation algorithm.
The worst time complexities are O(n) for allocation, and O(1) for de-allocation.
To reduce external fragmentation, the allocator allocates memory by using a unit
of a kilobyte, which can be changed at boot time.

The interface of the allocator is also simple: a function used to allocate and a
function used to free.

3.3 Inter-kernel Communication
The general inter-kernel communication in SHIMOS is composed by queues

and IKC packets. The queues are allocated in the shared memory during the
initialization of virtual devices. They are implemented as ring buffers so that
they do not need locks if there is a single reader and writer. The interface for
inter-kernel communication, including an overview of the structure of an IKC
packet, is shown in Fig. 3: there are functions to put an IKC packet into a

int shimos_ikc_write(struct ikc_packet *pkt, int kern, int qn);
/* Puts an IKC packet ’pkt’ to the queue number ’qn’

of the kernel ’kern’ */

int shimos_ikc_read(struct ikc_packet *pkt, int qn);
/* Gets an IKC packet from the queue number ’qn’ of its own */

int shimos_ikc_notify(int kern, int qn);
/* Sends an IKC notification message

so that the kern can process the message */

struct ikc_packet{
short cmd; /* NetworkPacket, BlockRead, etc. */
short sender; /* Sender kernel number */
int param[6]; /* Depends on cmd */
void *data; /* Pointer to the data if any */

};

Fig. 3 Inter-kernel communication interface.

specified queue, to pick one from the queue, and to notify the destination kernel
that a packet has arrived or the status of a queue has changed. The notification
is accomplished by an inter-processor interrupt (IPI). Since the interrupt cannot
contain more information within itself, the response message is sent by another
IKC packet.

3.4 Virtual Network Device
To reduce the cost of data transfer between kernels, as we have presented in

Section 2.2.1, the data to be sent is allocated from the shared memory.
In order to allocate network packets from the shared memory area, we modified

the alloc skb function. This is worth patching because copying during network
communication is avoided by modification of just a few lines. Since the network
packets in the Linux kernel are represented as sk buff structures, the structures
and the packet data are always allocated using the alloc skb function. However,
the members in an sk buff structure may vary according to the versions of the
kernels, so the sk buff structure is not shared between kernels and not allocated
from the shared memory, but from the normal kernel memory area. Only the
packet data in the sk buff structure is allocated from the shared memory. We
modified this function so as to use the allocator function of the shared mem-
ory allocator. Also, we changed the free function of the sk buff structure, the

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

69 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 4 Virtual network device implementation in SHIMOS.

free skb function similarly.
The flow of network communication is illustrated in Fig. 4. In this figure, a

packet is transferred from kernel A to the real NIC in kernel B as follows: 1) We
assume that a network request is issued by some activity in kernel A. 2) Kernel A
allocates an sk buff structure by using the alloc skb function. 3) The packet
data is allocated from the shared memory area, but the header of the structure
is allocated from the normal kernel memory, as described above. 4) When the
sk buff structure is passed to the virtual network device, the device converts
it to an IKC packet, and discards the sk buff structure, except for the data.
5) The converted packet is put into the queue of kernel B. Obviously, if the
destination does not exist, the packet is just discarded. 6) Kernel A issues an
inter-processor interrupt as a notification to kernel B. 7) Kernel B gets the packet
from the queue, and the virtual device reconstructs an sk buff. It throws the
sk buff structure to the upper network layer, and finally, 8) the packet reaches
the physical network controller.

The IKC packet representing a network packet contains the pointer to the

Fig. 5 Virtual block device implementation in SHIMOS.

buffer, the offset, and the size of the actual data in the buffer, which are sufficient
to reconstruct the sk buff.

3.5 Virtual Block Device
For a virtual block device, it is difficult to use shared memory because the re-

quest for the block device can be passed with any page in the kernel. Therefore,
virtual block devices use the page transfer method for the inter-kernel commu-
nication presented in Section 2.2.2. Figure 5 shows the flow of a block device
request from kernel A to the physical devices in kernel B. 1) A thread in the
kernel A tries to read or write to a disk provided by the virtual block device.
2) The kernel constructs a bio structure, which consists of those pages that have
buffers to be read or written to, and it requests a virtual device, using the bio
structure. 3) The virtual device translates the bio structure to an IKC packet
with the physical addresses of the pages of the request. 4) It puts the IKC packet
into the block queue of kernel B. 5) It notifies kernel B of the request using an
IPI, if necessary. 6) The driver in kernel B receives the packet, and it maps the
page to be read or written into its virtual memory map. 7) It reconstructs a bio

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

70 Inter-kernel Communication between Multiple Kernels on Multicore Machines

structure with the newly mapped pages. 8) Finally, it makes a request to the real
block device. 9) Upon the response from the real device, the driver unmaps the
region to be read or written to. 10) Kernel B sends a simple packet that notifies
kernel A of the completion of the request. If necessary, kernel B also issues a
notification to kernel A.

The mapping of memory outside the kernel is not simple because actions in
the kernel to memory areas generally require a page structures. In addition, the
page to pfn function, which converts page structure to its corresponding physical
page number, assumes that the page structures are just a linear array. Naturally,
the corresponding page structure for a memory area outside the kernel is not in
the array, or may not even exist. The virtual block device in SHIMOS allocates a
temporary page structure for the transferred page. For implementation simplic-
ity, we also modified the members of the page structures and the page to pfn

function so that kernels can handle irregular page structures. Unmapping is done
by only freeing the temporary page structure.

3.6 Improvement in Booting Procedure
The shared memory area, introduced in Section 3.1 provides more flexibility to

the partitioning compared to the former SHIMOS mechanism.
There is a limitation of the boot order in the previous implementation of

SHIMOS that a kernel which uses the lowest memory address must be booted
last. This limitation comes from the property of the x86 architecture that all
CPUs boot in the “real” mode, being able to access only the lowest 1 MB mem-
ory. With the simple partitioning of the memory, the kernels to which the higher
memory areas are dedicated even cannot boot at all without using the low mem-
ory area.

Now that the shared memory is provided, the booting mechanism is improved
to use the area. In SHIMOS, the kernel module named KLoader in one kernel
prepares and boots up another kernel. The KLoader module loads the bootstrap
routine in a reserved area in the shared memory, and puts the remaining part of
a kernel to the memory area dedicated to that kernel. Finally, it wakes up one of
the CPU cores dedicated for that kernel by an IPI. In addition, the code to wake
up another CPU cores in the Linux SMP kernel is modified to use the reserved
area.

With this improvement, the booting of the kernels can be performed in any
order. Also, it is possible to reboot a kernel while the other kernels are running.

4. Related Work

4.1 Virtual Machines and I/O
As a common machine partitioning method, the virtual machines approach

has been widely adopted. Many techniques have been proposed to reduce the
overhead of the VMs, such as the paravirtualization technique 13), and hardware
virtualization support 14),15).

One of the most successful VMMs for commodity machines is Xen 16), which
makes use of the paravirtualization technique. In the paravirtualization tech-
nique, the guest kernels are modified to call the VMM, or the hypervisor in Xen
terms, instead of privileged instructions and I/O. It uses this so-called “hyper-
call” to reduce the costs of trapping in the traditional virtualization method.
Figure 6 shows an example of partitioning a machine using Xen. In this figure,
on the top of the hypervisor, there run two types of domains, guest operating
systems: a privileged domain (Dom0), and guest domains (DomUs). The former
domain holds all the physical devices, and the latter domains access the devices

Fig. 6 Virtual machines and resources in Xen.

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

71 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 7 Communication between domains in Xen.

via the privileged domain using virtual devices. System calls or privileged in-
structions are simulated by the hypervisor, thus the cost for this simulation still
remains.

The other popular VMMs for the x86 architecture are VMWare 17) and Kernel-
based Virtual Machine (KVM) 18). VMWare uses dynamic binary modification
of the privileged instructions and I/O processing of the guest operating systems.
Therefore, it can run any operating system, including proprietary operating sys-
tems for which source codes are not generally available. KVM exploits the hard-
ware virtualization support recently introduced in commodity machines, as well
as the paravirtualization technique. It uses “trap and emulate” hardware sup-
port to run any operating system, but to reduce the costs of trapping, it also
uses paravirtualization for some operating systems, such as Linux.

The device sharing and inter-domain communication in Xen achieve significant
performance improvement. The virtual network devices in Xen communicate
with each other by using a grant table 19). Figure 7 illustrates communication
in Xen. Because each of the domains, except Dom0, is independent and unable
to access the memory of others, the hypervisor provides the interface used to
establish the grant page tables. The grant page tables are the list of pages to

which a domain “grants” access to another domain. As a result, it achieves zero-
copy communication between independent domains. Although the grant page
table method achieves zero-copy communication, it incurs a cost for page table
modification and managing the protection for the grant pages.

There are many ways to achieve better communication or device sharing among
virtual machines on one physical host machine. XWAY 20) is an inter-domain
socket architecture for Xen. It provides a user-transparent socket layer, which
provides more direct access to the communication mechanism in Xen. The layer
intercepts between INET and TCP and uses the XWAY channel to communicate
with other domains. Therefore, it assures binary compatibility for applications
that use sockets. Thus, it accomplishes faster inter-domain communications for
applications running on Xen guests without any modification to those applica-
tions. However, it has the inevitable overhead for connect and close operations,
and for some applications using the kernel socket interface directly. Thus, more
work will be needed.

Huang, et al. 21) proposed efficient inter-domain communication in Xen, and
integrated it to an MPI library. In this method, the receiver maps pages of the
sender using a kernel driver from the MPI library, and achieves one-copy, i.e., a
copy from the library to the user space, communication. Unlike a new socket,
MPI is a widely used interface, and extension to the MPI library is an acceptable
solution for high performance computing. The MPI library is, however, not used
in all applications. To make efficient communication available generally, a virtual
network device would be better.

Xen-IB 22) uses InfiniBand network cards, which are capable of user-level net-
working, in the virtual machine to provide fast communication on virtual ma-
chines. It enables user processes to communicate directly to the network device
bypassing kernels and the hypervisor using the facility of user-level networking
of InfiniBand. However, it requires a special hardware that supports user-level
networking, and so it is not directly applicable to network devices in general.

4.2 Communication across Address Spaces
In the sense that the communication must be done across different address

spaces, inter-process communication (IPC), inter-domain communication in Xen
and the proposed IKC have the same issue. There are a large number of researches

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

72 Inter-kernel Communication between Multiple Kernels on Multicore Machines

on IPC, and for example, the use of the shared memory is adapted as A-stack in
LRPC 23), the page transfer is a common IPC technique in microkernels such as
DASH 24) and L4 25).

Since these IPC techniques and inter-domain communication provide security,
they require interference of an operating system or a hypervisor. If a CPU
is shared among processes or virtual machines, it can incur switching of the
virtual page tables. Under the assumption that the kernels can be trusted and
that a CPU is dedicated to a kernel, the proposed IKC does not rely on such
intervention, and can eliminate the overhead of the protection and switching of
virtual address spaces.

4.3 Partitioning and Scalability
As for the partitioning of a machine, there are various methods other than

virtual machines. Linux VServer 26) and OpenVZ 27) partition resources within
an operating system. They provide virtual environments, each of which has a set
of resources. This method is implemented in a single kernel. The applications
in the environments provided by this method do not suffer from overhead for
system calls and I/O, unlike VMs. However, the environments are still on the
same kernel, these methods do not alleviate the issues of synchronization costs
in the kernel.

Microvisor 28) provides online maintenance of operating systems of server ma-
chines. During the maintenance, an operating system is virtualized and a copy of
the operating system runs concurrently. The copied OS updates itself, and after
the maintenance, the processes in the original OS are migrated to the copied
OS. Finally, the copied OS is devirtualized and continues providing services.
This method provides the online maintenance within a single node, and reduces
the cost of virtualization by devirtualizing during the normal operation. To run
multiple operating systems, however, it uses virtualization, and does not meet
demand of a server with multiple operating systems during normal operations
without virtualization cost. Moreover, this method requires spare resources,
such as network cards for maintenance, which is inefficient since they are not
used during normal operation.

TwinOS 29) is a method that runs multiple Linux kernels on a uniprocessor
machine. It divides memory and other devices, and dedicates them to the kernels,

but time-shares the CPU. The time sharing of the CPU requires overhead for
switching operating systems, and the target of TwinOS is not a multiprocessor
environment, and so it does not offer the efficient use of multicore processors.

Many operating systems have been proposed to attain scalability in multicore
environments by, for instance, reducing the cost of synchronization, or using the
knowledge of memory distances, which are more often different from processor
to processor, such as in ccNUMA machines.

Corey 30) is an operating system that focuses on scalability in multicore ma-
chines. It provides an interface to specify a separate memory area and a shared
memory area, and a sharing of kernel objects, to reduce false sharing of memory
and objects, and thus reduces wasteful locks. However, it does not improve scala-
bility of existing operating systems like Linux, and applications must be modified
or recompiled to work on Corey.

Barrelfish 31) is designed to have a knowledge base of the hardware, and pro-
vides user programs with access to it so that they can find the capabilities of
the machine and request them, or they can notify the scheduler of the prefer-
ences for the functions. By providing a knowledge base, Barrelfish is able to run
user programs properly on various machines, which are getting more and more
diversified. However, it is hard to design and build such a knowledge base that
describes enough information of machines, and the efficient use of the knowledge
in the operating system still requires more investigation.

In AsyMOS 32) and Piglet 33), new methods are proposed to dedicate one of
the CPU cores in a machine to a lightweight kernel, and run a single Linux
operating system on the others. I/O and some system services are executed by
the lightweight kernel. Their goal is to reduce cache contention by kernel codes
and synchronization in kernels by assigning a dedicated core for the lightweight
kernel. This can address the scalability issue of Linux, but the practical effect is
not clear. Also, it is unable to concurrently run independent multiple operating
systems on a machine.

4.4 Multiple Operating Systems
OS Switching 34) executes multiple operating systems natively by the “suspend”

and “resume” power management features. Switching is done as follows: first, an
operating system is suspended. Then, the switching code is executed. It restores

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

73 Inter-kernel Communication between Multiple Kernels on Multicore Machines

hardware states and runs resume code for another operating system. This method
enables each operating system to use the entire resources of a machine, but it may
be seen as time sharing with a long time span, so it is not able to run multiple
operating systems at the same time.

The KLoader module in SHIMOS resembles coreboot 35), formerly called Linux-
BIOS 36), and other OS-based bootstrappers 37), which provide alternatives to the
BIOS bootstrap programs. To support booting from various devices, they use a
part of an operating system to boot other operating systems. This idea is similar
to KLoader, but the bootstrap operating systems replace themselves with the
new operating systems, while the kernel where the KLoader module is loaded
stays alive after it boots the other kernels.

5. Evaluation

We evaluated the implementation of SHIMOS on Linux 2.6.26 for x86 described
in Section 3. The evaluation environment is a dual-core dual-processor SMP ma-
chine (four cores in total) with three hard disks connected to a SATA controller,
and a hard disk connected to a PATA controller. It is also equipped with a
network interface card. The specification is shown in detail in Table 2.

We conducted benchmarks on the native kernel, on the kernels of SHIMOS,
on the guest domains (DomUs) of Xen 3.2 with the OpenSuSE version of Linux
2.6.26 for the privileged domain (Dom0), and on the guest machines of KVM 62.

Let a benchmark execution environment be represented by the list of b/p where
p is the number of CPU cores dedicated to the kernel, and b is the number of
benchmark instances executed on the kernel. For example, {1/2, 1/2} means
that the evaluation machine is partitioned into two kernels each of which has
two CPU cores and runs a benchmark program. To make this clear, the typical
configurations are illustrated in Fig. 8. The size of memory dedicated to the
kernel is proportional to the number of dedicated cores. When b is more than
one, we show the average of scores of all the benchmark programs as the score
for that configuration.

Two DomUs in the Xen case and two guest machines in the KVM case ran on
the evaluation machine when we ran two kernels in the SHIMOS case. One of
the kernels uses an SATA hard disk, 896 MB of memory and an e1000 NIC; the

Table 2 The evaluation machine.

Model DELL Precision 490
CPU Intel Xeon 5130 (dual-core, 2.0 GHz) x 2
Memory DDR2 667 MHz FB-DIMM 1,024 MB x 2
HDD SATA 250 GB x 3, PATA 120 GB
OS Linux 2.6.26
NIC Intel (e1000, PCI-X)

Fig. 8 Typical configurations in this evaluation.

other kernel has a PATA hard disk and 896 MB of memory. We used the ext3
file system for all the hard disks, and we accessed via this file system otherwise
noted. Although the memory size in the evaluation machine is 2,048 MB, we only
use 1,792 MB in total. This is because the hypervisor or the host kernel uses a
certain amount of memory in the virtual machines, while SHIMOS can use all of

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

74 Inter-kernel Communication between Multiple Kernels on Multicore Machines

the memory available by giving 1,024 MB to each kernel. To make the conditions
fair, we used 896 MB per kernel in SHIMOS, Xen and KVM. The native single
kernel with four CPU cores had 1,792 MB of memory.

We used two methods for measurement of elapsed time: the gettimeofday

system call and the time stamp counter of the CPU. The system call is called or
the counter is read before and after the benchmark. It may incur a small cache
miss for the system call, or may effect on the CPU pipeline, but the side effects
of these time measurements are ignorable. The precision was 1 ms for the system
call, and one clock (i.e., 0.5 ns) for the counter. We disabled the DVFS feature
of the machine to obtain a constant clock.

First, we present the microbenchmark results to show the overhead of the
SHIMOS mechanism compared to the virtual machines and the effect of parti-
tioning on the kernel behavior. We show the performance of the virtual network
and block devices next. Then, we experiment using actual applications to have
a look at the overall performance of the SHIMOS mechanism.

5.1 Microbenchmarks
5.1.1 System Calls
The existence of overhead upon execution of privileged instructions is the major

downside of virtual machines. In this section, we measured the overhead by
calling system calls many times. We used the gettimeofday system call to
measure the time.

First, the time required for calling the simple system call getpid ten million
times is measured. The number of system calls per a second is shown in Fig. 9.
It shows that solely changing the privilege level costs a lot, slowing the execution
time by about 56% in both VMs, while SHIMOS results in the same execution
time as the native single kernel.

The forkwait benchmark is a simple loop of the fork and waitpid system calls,
that is, a loop of process creation and destruction. Figure 10 shows the results
of this benchmark. It shows that the virtual machines get much worse scores
than in the getpid benchmark.

It is also remarkable that SHIMOS achieved a 1.26 times better score than
the native kernel when two benchmarks are executed in parallel (the {1/2, 1/2}
and {2/4} configurations). To clarify the reason, we examined the native case

The configuration is {1/2} in all the cases.

Fig. 9 The getpid benchmark results.

The configurations are {1/2} for the “1 benchmark” cases, {2/4} for the Native case in “2

benchmarks”, and {1/2, 1/2} for the others in the “2 benchmarks” cases.

Fig. 10 The forkwait benchmark results.

further by changing the number of CPUs and the binding of CPUs. The results
are shown in Fig. 11. As the number of CPUs exceeds one, and then two, when
the kernel switches to SMP and starts to use a core on the second CPU socket,
the execution time gets much longer, but the time with four cores is not very
different from that with three cores. When we bind the benchmark process and
its children to a core, CPU 0, the difference between two and three cores almost
disappears. This suggests that the degradation in the three cores is caused by
an inter-socket cache protocol. When more than one CPU socket is used, the
scheduler may choose another core in the different CPU socket for a newly created
process, thus resulting in inter-socket communication. Therefore, when we bind

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

75 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 11 The forkwait results and the number of cores.

Table 3 The native forkwait benchmark results with binding.

Unbound Each socket The same socket

of created procs 11,600 11,631 13,678

The configuration is {2/4}.

the benchmark instances to the configuration similar to the SHIMOS case, that
is, each benchmark for each CPU socket, the score is worse than the score when
we bind both benchmark instances to the same socket (see Table 3). Still, the
best score in that situation is about 5% worse than the score of SHIMOS.

5.1.2 IKC Primitive Performance
In this section, we evaluate the performance of inter-kernel communication in

SHIMOS. We measured the round-trip time and the number of IKC packets
transmitted by writing a small kernel module that uses IKC. Because the ma-
nipulation of IKC packets is totally a kernel activity, we used time stamp counter
to measure the elapsed time.

The modules are loaded to both kernels, one of them sends an IKC packet
to the other and waits for receiving an IKC packet from the other. During
the measurement, the module does not wake up another thread but sends back a
packet in the reception interrupt handler, and so it measures nearly pure overhead

Table 4 Results of the IKC primitive benchmark.

RTT 2.723 µs

of packets per second 1.209 × 106

Table 5 The ping benchmark results.

Native SHIMOS Xen KVM

ping RTT 5 µs 10 µs 66 µs 4,043 µs

of the IKC. The module also bursts 1,000,000 packets to the other kernel, and
the receiving module measures the time for receiving the all the packets in order
to evaluate how many packets can be transmitted in certain time. The result is
shown in Table 4.

5.1.3 Network Performance
In this section, we evaluate the performance of the virtual network devices. We

used the same configuration as the system call benchmarks, with the addition
of a virtual network device in SHIMOS, bridged to the physical NIC in the first
kernel. For the virtual machines, the virtual network devices for both kernels are
connected via a bridge in the host. For the native kernel, a loopback device is
used for benchmarks in this section. We used a default configuration for network
packet size (MTU = 1500).

Table 5 shows the round-trip times (RTTs) of inter-kernel communication
measured by the ping command with a microsecond precision, and Fig. 12 shows
the various bandwidths measured by the iperf program 38). Excluding the loop-
back device, the RTT of SHIMOS is the best among the virtual devices. However,
with regard to the bandwidth, it is worse than Xen. When we turn off the TSO
(TCP Segmentation Offloading) feature in the Xen network devices, the per-
formance in Xen becomes worse than SHIMOS. Therefore, it is a problem of
optimization of the network device, whether the TSO feature is simulated or not.
The TSO effect in Xen is pointed out by the papers 39),40).

Comparison between the loopback device and SHIMOS indicates that half of
the latency in the SHIMOS virtual network device seems to originate from the
IKC and the virtual network implementation. Also, from the results in Table 4,
it seems that the SHIMOS network device implementation consumes about half

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

76 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 12 The iperf benchmark results.

Fig. 13 Evaluation configuration for measurement of virtual network effects.

of the processing time. Comparing the maximum IKC packet transmission rate
in Table 4, there seems to be room for improvement of the network device im-
plementation, since one IKC packet corresponds to a network packet.

Next, we experimented with the effect of the virtual network devices. The
configuration is illustrated in Fig. 13. We measured the bandwidth using the
iperf program from a kernel to a machine outside the environment via a virtual
network device. The results in Fig. 14 show that SHIMOS and Xen exhibit
no performance degradation in the network, while KVM shows a decrease in
bandwidth of about 5.8%.

5.1.4 Disk Performance
To evaluate the virtual block devices in SHIMOS, we first conducted a measure-

ment of the speed of reading and writing to a RAM disk. Since a simple memory
access is faster than inter-kernel communication and faster than operations in-
volving disks, this measures the potential speed of the virtual block device. We

Fig. 14 Effects on network performance of virtual devices.

Fig. 15 Results of RAM disk read/write tests via virtual devices.

created a RAM disk on a kernel or on a host kernel, and shared it using a virtual
block device with another kernel or with a guest kernel. We created a program
to read and write data to the specified device with raw access (i.e., via no file
system). The benchmark program enabled the O DIRECT option to remove the
effects of disk caches in the operating system. We compared the speed of reading
and writing 2 GB of data to the device in each environment. The result is shown
in Fig. 15. In this figure, SHIMOS achieves far better performance among the
virtual devices. The virtual block device in SHIMOS performs 3.98 times better
than the one in Xen, and 6.75 times better than the one in KVM.

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

77 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Table 6 Results of Linux compilation by various methods.

Elapsed time (s)

Native (Direct) 205.845
SHIMOS 206.146
iSCSI 206.856
NFS 220.766

Next, we tried to clarify the significance of the virtual block device in SHIMOS
compared to some alternative methods of remote hard disk sharing by network
because real hard disks are typically slower than the network. We conducted a
Linux compilation benchmark experiment in a kernel using an SATA hard disk
on another kernel with various methods in SHIMOS: the proposed virtual block
device, iSCSI 41) and NFS 42). The last two methods use the virtual network
device for communication. The comparison of these methods and the direct use
of the hard disk is shown in Table 6. The elapsed time is measured by the
gettimeofday system call with a millisecond precision. This table shows that
the performance of the shared block device in SHIMOS is the best one among
the sharing methods using network.

5.2 Application-level Benchmarks
5.2.1 Linux Compilation
The Linux compilation benchmark is to measure the time it takes to compile the

Linux kernel. It accesses disks and produces many child processes. We measured
the time needed to compile the Linux 2.6.26 kernel of the default configuration
with four concurrent processes. When we ran two compile jobs in parallel, we
used different hard disk drives connected to different hard disk controllers for the
compilations, namely, an SATA hard disk and a PATA hard disk. The elapsed
time is measured by calling gettimeofday system calls with millisecond precision
before and after execution of a make process.

The results of the Linux compilation benchmark are shown in Fig. 16. In this
figure, “1 benchmark” denotes a single benchmark, and “2 benchmarks” denotes
the parallel execution of the two benchmarks. In the single execution, SHIMOS
is a little (0.3%) worse than the native kernel because of the existence of another
kernel. However, the results of multiple executions show that SHIMOS is slightly
(0.5%) better than the native single kernel. This slight difference in multiple

The configurations are {1/2} for the “1 benchmark” results. {2/4} for the Native case in “2

benchmarks” and {1/2, 1/2} for the others in the “2 benchmarks” results.

Fig. 16 The Linux compilation results.

Table 7 Results of compilation benchmark in Native and SHIMOS environments.

Native SHIMOS

Mean 208.3918 207.335
Variance 3.754 × 10−2 0.1013
Number of Samples 10 10

Elapsed time in second. Smaller is better.

executions is statistically significant according to a statistic test called Welch’s
test at the significant level of 1.0% with the detailed data shown in Table 7.

5.2.2 SPEC CPU Benchmark
Next, we ran the int set of the SPEC CPU2006 Benchmark 43) on the evalu-

ation machine. This benchmark contains 12 sub-benchmarks that mainly stress
CPUs and memory. We ran two instances of the SPECint 2006 benchmark on
the evaluation machine, and the configurations were {2/4} for native, {1/2, 1/2}
for the others. The total score is shown in Fig. 17, and the scores for sub-
benchmarks are presented in Fig. 18. Note that the results are not officially
reportable SPECCPU 2006 scores because they do not satisfy the hardware de-
scription criteria and they have some unknown flags for benchmark program
compilation.

The results showed that SHIMOS achieves the best score in all sub-benchmarks
and, consequently, the best total score in this evaluation. As for the total

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

78 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Fig. 17 The SPECint 2006 base results.

Fig. 18 Detailed results for SPECint base2006.

scores, SHIMOS scores 6.2% better than KVM, the best of the VMs, and scores
1.8% higher than the native single kernel. In the sub-benchmarks, the scores
of SHIMOS are from 0.8% to 16% better than the native kernel, or at least,
identical.

To clarify the performance difference between the native and SHIMOS cases,
the results in detail are shown in Table 8. By applying Welch’s test at 1.0%
significance level to the results, there is statistically performance difference.

5.2.3 Mixed Jobs
Next, we conducted a mix of benchmark experiments. We ran an Apache server

and Linux compilation at the same time on one machine. While the kernel was

Table 8 Results of SPECint benchmark in Native and SHIMOS environments.

Native SHIMOS

Mean 10.2 10.021
Variance 0 7.104 × 10−3

Number of Samples 5 6

Fig. 19 The mixed benchmark results.

being compiled, we executed an Apache benchmark 44), which sends requests to
the Apache server, and the effect on the results of each was observed. The Apache
benchmark program sent requests to a dynamic page, a CGI, which simply shows
the current date. The Apache benchmark setting was 5 concurrent connections
for static, 10 concurrent connections for dynamic, and the Linux compilation
setting was the same as that of the previous evaluation. Note that the Apache
server and Linux compilation used the different hard disks in all cases (an SATA
hard disk and a PATA hard disk, respectively).

The results are shown in Fig. 19. Although the Apache score for SHIMOS is
about 10% worse than those in the native kernel and Xen, we must point out
that the Linux compilation time in the native kernel is about twice the time in
SHIMOS. We consider that the CPUs were used to process network rather than
the compilation in the native case, and so the compilation time was far worse
than the single benchmark, while the Apache score decreased slightly.

5.2.4 Apache Benchmark
To evaluate the virtual network device by application, we ran two Apache

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

79 Inter-kernel Communication between Multiple Kernels on Multicore Machines

The configuration is {2/4} for the Native case, and {1/2, 1/2} for the others.

Fig. 20 The Apache Benchmark results.

servers, one in each kernel. The network configuration was the same as the one
shown in Fig. 13. The iperf server in this figure was used to run the Apache
benchmark. In the native case, we ran two Apache process sets in a kernel with
different port numbers. We sent requests from the Apache benchmark programs
to the two servers concurrently. The Apache benchmark setting is the same as
that of the previous benchmark.

The static page used in this benchmark is a one-megabyte file, and the dynamic
page is the same as the one in the previous benchmark. The results are shown in
Fig. 20. Since the static page access does not have an impact on CPUs, and the
bandwidth is limited by the physical network device, the results did not show
much difference among the SHIMOS and the VMMs. In contrast, the dynamic
page access does stress CPUs, and the performance decreases in the cases other
than SHIMOS, due to the loads attributable to the dynamic pages. SHIMOS
achieves 375% better performance than Xen, and 22% better than the native
single kernel. Note that the Apache score in Xen drops to 4.93 times worse
than the previous benchmark. It may be because the load on the virtual device
certainly affected the performance of the Apache servers.

5.3 Discussion
Compared to the Xen virtual machine, the SHIMOS kernel achieves better

performance in most benchmarks. The SPEC int2006 benchmark showed that

not only I/O oriented programs, but CPU and memory intensive programs can
perform better in SHIMOS than on the virtual machines. The benchmarks where
SHIMOS performs worse are those involving the virtual network bandwidth and
the request process speed in the Apache benchmark. The former reflects the
fact that the virtual network device is more optimized in Xen. The latter is
related to the configuration, in that virtual machines in Xen are not bound to
one CPU socket, thus the cache available to them may vary. However, the overall
performance of the mixed jobs seems to be better in SHIMOS.

As for the network performance, the result without TSO shows that the num-
ber of transmitted packets in SHIMOS are more than in Xen. Also, from the
IKC primitive benchmark, the transmission capacity of IKC packets are more
than the transmitted network packets, and so the SHIMOS can achieve a higher
performance by applying some optimization techniques to the network device
implementation. We expect that reducing interrupts and TSO are clearly appli-
cable, and at least, TSO can improve the performance because it can increase
the size of data in a packet and decrease the processing time of the packetization.

On the other hand, the kernels in SHIMOS can achieve better performance
than that of a single native kernel when some of the benchmarks are executed in
parallel. As described in Section 5.1.1, the parallel process creation in the native
Linux kernel performs worse than the single process creation in the native Linux
kernel, and than the concurrent creation in the separate SHIMOS kernels. We
consider that it is because accesses to shared resources in the process creation
procedure were contended. Also, as Fig. 11 and Table 3 imply, parallel access
to the shared resources from different CPU sockets can be a reason of the slow-
down in the Linux kernel, because the serialization in such a situation requires
inter-socket communication and cache misses. The compilation benchmark also
generates many processes, and the worse performance in the Linux kernel should
be due to the same reason as the forkwait benchmark. As for the other applica-
tion benchmarks, it may be the shared resource accesses in the other part of the
kernel and the I/O and process scheduling in one kernel. We consider that it is
implied from the mixed benchmark results that the compilation in native kernel
performs poorly when it runs with Apache benchmark. In the benchmark, the
I/O load on different parts, the network and the disk, seemed to pose performance

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

80 Inter-kernel Communication between Multiple Kernels on Multicore Machines

degradation on, at least, one side.

6. Conclusion

There have been demands for a multiple operating system environment running
on a single multicore machine because it enables users to run applications that
require different operating system environments, provides separation of multiple
environments for users, and reduces contention in operating system kernels by
reducing the synchronization costs. Virtual machines have been recognized as one
promising approach. However, VMs entail overhead when simulating privileged
CPU instructions and I/O.

There are two main contributions in this paper, as described below. The first
is that a new and efficient mechanism, SHIMOS, providing multiple kernels in
a multicore machine, has been designed and integrated into the Linux kernel
without any specific architectural support. In SHIMOS, all the kernels run in
the privileged CPU mode under the assumption that kernels do not break other
kernels, and thus no extra overhead is incurred, unlike with VMs. Thus, an inter-
kernel communication mechanism has been designed and implemented to create
virtual devices, as explained in this paper. In order to provide efficient kernel
data transfer mechanisms, two functions, a shared memory transfer function and
a page transfer function, have been designed. The former function is mainly
used to create the virtual network or character devices, and the latter function
is mainly used to create virtual block devices.

The other contribution in this paper is to demonstrate that the SHIMOS Linux
achieves better performance than existing virtual machines, such as Xen and
KVM, and that it performs better than a single Linux kernel in some benchmarks.
We have evaluated the implementation and showed that it performs about 7
times faster than the Xen virtual machines for process creation and destruction
system calls. We have also shown that a virtual network device using inter-kernel
communication is as fast as the native case, and achieved 1.67 times better inter-
kernel bandwidth compared to Xen without TSO. And, we have shown that the
virtual block device performs 3.98 times better than Xen, and has almost the same
performance as a real hard disk drive. Finally, we have presented the results of
application-level benchmarks. Using the multiple Linux compilation benchmarks,

we have shown that SHIMOS is 1.35 times faster than Xen, and 1.006 times
faster than the native single Linux. Using the SPECint 2006 benchmarks, we
have shown that SHIMOS is 1.06 times better than KVM and 1.10 times better
than Xen, and also 1.01 times better than the native single kernel. We have also
shown that SHIMOS with a virtual network device is 4.77 times faster than Xen
and 1.26 times faster than the single Linux in the Apache benchmark. With all of
the benchmarks, with the exception of the SPECint benchmark, KVM performs
worse than SHIMOS.

As future work, we need to further investigate the scalability of the method
we have proposed. We used four core machines for the experiments, and we
used the spinlock method for our shared memory. Scalability issues, such as the
effect of cache consistent protocols in these shared memory accesses from multiple
kernels, should be examined, especially when the number of cores is increased to,
for example, 16 or more.

Acknowledgments This work is partially supported by a CREST project
of JST (Japan Science and Technology).

References

1) Intel: Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor,
http://download.intel.com/design/processor/datashts/320834.pdf.

2) Advanced Micro Devices: AMD Opteron Processor Product Data Sheet,
http://www.amd.com/us-en/assets/content type/white papers and tech docs/
23932.pdf.

3) Intel: Intel Atom Processor Z5xx Series Datasheet, http://download.intel.com/
design/processor/datashts/319535.pdf.

4) ARM: ARM11 MPCore, http://www.arm.com/products/CPUs/
ARM11MPCoreMultiprocessor.html.

5) Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori, T.,
Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T., Takada, K., Kimura,
K. and Kasahara, H.: A 4320MIPS Four-Processor Core SMP/AMP with Individ-
ually Managed Clock Frequency for Low Power Consumption, 2007 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC2007), pp.100–101, 590 (2007).

6) Borden, T.L., Henessy, J.P. and Rymarczyk, J.W.: Multiple operating systems on
one processor complex, IBM Systems Journal, Vol.28 No.1, pp.104–123 (1979).

7) Meyer, R.A. and Seawright, L.H.: A virtual machine time-sharing system, IBM
Systems Journal, Vol.9, No.3, pp.199–218 (1970).

8) International Business Machines Corporation: Logical Partitions on System i5: A

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

81 Inter-kernel Communication between Multiple Kernels on Multicore Machines

Guide to Planning and Configuring LPAR with HMC on System i (2006).
9) Hewlett-Packard Company: Installing and Managing HP-UX Virtual Partitions

(vPars) Ninth Edition (2006).
10) Popek, G.J. and Goldberg, R.P.: Formal Requirements for Virtualizable Third

Generation Architectures, Comm. ACM, Vol.17, No.7, pp.412–421 (1974).
11) Alam, A., Barrett, R., Bast, M., Fahey, M.R., Kuehn, J., McCurdy, C., Rogers,

J., Roth, P., Sankaran, R., Vetter, J.S., Worley, P. and Yu, W.: Early evaluation of
IBM BlueGene/P, Proc. 2008 ACM/IEEE Conference on Supercomputing (2008).

12) Shimosawa, T., Matsuba, H. and Ishikawa, Y.: Logical Partitioning without Archi-
tectural Supports, IEEE International Computer Software and Applications Con-
ference, pp.355–364 (2008).

13) Whitaker, A., Shaw, M. and Gribble, S.D.: Scale and performance in the Denali
isolation kernel, OSDI ’02: Proc. 5th Symposium on Operating Systems Design and
Implementation, New York, NY, USA, pp.195–209, ACM (2002).

14) Advanced Micro Devices: AMD64 Virtualization Codenamed “Pacifica” Technol-
ogy: Secure Virtual Machine Architecture Reference Manual (2005).

15) Neiger, G., Santoni, A., Leung, F., Rodgers, D. and Uhlig, R.: Intel Virtualization
Technology: Hardware Support for Efficient Processor Virtualization, Intel Tech-
nology Journal, Vol.10, Issue 3, pp.167–177 (2006).

16) Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I. and Warfield, A.: Xen and the art of virtualization, Proc. ACM Symposium
on Operating Systems Principles, pp.164–177 (2003).

17) Adams, K. and Agesen, O.: A comparison of software and hardware techniques for
x86 virtualization, ASPLOS-XII: Proc. 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, New York, NY,
USA, pp.2–13, ACM (2006).

18) Qumranet Inc.: KVM—Kernel-based Virtualization Machine,
http://www.qumranet.com/files/white papers/KVM Whitepaper.pdf.

19) Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A. and Williamson, M.:
Safe hardware access with the Xen virtual machine monitor, Proc. 1st Workshop on
Operating System and Architectural Support for the on demand IT InfraStructure
(OASIS) (2004).

20) Kim, K., Kim, C., Jung, S.-I., Shin, H.-S. and Kim, J.-S.: Inter-domain socket
communications supporting high performance and full binary compatibility on Xen,
VEE ’08: Proc. fourth ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, pp.11–20, ACM (2008).

21) Huang, W., Koop, M.J. and Panda, D.K.: Efficient one-copy MPI shared mem-
ory communication in Virtual Machines, 2008 IEEE International Conference on
Cluster Computing, pp.107–115 (2008).

22) Liu, J., Huang, W., Abali, B. and Panda, D.K.: High performance VMM-Bypass
I/O in virtual machines, Proc. USENIX 2006 Annual Technical Conference, pp.29–

42 (2006).
23) Bershad, B.N., Anderson, T.E., Lazowska, E.D. and Levy, H.M.: Lightweight re-

mote procedure call, ACM Trans. Comput. Syst., Vol.8, No.1, pp.37–55 (1990).
24) Tzou, S.-Y. and Anderson, D.P.: The Performance of Message-passing using Re-

stricted Virtual Memory Remapping, Software—Practice And Experience, Vol.21,
No.3, pp.251–267 (1991).

25) Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S. and Wolter, J.: The Perfor-
mance of µ-Kernel-Based Systems, 16th ACM Symposium on Operating Systems
Principles (SOSP ’97) (1997).

26) Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A. and Peterson, L.: Container-
based operating system virtualization: A scalable, high-performance alternative to
hypervisors, EuroSys ’07: Proc. 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, New York, NY, USA, pp.275–287, ACM (2007).

27) OpenVZ Development Team: OpenVZ, http://wiki.openvz.org/.
28) Lowell, D.E., Saito, Y. and Samberg, E.J.: Devirtualizable virtual machines en-

abling general, single-node, online maintenance, Proc. 11th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pp.211–223 (2004).

29) Tabuchi, M., Itoh, K., Nomura, Y. and Taniguchi, H.: Design and Evaluation of a
System for Running Two Linuxes Coexistently, IECIE Trans. Inf. Syst. (Japanese
Edition), Vol.J88-D1, No.2, pp.251–262 (2005).

30) Wickizer, S.B., Chen, H., Chen, R., Mao, Y., Kaashoek, F., Morris, R., Pesterev,
A., Stein, L., Wu, M., Dai, Y., Zhang, Y. and Zhang, Z.: Corey: An operating system
for many cores, Proc. 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’08), pp.43–57 (2008).

31) Schüpbach, A., Peter, S., Baumann, A., Roscoe, T., Barham, P., Harris, T. and
Isaccs, R.: Embracing diversity in the Barrelfish manycore operating system, Work-
shop on Managed Multi-core Systems (MMCS 08) (2008).

32) Muir, S. and Smith, J.: AsyMOS—an asymmetric multiprocessor operating sys-
tem, Proc. Open Architectures and Network Programming, pp.25–34 (1998).

33) Muir, S. and Smith, J.: Functional divisions in the Piglet multiprocessor operating
system, Proc. 8th ACM SIGOPS European Workshop on Support for Composing
Distributed Applications, pp.255–260 (1998).

34) Sun, J., Zhou, D. and Longerbeam, S.: Supporting Multiple OSes with OS Switch-
ing, USENIX Annual Technical Conference, pp.357–362 (2007).

35) coresystems: coreboot, http://www.coreboot.org/.
36) Agnew, A., Sulmicki, A., Minnich, R. and Arbaugh, W.: Flexibility in ROM: A

Stackable Open Source BIOS (2003).
37) Minnich, R.G.: Give your bootstrap the boot: Using the operating system to boot

the operating system, CLUSTER ’04: Proc. 2004 IEEE International Conference
on Cluster Computing, Washington, DC, USA, pp.439–448, IEEE Computer Society

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

82 Inter-kernel Communication between Multiple Kernels on Multicore Machines

(2004).
38) Gates, M., Tirumala, A., Ferguson, J., Dugan, J., Qin, F., Gibbs, K. and

Estabrook, J.: iperf Project Page, http://sourceforge.net/projects/iperf.
39) Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J. and Zwaenepoel, W.: Di-

agnosing performance overheads in the xen virtual machine environment, VEE ’05:
Proc. 1st ACM/USENIX International Conference on Virtual Execution Environ-
ments, New York, NY, USA, pp.13–23, ACM (2005).

40) Menon, A., Cox, A.L. and Zwaenepoel, W.: Optimizing network virtualization in
Xen, Proc. USENIX 2006 Annual Technical Conference, pp.15–28 (2006).

41) Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M. and Zeidner, E.: Internet
Small Computer Systems Interface (iSCSI), RFC 3720.

42) Callaghan, B., Pawlowski, B. and Pawlowski, B.: NFS Version 3 Protocol Specifi-
cation, Network Working Group RFC 1813 (1995). http://www.ietf.org/rfc/
rfc1813.txt.

43) Standard Performance Evaluation Corporation: SPEC CINT2006 Benchmarks,
http://www.spec.org/cpu2006/CINT2006/.

44) The Apache Software Foundation: ab—Apache HTTP server benchmarking tool,
http://httpd.apache.org/docs/2.2/programs/ab.html.

(Received May 11, 2009)
(Accepted September 7, 2009)

Taku Shimosawa received his B.S. and Master of Information
Science and Technology degrees from the University of Tokyo in
2007 and 2009, respectively. He is currently a Ph.D. candidate
of Graduate School of Information Science and Technology, the
University of Tokyo. His interests include operating systems on
multicore machines and system software.

Yutaka Ishikawa is a professor of the University of Tokyo,
Japan. Ishikawa received his B.S., M.S., and Ph.D. degrees in
electrical engineering from Keio University. From 1987 to 2001,
he was a member of AIST (former Electrotechnical Laboratory),
METI. From 1993 to 2001, he was the chief of Parallel and Dis-
tributed System Software Laboratory at Real World Computing
Partnership. His interests include the next generation supercom-

puter, cluster technologies, dependable parallel and distributed systems.

IPSJ Transactions on Advanced Computing Systems Vol. 2 No. 4 64–82 (Dec. 2009) c© 2009 Information Processing Society of Japan

