
IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009)

Regular Paper

Learning of Finite Unions of Tree Patterns with

Repeated Internal Structured Variables from Queries

Satoshi Matsumoto,†1 Yusuke Suzuki,†2

Takayoshi Shoudai,†3 Tetsuhiro Miyahara†2

and Tomoyuki Uchida†2

The exact learning model by Angluin (1988) is a mathematical model of learn-
ing via queries in computational learning theory. A term tree is a tree pattern
consisting of ordered tree structures and repeated structured variables, which
occur more than once. Thus, a term tree is suited for representing common tree
structures based on tree-structured data, such as HTML and XML files on the
Web. In this paper, we consider the learnability of finite unions of term trees
with repeated variables in the exact learning model. We present polynomial
time learning algorithms for finite unions of term trees with repeated variables
by using superset and restricted equivalence queries. Moreover, we show that
there exists no polynomial time learning algorithm for finite unions of term
trees by using restricted equivalence, membership, and subset queries. This
result indicates the hardness of learning finite unions of term trees in the exact
learning model.

1. Introduction

In the field of Web mining, Web documents such as HTML and XML files
have tree structures and are called tree-structured data. To extract meaningful
knowledge from given data, many data mining tools require collaboration with
experts or users in mining processes. Many such tools have been designed in a
query learning scheme. This learning scheme is formulated as the exact learn-
ing model by Angluin 4), which is a mathematical model of learning via queries,
in computational learning theory. We are interested in clustering heterogeneous
tree-structured data having no rigid structure. From this motivations, in this pa-

†1 Tokai University
†2 Hiroshima City University
†3 Kyushu University

per, we consider polynomial time learnabilities of finite unions of tree-structured
patterns in the exact learning model.

A term tree is a rooted tree pattern consisting of an ordered tree structure,
ordered children, and internal structured variables 10),11),13). A variable in a term
tree is a list of two vertices, and it can be substituted by an arbitrary tree. Amoth,
et al. 1),2) presented into-matching semantics and introduced the class of ordered
tree patterns and ordered forests with this semantics. Such an ordered tree
pattern is a standard tree pattern, which is also called a first order term in formal
logic. Since a term tree can have variables consisting of two internal vertices (e.g.,
the variable x2 in Fig. 1), a term tree is more powerful than an ordered tree
pattern. Arimura, et al. 6) presented ordered gapped tree patterns and ordered
gapped forests under the into-matching semantics introduced by Amoth, et al. 2).
An ordered gapped tree pattern is not comparable to a term tree, since a gap-
variable in an ordered gapped tree pattern does not exactly correspond to an
internal variable in a term tree. A variable with a variable label x in a term tree
t is said to be repeated if x occurs in t more than once. In this paper, we consider
a term tree with repeated variables. Arimura, et al. 6) discussed polynomial time
learnabilities of ordered gapped forests without a repeated gap-variable in the
exact learning model. In this paper, on the other hand, we examine polynomial
time learnabilities of finite unions of term trees with repeated variables in the
exact learning model. For a tree T representing tree-structured data, such as a
collection of Web documents, string data such as tags or texts are assigned to
the edges of T . Hence, we assume naturally that the cardinality of a set of edge
labels is infinite. Let Λ be a set of strings used in tree-structured data. Then, our
target class for learning is the class, denoted by OTFΛ, of all finite sets of term
trees whose edges are all labeled with elements in Λ. The term tree language of
a term tree t, denoted by LΛ(t), is the set of all labeled ordered trees that are
obtained from t by substituting arbitrary labeled trees for all variables in t. The
language represented by a finite set of term trees R = {t1, t2, . . . , tm} in OTFΛ is
the finite union of m term tree languages LΛ(R) = LΛ(t1)∪LΛ(t2)∪ . . .∪LΛ(tm).

In the exact learning model by Angluin 4), a learning algorithm is said to exactly
learn a target finite set R∗ of term trees if it outputs a finite set R of term trees
such that LΛ(R) = LΛ(R∗) and halts, after using some queries. In this paper,

127 c© 2009 Information Processing Society of Japan

128 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

t T

s g1 g2 g3 g4

Fig. 1 A term tree t corresponding to a tree T . A term tree s represents the tree pattern
f(b, x, g(a, z), y). A variable is represented by a box with lines to its elements. The
label inside the box is the variable’s label.

first, we present a polynomial time algorithm that exactly learns any finite set
in OTFΛ having m∗ term trees by using superset queries for a known number
m∗. Second, we present a polynomial time algorithm for the same condition
given above, except that the number of term trees in a set in OTFΛ is unknown
and restricted equivalence queries are used. Finally, we show that there exists
no polynomial time learning algorithm for finite unions of term trees by using
restricted equivalence, membership, and subset queries. This result indicates the
hardness of learning finite unions of term trees in the exact learning model.

For the exact learning model, many researchers 1),2),5),6),10),11) have shown the
exact learnabilities of several kinds of tree-structured patterns: e.g., query learn-
ing for ordered forests under onto-matching semantics 5), for unordered forests
under into-matching semantics 1),2), for ordered gapped forests 6), and for linear
term trees 10). A term tree t is said to be linear (or repetition-free) if all vari-
able labels in t are mutually distinct. We showed the polynomial time exact

Table 1 Summary of our previous results and future works. We denote the class of single
linear term trees by µOTTΛ, and the class of all finite unions of linear term trees by
µOTFΛ.

Exact learning
Inductive inference
from positive data

µOTTΛ

Yes 10)

membership & a positive example
(|Λ| ≥ 2)

Yes 13)

polynomial time
(|Λ| ≥ 1)

µOTFΛ

Yes 11)

restricted subset & equivalence
(|Λ| is infinite)

Open

sufficient insufficient

[This work] [This work]

superset & restricted equivalence
OTFΛ restricted membership Open

equivalence subset
(|Λ| is infinite) (|Λ| ≥ 1)

learnability of finite unions of linear term trees by using restricted subset queries
and equivalence queries 11). For string patterns, we showed that regular string
patterns are exactly learnable by using membership queries and additional in-
formation 9). As for other learning models, we showed that the class of single
linear term trees is polynomial time inductively inferable from positive data 13).
Further, we gave a data mining method based on semi-structured data, which
was based on a learning algorithm for linear term trees 12). Table 1 summarizes
our results.

This paper is organized as follows. In Section 2, we introduce some notations
and basic definitions concerning term trees and term tree languages. In Section 3,
we briefly explain the exact learning model using queries. In Section 4, we show
that any finite union of languages defined by term trees is exactly identifiable
in polynomial time by using superset queries and restricted equivalence queries.
Finally, in Section 5, we show that finite sets of term trees are not learnable in
polynomial time by using restricted equivalence, membership, and subset queries,
before concluding the paper in Section 6.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

129 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

2. Preliminaries

For a set S, the number of elements in S, called the size of S, is denoted by
|S|. Let X be an infinite alphabet whose elements is called variable labels, and
let Λ be an alphabet such that Λ∩X = ∅. We call an element in Λ an edge label,
and in this paper, we assume that |Λ| is infinite.
Definition 1. Let T = (VT , ET) be an edge-labeled rooted tree with a set VT

of vertices and a set ET of edges labeled with elements in Λ ∪ X. Let Ht be the
set of all edges in ET whose labels are in X. Let Vt = VT and Et = ET − Ht

(i.e., Et ∪ Ht = ET and Et ∩ Ht = ∅). A triplet t = (Vt, Et,Ht) is called a term
tree, and an element in Vt, Et, and Ht is called a vertex, an edge, and a variable,
respectively.

For a term tree t = (Vt, Et,Ht) and its vertices v1 and vi, a path from v1 to
vi is a sequence v1, v2, . . . , vi of distinct vertices of t such that for any j with
1 ≤ j < i, there exists either an edge or a variable consisting of vj and vj+1. If
there is an edge consisting of v and v′ such that v lies on the path from the root
to v′, then v is said to be the parent of v′, and v′ is a child of v. We denote by
(v, v′) the edge in Et. If there is a variable consisting of v and v′ such that v lies
on the path from the root to v′, then v is said to be the parent port of v′, and
v′ is a child port of v. We denote by [v, v′] the variable in Ht. A term tree t is
called ordered if every internal vertex u in t has a total ordering on all children
of u. We define the size of t as the number of vertices in t and denote it by |t|;
that is, |t| = |Vt|.

For example, the ordered term tree t = (Vt, Et,Ht) in Fig. 1 is defined as follows:
Vt = {v1, . . . , v11}, Et = {(v1, v2), (v2, v3), (v1, v4), (v7, v8), (v1, v10), (v10, v11)},
with root v1 and the sibling relation displayed in Fig. 1. Ht = {[v4, v5], [v1, v6],
[v6, v7], [v6, v9]}.

We call an ordered term tree simply a term tree. In particular, a term tree
t = (Vt, Et,Ht) is linear if all variables in Ht have mutually distinct variable
labels in X. We denote by OTTΛ the set of all term trees with Λ as the set of
edge labels, and by OTFΛ, the set of all finite sets of term trees with Λ as the
set of edge labels; that is, OTFΛ = {S ⊂ OTTΛ | |S| is finite}. Similarly, we
denote by μOTTΛ the set of all linear term trees with Λ as the set of edge labels,

and by μOTFΛ, the set of all finite sets of linear term trees with Λ as the set of
edge labels; that is, μOTFΛ = {S ⊂ μOTTΛ | |S| is finite}. A term tree with no
variable is called a ground term tree and considered a tree with ordered children.
OT Λ denotes the set of all ground term trees with Λ as the set of edge labels.

For any term tree t, a vertex u of t, and two children u′ and u′′ of u, we
write u′ <t

u u′′ if u′ is of lower order than u′′ among the children of u. Let
f = (Vf , Ef ,Hf) and g = (Vg, Eg,Hg) be term trees. We say that f and g are
isomorphic, denoted by f ≡ g, if there is a bijection ϕ from Vf to Vg such that
(i) the root of f is mapped to the root of g by ϕ, (ii) (u, u′) ∈ Ef if and only if
(ϕ(u), ϕ(u′)) ∈ Eg and the two edges have the same edge label, (iii) [u, u′] ∈ Hf

if and only if [ϕ(u), ϕ(u′)] ∈ Hg, (iv) for any two variables [u, u′] and [v, v′] in
Hf , the variable label of [u, u′] is equal to that of [v, v′] if and only if the variable
label of [ϕ(u), ϕ(u′)] is equal to that of [ϕ(v), ϕ(v′)], and (v) for any vertex u in
f having more than one child, and for any two children u′ and u′′ of u, u′ <f

u u′′

if and only if ϕ(u′) <g
ϕ(u) ϕ(u′′). Two isomorphic term trees are considered

identical.
Let f and g be term trees with at least two vertices. Let h = [v, v′] be a variable

in f with the variable label x, and let σ = [u, u′] be a list of two distinct vertices
in g, where u is the root of g and u′ is a leaf of g. The form x := [g, σ] is called
a binding for x. A new term tree f ′ = f{x := [g, σ]} is obtained by applying the
binding x := [g, σ] to f in the following way. Let e1 = [v1, v

′
1], . . . , em = [vm, v′

m]
be the variables in f with the variable label x. Let g1, . . . , gm be m copies of g,
and let ui, u

′
i be the vertices of gi corresponding to u, u′ of g, respectively. For

each variable ei = [vi, v
′
i], we attach gi to f by removing the variable ei from Hf

and identifying the vertices vi, v
′
i with the vertices ui, u

′
i of gi.

A substitution θ is a finite collection of bindings {x1 := [g1, σ1], · · ·, xn :=
[gn, σn]}, where the x1, . . . , xn are mutually distinct variable labels in X. The
term tree fθ, called the instance of f by θ, is obtained by applying all the bindings
xi := [gi, σi] on f simultaneously. We define a new total ordering <fθ

v on every
vertex v in fθ in the following natural way. Suppose that v has more than one
child, and let v′ and v′′ be two children of v in fθ. There are five cases in which
the ordering between v′ and v′′ must be newly defined. (1) v ∈ Vfθ − Vf : In this
case, there is a term tree g ∈ {g1, · · · , gn} such that all of v, v′, v′′ are in Vg. Then

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

130 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

f g1 g2

Fig. 2 The new ordering of vertices in the linear term tree
f ′ = f{x := [g1, [u1, u′

1]], y := [g2, [u2, u′
2]]}.

v′ <fθ
v v′′ is defined if and only if v′ <g

v v′′. On the other hand, if v ∈ Vf , we
have the following four subcases. (2) v′ ∈ Vf and v′′ ∈ Vf : v′ <fθ

v v′′ is defined
if and only if v′ <f

v v′′. (3) v′ ∈ Vf and there is a term tree g ∈ {g1, · · · , gn} such
that v′′ ∈ Vg: Let w be the child port of the variable for which g is substituted.
Note that v is the parent port of the variable. Then v′ <fθ

v v′′ (resp. v′′ <fθ
v v′)

is defined if and only if v′ <f
v w (resp. w <f

v v′). (4) There is a term tree
g ∈ {g1, · · · , gn} such that both v′ and v′′ are in Vg: Since v is identified with
the root of g (say u), v′ <fθ

v v′′ is defined if and only if v′ <g
u v′′. (5) There are

two distinct term trees g, g′ ∈ {g1, · · · , gn} such that v′ ∈ Vg and v′′ ∈ Vg′ : Let
w and w′ be the child ports of the variables for which g and g′ are substituted,
respectively. Then v′ <fθ

v v′′ is defined if and only if w <f
v w′. In Fig. 2, we give

an example of the new ordering of vertices in a term tree.
We define the root of the resulting term tree fθ as the root of f . Consider

the examples shown in Fig. 1. An example of a term tree t is given. Let θ =
{x1 := [g1, [u1, w1]], x2 := [g2, [u2, w2]], x3 := [g3, [u3, w3]], x4 := [g4, [u4, w4]]} be
a substitution, where g1, g2, g3, and g4 are the ground term trees in Fig. 1. Then

the instance tθ of the term tree t by θ is isomorphic to the tree T in Fig. 1. Let
t and t′ be term trees. We write t 	 t′ if there exists a substitution θ such that
t ≡ t′θ. If t 	 t′ and t
≡ t′, then we write t ≺ t′. The term tree language LΛ(t)
of a term tree t ∈ OTTΛ is {s ∈ OT Λ | s 	 t}. For a set H of term trees, we
define LΛ(H) =

⋃
t∈H LΛ(t), and LΛ(H) is called the term tree language defined

by H. In particular, we define LΛ(∅) = ∅.

3. Learning Model

In this paper, let R∗ be a set of term trees in OTFΛ to be identified, which
we refer to as a target. Without loss of generality, we assume that LΛ(R∗)
=
LΛ(R∗ − {r}) for any r ∈ R∗.

We introduce the exact learning model via queries by Angluin 4). In this model,
learning algorithms can access oracles that answer specific kinds of queries about
the unknown term tree language LΛ(R∗). We consider the following queries.
(1) Membership query : The input is a ground term tree T in OT Λ. The output

is “yes” if T ∈ LΛ(R∗), and “no” otherwise. The oracle that answers a
membership query is called a membership oracle.

(2) Subset query : The input is a set R in OTFΛ. The output is “yes” if
LΛ(R) ⊆ LΛ(R∗); otherwise, the output is a ground term tree, called a
counterexample, in LΛ(R) − LΛ(R∗). The oracle that answers a subset

query is called a subset oracle.
(3) Superset query : The input is a set R in OTFΛ. The output is “yes” if

LΛ(R∗) ⊆ LΛ(R); otherwise, the output is a ground term tree, called a
counterexample, in LΛ(R∗) − LΛ(R). The oracle that answers a superset

query is called a superset oracle.
(4) Restricted equivalence query : The input is a set R in OTFΛ. The output

is “yes” if LΛ(R) = LΛ(R∗), and “no” otherwise. The oracle that answers
a restricted equivalence query is called a restricted equivalence oracle.

A learning algorithm A collects information about LΛ(R∗) by using queries and
outputs a set R in OTFΛ. We say that a learning algorithm A exactly identifies
a target R∗ in polynomial time by using certain kinds of queries if A halts in
polynomial time and outputs a set R ∈ OTFΛ, such that LΛ(R) = LΛ(R∗), by
using the certain kinds of queries.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

131 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

4. Learning Finite Unions of Term Tree Languages

In this section, we show the learnability of finite unions of term tree languages
in the framework of the exact learning model.

4.1 An Overview of Our Learning Algorithms
The property shown by the following lemma, called compactness, plays an

important role in the learning of unions of languages 6),7). We remark that |Λ| is
infinite, again.
Lemma 1. Let r be a term tree in OTTΛ and R a set in OTFΛ. Then, r 	 r′ for
some r′ ∈ R if and only if LΛ(r) ⊆ LΛ(R).
Proof. From the definition of the binary relation 	, only if part is clear. Let
wr be a ground term tree obtained from r by substituting edges having mutually
distinct labels not appearing in R. If LΛ(r) ⊆ LΛ(R) then wr is in LΛ(R).
Therefore, there exists a term tree r′ in R such that wr is in LΛ(r′). Since any
edge of wr whose label doesn’t appear in R, we have r 	 r′ by inverting the
substitution. �

If |Λ| is finite, Lemma 1 does not hold because of an example violating the
property of compactness as follows: For Λ = {a1, . . . , ak} (k ≥ 1) and linear term
trees f, g1, . . . , gk+2 given in Fig. 3, the equation LΛ(f) = LΛ(g1)∪· · ·∪LΛ(gk+2)
holds, but LΛ(f)
⊆ LΛ(gi) for all i (1 ≤ i ≤ k + 2).

We introduce some notations. For a term tree r in OTTΛ, we define R∗(r) =
{r∗ ∈ R∗ | |r| = |r∗| and r∗ ≺ r}. For linear term trees r, r′, we write r � r′ if
r′ is obtained from r by replacing one of the variables in r with one of the three
linear term trees g1, g2, g3 given in Fig. 4. For a linear term tree r in μOTTΛ, let
ES(r) = {r′ ∈ μOTTΛ | r � r′}. Note that |r′| > |r| and r′ ≺ r for any r′ ∈ ES(r),
and |ES(r)| ≤ 3(|r| − 1). If r has variables, then LΛ(ES(r)) includes all ground
term trees t such that t 	 r and |t| > |r| hold.

Let r be a term tree in OTTΛ, α an edge label, and x, y variable labels appearing
in r. We denote by Xr the set of all variable labels appearing in r. ρe(r, x, α)
denotes the term tree obtained from r by replacing variables having the variable
label x with edges having the edge label α. ρv(r, x, y) denotes the term tree
obtained from r by replacing variables having the variable label x with variables
having the variable label y. For a finite subset Δ of Λ, we define the set RSΔ(r)

. . .

f g1 gk gk+1 gk+2

Fig. 3 An example violating the property compactness.

g1 g2 g3

Fig. 4 Linear term trees g1 = ({u, v, w}, ∅, {[u, w], [w, v]}), g2 = ({u, v, w}, ∅, {[u, w], [u, v]})
where w <g2

u v and g3 = ({u, v, w}, ∅, {[u, v], [u, w]}) where v <g3
u w.

as follows:
RSΔ(r) = {ρe(r, x, α) ∈ OTTΛ | x ∈ Xr and α is an edge label in Δ}

∪ {ρv(r, x, y) ∈ OTTΛ | x, y ∈ Xr, x and y are different}
Since r′ ≺ r and |r′| = |r| for any r′ ∈ RSΔ(r), we have r
∈ RSΔ(r). The number
of non-isomorphic term trees in RSΔ(r) is at most |r| · |Δ| + |r|2. If t ∈ OT Λ,
then we define RSΔ(t) = ∅.

In this paper, we consider two cases: the size of R∗ is either known or unknown
in advance. Let |R∗| = m∗. In case that the size of R∗ is known in advance,
we present Algorithm LEARN KNOWN given in Fig. 5 which exactly identifies
any set R∗ ∈ OTFΛ in polynomial time by using superset queries when the size
m∗ of R∗ is given as an input. Algorithm LEARN KNOWN starts with a term
tree consisting of only one variable. By recursively replacing a variable with
a term tree consisting of two variables, Algorithm LEARN KNOWN generates
a set of linear term trees r = (Vr, Er,Hr) such that Er = ∅, |r| = |r∗|, and
r∗ 	 r for some r∗ ∈ R∗. Next, in Algorithm LEARN KNOWN, for each linear
term tree r in the resultant set, Algorithm LEARN OTT given in Fig. 6 changes
variable labels with other variable labels, or replaces variables with edges. Finally,

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

132 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

Algorithm LEARN KNOWN
Input : A positive integer m∗;
Output : A set Rhypo ∈ OTFΛ with LΛ(Rhypo) = LΛ(R∗);
begin
1. Let Rhypo := ∅;
2. if SupR∗(Rhypo) = “yes” then output Rhypo;
3. else begin
4. Let r = ({u, v}, ∅, {[u, v]}) ∈ μOTTΛ; Rhypo := Rnocheck := {r};
5. while Rnocheck �= ∅ do begin
6. EStotal := ∅;
7. foreach r ∈ Rnocheck do begin
8. if SupR∗((Rhypo − {r}) ∪ ES(r)) = “yes” then begin
9. (Rhypo, EStmp) := REMOV E(Rhypo, r);
10 end
11. else begin
12. R′ := LEARN OTT(m,(Rhypo − {r}) ∪ ES(r),r);
13. (Rhypo, EStmp) := REMOV E(Rhypo ∪ R′, r);
14. end;
15. EStotal := EStotal ∪ EStmp;
16. end;
17. Rnocheck := EStotal;
18. end;
19. end;
20. output Rhypo;
end.

Fig. 5 Algorithm LEARN KNOWN . We denote a superset query by SupR∗ .

Algorithm LEARN KNOWN finds a set Rhypo of term trees with LΛ(Rhypo) =
LΛ(R∗).

In case that the size of R∗ is unknown in advance, we present Algorithm
LEARN OTF in Fig. 8 which outputs a set R ∈ OTFΛ with LΛ(R) = LΛ(R∗) by
using Algorithm LEARN KNOWN and restricted equivalence queries.

4.2 The Correctness of Algorithm LEARN OTT

At first, in case that the size of R∗ is known in advance, we show that Algo-
rithm LEARN KNOWN exactly identifies any set R∗ ∈ OTFΛ by using superset
queries. In Algorithm LEARN KNOWN, we use Algorithm LEARN OTT and
Algorithm REMOVE in Fig. 7. Lemma 2 ensures that Algorithm LEARN OTT

Algorithm LEARN OTT
Given: a positive integer m, a set Rin in OTFΛ and a term tree rin in OTTΛ

such that LΛ(R∗) ⊆ LΛ(Rin ∪ {rin}) and LΛ(R∗) �⊆ LΛ(Rin);
Output : A set S in OTFΛ;
begin
1. S := ∅;
2. if rin ∈ OT Λ then S := {rin}
3. else begin
4. Let n := 0;
5. Let t be a counterexample given by SupR∗(Rin);
6. Let Xrin be the set of all variable labels in rin

7. Let Δ be the set of all edge labels in t;
8. while SupR∗(Rin ∪RSΔ(rin)) �= “yes” and n ≤ m do begin
9. Let t′ be a counterexample and Δ′ the set of all edge labels in t′;
10. Δ := Δ ∪ Δ′; n := n + 1;
11. end;
12. if n > m then S := {rin}
13. else begin
14. foreach r ∈ RSΔ(rin) do /* Remove redundant term trees in RSΔ(rin). */
15. if SupR∗(Rin ∪ (RSΔ(rin) − {r})) = “yes” then
16. RSΔ(rin) := RSΔ(rin) − {r};
17. RStmp := RSΔ(rin);
18. foreach r ∈ RSΔ(rin) do begin
19. RStmp := RStmp − {r};
20. S′ := LEARN OTT(m, Rin ∪ RStmp ∪ S, r); S := S ∪ S′;
21. end;
22. end;
23. end;
24. output S;
end.

Fig. 6 Algorithm LEARN OTT. We denote by SupR∗ Superset query.

takes as input a term tree r such that r∗ 	 r and |r∗| = |r| for some r∗ ∈ R∗.
Lemmas 3 and 4 ensures that Algorithm LEARN OTT outputs the set R∗(r)
finally.
Lemma 2. Let R be a set in μOTFΛ, r a term tree in R, and R′ a set in OTFΛ.
If LΛ(R′) ⊆ LΛ(R) and LΛ(R′)
⊆ LΛ(R − {r}) ∪ LΛ(ES(r)), then there exists a
term tree r′ ∈ R′ such that r′ 	 r and |r′| = |r|.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

133 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

Algorithm REMOVE
Input : A set R ∈ OTFΛ and a term tree r ∈ R;
Output : a pair (H, S) of sets in OTFΛ;
begin
1. H := R − {r} ∪ ES(r); S := ES(r);
2. foreach r′ ∈ ES(r) do begin
3. if SupR∗(H − {r′}) = “yes” then begin
4. H := H − {r′}; S := S − {r′}
5. end;
6. end;
7. output (H, S);
end.

Fig. 7 Algorithm REMOVE. We denote by SupR∗ Superset query.

Proof. Let rc be a ground term tree in LΛ(R′) − (LΛ(R − {r}) ∪ LΛ(ES(r))).
Since rc ∈ LΛ(R′), there exists a term tree r′ in R′ such that rc ∈ LΛ(r′). We
assume r′
	 r. By Lemma 1 and LΛ(r′) ⊆ LΛ(R′) ⊆ LΛ(R), there exists a term
tree r′′ in R such that r′ 	 r′′. Then, rc ∈ LΛ(r′) ⊆ LΛ(r′′) ⊆ LΛ(R − {r}).
This is a contradiction, so we must have r′ 	 r. Since r′ 	 r, it is clear that
|r′| ≥ |r|. Next, we assume |r′| > |r|. Then, rc ∈ LΛ(r′) ⊆ LΛ(ES(r)). This is a
contradiction, and thus, we must have |r′| = |r|. �

By Lemma 2, if the answer for SupR∗((Rhypo −{r})∪ ES(r)) in line 8 of Algo-
rithm LEARN KNOWN is “no”, then r satisfies r∗ 	 r and |r∗| = |r| for some
r∗ ∈ R∗.

We denote by rin and Rin a term tree and a set of term trees, respectively, which
are inputs of Algorithm LEARN OTT. By Lemma 2, Algorithm LEARN OTT

always takes as input a term tree rin such that r∗ 	 rin and |r∗| = |rin| for some
r∗ ∈ R∗. We have two cases for rin: (1) There exists a term tree r∗ ∈ R∗ with
rin ≡ r∗. (2) There exist term trees r∗ ∈ R∗ with r∗ ≺ rin and |r∗| = |rin|. For
case (1), Lemma 3 ensures that Algorithm LEARN OTT repeats the while-loop
in lines 8-11 more than m times. Algorithm LEARN OTT outputs the term tree
rin. For case (2), Lemma 4 ensures that Algorithm LEARN OTT repeats the
while-loop in lines 8-11 less than m + 1 times. Algorithm LEARN OTT calls
itself recursively and gives a term tree r with |r| = |rin| and r ≺ rin. Note that
LΛ(R∗) ⊆ LΛ(Rin ∪ {rin}) and LΛ(R∗)
⊆ LΛ(Rin). Thus, rin is not included in

Rin.
In Algorithm LEARN OTT, let t

′
1, t

′
2, . . ., t

′
n, . . . and Δ1, Δ2, . . ., Δn,. . .

(n ≥ 1) be the sequence of counterexamples returned by the superset queries in
line 8 and the sequence of finite subsets of Λ obtained in line 10, respectively. Let
Δ0 be the finite subset of Δ obtained in line 7. We suppose that at each stage
n ≥ 0, Algorithm LEARN OTT makes a superset query SupR∗(Rin∪RSΔn

(rin))
and receives a counterexample tn+1 to the query.

First, we consider the case (1), that is, there exists a term tree rin ≡ r∗ for
some r∗ ∈ R∗.
Lemma 3. If rin ≡ r∗ for some r∗ ∈ R∗, then LΛ(R∗)
⊆ LΛ(Rin ∪ RSΔn

(rin))
for any n ≥ 0.
Proof. If rin has no variable, then rin ∈ OT Λ. Thus RSΔ(rin) = ∅. Moreover,
we have LΛ(R∗)
⊆ LΛ(Rin). Then we have LΛ(R∗)
⊆ LΛ(Rin ∪RSΔn

(rin)).
We thus assume that rin has variables. Let D be a finite set of Λ. We assume

LΛ(R∗) ⊆ LΛ(Rin ∪ RSD(rin)). Since rin ≡ r∗ for some r∗ ∈ R∗, we have
LΛ(rin) ⊆ LΛ(R∗) ⊆ LΛ(Rin ∪ RSD(rin)). By Lemma 1, we have two cases:
(i) There exists a term tree r ∈ Rin with rin 	 r. (ii) There exists a term
tree r ∈ RSD(rin) with rin 	 r. For case (i), this contradicts with LΛ(R∗) ⊆
LΛ(Rin ∪ {rin}) and LΛ(R∗)
⊆ LΛ(Rin). For case (ii), by the definition of
RSD(rin) and r ∈ RSD(rin), we have r ≺ rin. This contradicts with rin 	 r.
Therefore, we have LΛ(R∗)
⊆ LΛ(Rin ∪RSΔn

(rin)) for any n ≥ 0. �

By the above lemma, if rin ≡ r∗ for some r∗ ∈ R∗, then the while-loop in
lines 8-11 of Algorithm LEARN OTT is repeated more than m times. Thus,
Algorithm LEARN OTT outputs a term tree in R∗.

Next, we consider the case (2), that is, there exist term trees r∗ ∈ R∗ with
r∗ ≺ rin and |r∗| = |rin|.
Lemma 4. If there exist term trees r∗ ∈ R∗ with r∗ ≺ rin and |r∗| = |rin|,
then there exists a subset S of R∗(rin) such that |S| ≥ n + 1 and LΛ(S) ⊆
LΛ(RSΔn

(rin)) for any n ∈ {1, . . . , � − 1}, where � = |R∗(rin)|.
Proof. The proof is by induction on the number of iterations n ≥ 0 of the
while-loop in lines 8-11 of Algorithm LEARN OTT. In the case of n = 0, let t

be a ground term tree given by SupR∗(Rin) as a counterexample in line 5. Then,
t ∈ LΛ(r′∗) for some r′∗ ∈ R∗(rin). Since Δ0 is the set of edge labels appearing

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

134 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

in t, r′∗ 	 r for some r ∈ RSΔ0(rin). Thus, we have LΛ({r′∗}) ⊆ LΛ(RSΔ0(rin)).
Next, we assume inductively that the result holds for any number of iterations
of the while-loop less than n. By the inductive hypothesis, there exists a subset
S of R∗(rin) such that |S| ≥ n and LΛ(S) ⊆ LΛ(RSΔn−1(rin)). If LΛ(R∗)
⊆
LΛ(Rin ∪ RSΔn−1(rin)), we obtain t

′
n. Since LΛ(S) ⊆ LΛ(RSΔn−1(rin)), there

exists a term tree r′∗ ∈ R∗(rin)−S such that t
′
i ∈ LΛ(r′∗). We have r ∈ RSΔn

(rin)
with r′∗ 	 r. Thus, there exists a subset S′ of R∗(rin) such that |S′| ≥ n + 1 and
LΛ(S′) ⊆ LΛ(RSΔn

(rin)), where S ∪ {r′∗} ⊆ S′. �

By the above lemma, if there exists a term tree r∗ ∈ R∗ such that r∗ ≺ rin

and |r∗| = |rin|, then the while-loop in lines 8-11 of Algorithm LEARN OTT

is repeated less than m + 1 times. Thus, Algorithm LEARN OTT calls itself
recursively. By Lemmas 3 and 4, we have the following theorem.
Theorem 5. Algorithm LEARN OTT correctly outputs the set R∗(r) for an
input term tree r such that r∗ 	 r and |r∗| = |r| for some r∗ ∈ R∗.

4.3 An Algorithm for Reducing a Set of Term Trees
Algorithm REMOVE removes an unnecessary term tree from Rhypo, which is

a term tree r′ such that LΛ(Rhypo − {r′}) = LΛ(R∗) holds, under several condi-
tions for its input. We give two lemmas for showing that Algorithm REMOVE

correctly works in Algorithm LEARN KNOWN . Lemmas 6 and 7 describe the
conditions which correspond to lines 9 and 13 of Algorithm LEARN KNOWN,
respectively.

Let Hi (i ≥ 1) be a set of term trees immediately after the i-th execution of
Algorithm REMOVE.
Lemma 6. Let R be a set in OTFΛ and a term tree r ∈ R such that LΛ(R∗) ⊆
LΛ(R − {r} ∪ ES(r)), LΛ(R∗) ⊆ LΛ(R) and LΛ(R∗)
⊆ LΛ(R − {r′}) for any
r′ ∈ R. Let (H,S) be a pair of sets in OTFΛ output by Algorithm REMOVE

given R and r. Then |H| ≤ |R∗| and LΛ(R∗)
⊆ LΛ(H − {r′}) for any r′ ∈ H.
Proof. By the algorithm, we have LΛ(R∗) ⊆ LΛ(H). We assume that there
exists a term tree s ∈ H such that LΛ(R∗) ⊆ LΛ(H − {s}). We have two cases:
(i) s ∈ ES(r)∩H. (ii) s ∈ (R−{r})∩H. At first, we show the case (i). We assume
that there exists a term tree s ∈ ES(r) ∩ H such that LΛ(R∗) ⊆ LΛ(H − {s}).
Let r

′
1, r

′
2, . . ., r

′
i, . . . be the sequence of term trees in ES(r) used in line 2. Let i0

be the minimum integer which satisfies LΛ(R∗) ⊆ LΛ(H − {r′
i0
}). Since H ⊆ Hi

for any i, LΛ(R∗) ⊆ LΛ(H − {r′
i0
}) ⊆ LΛ(Hi0 − {r′

i0
}). By the algorithm, since

r
′
i0

∈ H, we have LΛ(R∗)
⊆ LΛ(Hi0 − {r′
i0
}). This is a contradiction.

Next, we show the case (ii). We have H1 = R − {r} ∪ ES(r). We assume that
there exists a term tree s ∈ (R−{r})∩H such that LΛ(R∗) ⊆ LΛ(H−{s}). Since
H ⊆ H1 and LΛ(H1) = L(R − {r} ∪ ES(r)) ⊆ LΛ(R), we have LΛ(H) ⊆ LΛ(R).
Thus, LΛ(R∗) ⊆ LΛ(H − {s}) ⊆ LΛ(R − {s}). This contradicts with LΛ(R∗)
⊆
LΛ(R−{r′}) for any r′ ∈ R. Therefore, we have LΛ(R∗)
⊆ LΛ(H −{r′}) for any
r′ ∈ H. Moreover, by LΛ(R∗) ⊆ LΛ(H) and Lemma 1, we have |H| ≤ |R∗|. �

Lemma 7. Let R be a set in OTFΛ and a term tree r ∈ R such that LΛ(R∗)
⊆
LΛ(R − {r} ∪ ES(r)), LΛ(R∗) ⊆ LΛ(R ∪ R∗(r) − {r} ∪ ES(r)) and LΛ(R∗)
⊆
LΛ(R ∪ R∗(r) − {r} ∪ ES(r) − {r′}) for any r′ ∈ R ∪ R∗(r) − {r}. Let (H,S) be
a pair of sets in OTFΛ output by Algorithm REMOVE given R ∪ R∗(r) and r.
Then |H| ≤ |R∗| and LΛ(R∗)
⊆ LΛ(H − {r′}) for any r′ ∈ H.
Proof. By the algorithm, we have LΛ(R∗) ⊆ LΛ(H). We assume that there
exists a term tree s ∈ H such that LΛ(R∗) ⊆ LΛ(H − {s}). We have two cases:
(i) s ∈ ES(r) ∩ H. (ii) s ∈ (R ∪ R∗(r) − {r}) ∩ H. At first, we show the case
(i). We assume that there exists a term tree s ∈ ES(r) ∩ H such that LΛ(R∗) ⊆
LΛ(H−{s}). Let r

′
1, r

′
2, . . ., r

′
i, . . . be the sequence of term trees in ES(r) used in

line 2. Let i0 be the minimum integer which satisfies LΛ(R∗) ⊆ LΛ(H − {r′
i0
}).

By the algorithm, since r
′
i0

∈ H, we have LΛ(R∗)
⊆ LΛ(Hi0 − {r′
i0
}). Since

H ⊆ Hi for any i, LΛ(R∗) ⊆ LΛ(H − {r′
i0
}) ⊆ LΛ(Hi0 − {r′

i0
}). This is a

contradiction.
Next, we show the case (ii). We have H1 = R∪R∗(r)−{r}∪ES(r). We assume

that there exists a term tree s ∈ (R ∪ R∗(r) − {r}) ∩ H such that LΛ(R∗) ⊆
LΛ(H − {s}). Since H ⊆ H1 and LΛ(H1) = L(R ∪ R∗(r) − {r} ∪ ES(r)), we
have LΛ(H) ⊆ LΛ(R ∪ R∗(r) − {r} ∪ ES(r)). Thus, LΛ(R∗) ⊆ LΛ(H − {s}) ⊆
LΛ(R ∪ R∗(r) − {r} ∪ ES(r) − {s}). This contradicts with LΛ(R∗)
⊆ LΛ(R ∪
R∗(r) − {r} ∪ ES(r) − {r′}) for any r′ ∈ R ∪ R∗(r) − {r}. Therefore, we have
LΛ(R∗)
⊆ LΛ(H − {r′}) for any r′ ∈ H. Moreover, by LΛ(R∗) ⊆ LΛ(H) and
Lemma 1, we have |H| ≤ |R∗|. �

4.4 Main Theorem
We show that Algorithm LEARN KNOWN correctly outputs a minimal set of

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

135 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

term trees that is equal to LΛ(R∗) in polynomial time.
Theorem 8. If Algorithm LEARN KNOWN takes an integer m with m ≥ |R∗|
as input, then it exactly identifies a set R∗ ∈ OTFΛ in polynomial time using at
most O(m2n3 + 1) superset queries, where n is the maximum size of term trees
in R∗.
Proof. By Theorem 5 and the process of Algorithm LEARN KNOWN, we
easily see that the algorithm outputs a set of term trees that is equal to LΛ(R∗).
First we show that the output set of Algorithm LEARN KNOWN is a minimal
set of term trees that is equal to LΛ(R∗).

Let Ri
hypo (i ≥ 1) be a hypothesis set in OTFΛ immediately after the i-th

execution of line 7 of Algorithm LEARN KNOWN . We show that LΛ(R∗) ⊆
LΛ(Ri

hypo) and LΛ(R∗)
⊆ LΛ(Ri
hypo − {r}) for any r ∈ Ri

hypo. The proof is by
induction on the number of iterations i ≥ 1. In the case of i = 1, it is clear.
We assume inductively that the result holds for any number less than i. By the
inductive hypothesis, LΛ(R∗) ⊆ LΛ(Ri−1

hypo) and LΛ(R∗)
⊆ LΛ(Ri−1
hypo − {r}) for

any r ∈ Ri−1
hypo. Then we have two cases: (i) LΛ(R∗) ⊆ LΛ(Ri−1

hypo − {r} ∪ ES(r)).
(ii) LΛ(R∗)
⊆ LΛ(Ri−1

hypo −{r}∪ES(r)). For case (i), by Lemma 6, it is clear that
LΛ(R∗) ⊆ LΛ(Ri

hypo) and LΛ(R∗)
⊆ LΛ(Ri
hypo − {r}) for any r ∈ Ri

hypo. For
case (ii), we show that LΛ(R∗)
⊆ LΛ(Ri−1

hypo ∪ R′ − {r} ∪ ES(r) − {r′}) for any
r′ ∈ Ri−1

hypo∪R′−{r}. We assume that there exists a term tree s ∈ Ri−1
hypo∪R′−{r}

such that LΛ(R∗) ⊆ LΛ(Ri−1
hypo ∪ R′ − {r} ∪ ES(r) − {s}). Moreover, we consider

two cases: (ii-1) s ∈ Ri−1
hypo − {r}. (ii-2) s ∈ R′ − {r}. In the case (ii-1), since

r ∈ Ri−1
hypo and t 	 r for any t ∈ R′ ∪ ES(r), we have LΛ(R∗) ⊆ LΛ(Ri−1

hypo − {s}).
This is contradiction. In the case (ii-2), since s ∈ R′ − {r} and LΛ(R∗) ⊆
LΛ(Ri−1

hypo ∪ R′ − {r} ∪ ES(r) − {s}), there exists a term tree t ∈ Ri−1
hypo with

s 	 t. Then, s ≡ t 	 r, s ≺ t 	 r, or s ≺ r 	 t. These follow LΛ(R∗) ⊆
LΛ(Ri−1

hypo − {s}), LΛ(R∗) ⊆ LΛ(Ri−1
hypo − {t}), or LΛ(R∗) ⊆ LΛ(Ri−1

hypo − {r}).
These are contradictions. By Lemma 7, we have LΛ(R∗) ⊆ LΛ(Ri

hypo) and
LΛ(R∗)
⊆ LΛ(Ri

hypo − {r}) for any r ∈ Ri
hypo. Therefore, since Lemma 1,

LΛ(R∗) ⊆ LΛ(Ri
hypo) and LΛ(R∗)
⊆ LΛ(Ri

hypo − {r}) for any i ≥ 1 and any
r ∈ Ri

hypo, we have |Ri
hypo| ≤ |R∗|. From the above, redundant term trees are

not included in Rhypo.
Let ESi

total be a hypothesis set in OTFΛ immediately after the i-th execution

Algorithm LEARN OTF
Output : A set R ∈ OTFΛ with LΛ(R) = LΛ(R∗).
begin

m := 0; R := φ;
repeat
m := m + 1;
R := LEARN KNOWN(m);

until rEquivR∗(R) = “yes”;
output R;

end.

Fig. 8 Algorithm LEARN OTF. We denote a restricted equivalence query by rEquivR∗ .

of line 7 of Algorithm LEARN KNOWN . By the algorithm, we have ESi
total ⊆

Ri
hypo for any i. Thus |ESi

total| ≤ |Ri
hypo| ≤ |R∗| for any i.

In a similar proof to Lemmas 6 and 7, for RStmp in line 17 in Algorithm
LEARN OTT, we can show that |RStmp| ≤ |R∗(rin)| and LΛ(R∗) ⊆ LΛ(Rin ∪
RStmp) and LΛ(R∗)
⊆ LΛ(Rin ∪RStmp −{r′}) for any r′ ∈ RStmp. Thus, in the
foreach-loop in lines 18-21, Algorithm LEARN OTT avoids redundant recursive
calls.

By Lemma 4, the while-loop in lines 8–11 of Algorithm LEARN OTT is re-
peated no more than m times. After removing redundant term trees in RSΔ(rin),
Algorithm LEARN OTT is called recursively. The algorithm is called recursively
at most O(�|rin|) times in all. The while-loop in lines 8–11 is repeated at most
O(m) times. Note that |ti| = |rin| for any i. Thus, in the foreach-loop in lines
14–16, |Δ| ≤ |t1|+ . . .+ |tm| = m|rin|. The loop uses at most O(m|rin|2) superset
queries. The number of superset queries needed to identify the set {r1

∗, . . . , r
�
∗}

is at most O(�m|rin|3). Algorithm LEARN KNOWN uses at most O(|rin|2) su-
perset queries to obtain a term tree rin. Thus, the number of superset queries
the algorithm needs to identify a target R∗ is at most O(m2n3), where n is the
maximum size of term trees in R∗. �

In case that the size of R∗ is unknown in advance, we present Algorithm
LEARN OTF in Fig. 8 which outputs a set R ∈ OTFΛ with LΛ(R) = LΛ(R∗)
using superset queries and restricted equivalence queries.
Theorem 9. Algorithm LEARN OTF of Fig. 8 exactly identifies any set R∗ ∈

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

136 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

OTFΛ in polynomial time using at most O(m3
∗n

3 + 1) superset queries and at
most O(m∗ + 1) restricted equivalence queries, where n is the maximum size of
term trees in R∗.

5. Hardness Result on Learnability

In this section, we show the insufficiency of learning of OTFΛ in the exact
learning model, by using the following lemma. OTFΛ.
Lemma 10. (László Lovász 8)) Let UTn be the number of all rooted unordered
trees with no edge labels, where the size is n. Then, 2n < UTn < 4n, where
n ≥ 6.

We denote by OTn the set of all rooted ordered trees with no edge labels and
the size n. From the above lemma, we have OTn ≥ 2n, where n ≥ 6. By Lemma 7
and Lemma 1 in another paper 4), we have the following Theorem 8.
Theorem 11. Any learning algorithm that exactly identifies all finite sets of
term trees of size n by using restricted equivalence, membership, and subset
queries must make Ω(2n) queries in the worst case, where n ≥ 6 and |Λ| ≥ 1.
Proof. We denote by Sn the class of singleton sets of ground term trees of size
n. The class Sn is a subclass of OTFΛ. For any L and L′ in Sn, L ∩ L′ = φ.
The empty set, however, is included in OTFΛ. Thus, by Lemma 7 and Lemma 1
in another paper 4), any learning algorithm that exactly identifies all finite sets
of term trees of size n by using restricted equivalence, membership, and subset
queries must make Ω(2n) queries in the worst case, even when |Λ| = 1. �

6. Conclusions

We have studied the learnability of OTFΛ in the exact learning model. In
Section 4, we showed that any finite set R∗ ∈ OTFΛ is exactly identifiable by
using at most O(m3

∗n
3) superset queries and at most O(m∗) restricted equivalence

queries, where m∗ = |R∗|, n is the the maximum size of term trees in R∗ and
|Λ| is infinite. In Section 5, we showed that it is hard to exactly identify any
set in OTFΛ efficiently by using restricted equivalence, membership, and subset
queries.

We previously showed the learnabilities of μOTTΛ and μOTFΛ in the exact
learning model 10),11). Suzuki, et al. 13) showed the learnability of μOTTΛ in the

framework of polynomial time inductive inference from positive data 3). Thus, we
will study the learnabilities of μOTFΛ and OTFΛ in the same framework. Table 1
summarizes our results and future works.

References

1) Amoth, T.R., Cull, P. and Tadepalli, P.: Exact learning of tree patterns from
queries and counterexamples, Proc. 11th Annual Workshop on Computational
Learning Theory, pp.175–186 (1998).

2) Amoth, T.R., Cull, P. and Tadepalli, P.: Exact learning of unordered tree patterns
from queries, Proc. 12th Annual Workshop on Computational Learning Theory,
pp.323–332 (1999).

3) Angluin, D.: Finding pattern common to a set of strings, J. Comput. Syst. Sci.,
Vol.21, pp.46–62 (1980).

4) Angluin, D.: Queries and concept learning, Machine Learning, Vol.2, pp.319–342
(1988).

5) Arimura, H., Ishizaka, H. and Shinohara, T.: Learning unions of tree patterns
using queries, Theoretical Computer Science, Vol.185, No.1, pp.47–62 (1997).

6) Arimura, H., Sakamoto, H. and Arikawa, S.: Efficient learning of semi-structured
data from queries, Proc. 12th Workshop on Algorithmic Learning Theory, Lecture
Notes in Artificial Intelligence, Vol.2225, pp.315–331 (2001).

7) Arimura, H., Shinohara, T. and Otsuki, S.: Polynomial time algorithm for finding
finite unions of tree pattern languages, Proc. 2nd International Workshop on Non-
monotonic and Inductive Inference, Lecture Notes in Artificial Intelligence, Vol.659,
pp.118–131 (1993).

8) László Lovász: Combinatorial Problems and Exercises, chapter Two classical enu-
meration problems in graph theory, North-Holland Publishing Company (1979).

9) Matsumoto, S. and Shinohara, A.: Learning pattern languages using queries, Proc.
3rd European Conference on Computational Learning Theory, pp.185–197 (1997).

10) Matsumoto, S., Shoudai, T., Miyahara, T. and Uchida, T.: Learning unions of term
tree languages using queries, Proc. LA Summer Symposium, July 2002, pp.21–1–
21–10 (2002).

11) Matsumoto, S., Shoudai, T., Uchida, T., Miyahara, T. and Suzuki, Y.: Learning of
finite unions of tree patterns with internal structured variables from queries, IEICE
Trans, Vol.E91-D, No.2, pp.222–230 (2008).

12) Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T., Takahashi, K. and Ueda, H.:
Discovery of frequent tag tree patterns in semistructured web documents, Proc.
6th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-
2002), LNAI 2336, pp.341–355, Springer-Verlag (2002).

13) Suzuki, Y., Akanuma, R., Shoudai, T., Miyahara, T. and Uchida, T.: Polynomial
time inductive inference of ordered tree patterns with internal structured variables

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

137 Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries

from positive data, Proc. 15th Annual Conference on Computational Learning The-
ory (COLT-2002), LNAI 2375, pp.169–184, Springer-Verlag (2002).

(Received February 5, 2009)
(Revised March 26, 2009)

(Revised(2) June 11, 2009)
(Accepted July 21, 2009)

Satoshi Matsumoto is an associate professor of Department
of Mathematical Sciences, Tokai University, Kanagawa, Japan. He
received B.S. degree in Mathematics, M.S. and Dr. Sci. degrees in
Information Systems all from Kyushu University, Fukuoka, Japan
in 1993, 1995 and 1998, respectively. His research interests include
algorithmic learning theory.

Yusuke Suzuki received B.S. degree in Physics, M.S. and Dr.
Sci. degrees in Informatics all from Kyushu University, in 2000,
2002 and 2007, respectively. He is currently a research associate
of Graduate School of Information Sciences, Hiroshima City Uni-
versity, Hiroshima, Japan. His research interests include machine
learning and data mining.

Takayoshi Shoudai received B.S. in 1986, M.S. degrees in 1988
in Mathematics and Dr. Sci. in 1993 in Information Science all
from Kyushu University. Currently, he is an associate professor of
Department of Informatics, Kyushu University. His research inter-
ests include algorithmic graph theory, algorithmic learning theory,
and data mining from graph-structured data. He is a member of
IEICE and ACM.

Tetsuhiro Miyahara is an associate professor of Gradu-
ate School of Information Sciences, Hiroshima City University,
Hiroshima, Japan. He received B.S. degree in Mathematics, M.S.
and Dr. Sci. degrees in Information Systems all from Kyushu Uni-
versity, Fukuoka, Japan in 1984, 1986 and 1996, respectively. His
research interests include algorithmic learning theory, knowledge
discovery and machine learning.

Tomoyuki Uchida received B.S. degree in Mathematics, M.S.
and Dr. Sci. degrees in Information Systems all from Kyushu Uni-
versity, in 1989, 1991 and 1994, respectively. Currently, he is an
associate professor of Graduate School of Information Sciences,
Hiroshima City University. His research interests include data
mining from semistructured data, algorithmic graph theory and
algorithmic learning theory. He is a member of IEICE and ACM.

IPSJ Transactions on Mathematical Modeling and Its Applications Vol. 2 No. 3 127–137 (Dec. 2009) c© 2009 Information Processing Society of Japan

